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The Eleventh Edition of Electric Circuits represents the most extensive re-
vision to the text since the Fifth Edition, published in 1996. Every sentence, 
paragraph, subsection, and chapter has been examined to improve clarity, 
readability, and pedagogy. Yet the fundamental goals of the text are un-
changed. These goals are:

• To build new concepts and ideas on concepts previously presented. 
This challenges students to see the explicit connections among the 
many circuit analysis tools and methods.

• To develop problem-solving skills that rely on a solid conceptual 
foundation. This challenges students to examine many different ap-
proaches to solving a problem before writing a single equation.

• To introduce realistic engineering experiences at every opportunity. 
This challenges students to develop the insights of a practicing engi-
neer and exposes them to practice of engineering.

Why This Edition?
The Eleventh Edition of Electric Circuits incorporates the following new 
and revised elements:

• Analysis Methods – This new feature identifies the steps needed to 
apply a particular circuit analysis technique. Many students struggle 
just to get started when analyzing a circuit, and the analysis methods 
will reduce that struggle. Some of the analysis methods that are used 
most often can be found inside the book’s covers for easy reference.

• Examples – Many students rely on examples when developing and 
refining their problem-solving skills. We identified many places in the 
text that needed additional examples, and as a result the number of 
examples has increased by nearly 35% to 200.

• End-of-chapter problems – Problem solving is fundamental to the 
study of circuit analysis. Having a wide variety of problems to assign 
and work is a key to success in any circuits course. Therefore, some 
existing end-of-chapter problems were revised, and some new end-
of-chapter problems were added. Approximately 30% of the prob-
lems in the Eleventh Edition were rewritten.

• Fundamental equations and concepts – These important elements in 
the text were previously identified with margin notes. In this edition, 
the margin notes have been replaced by a second-color background, 
enlarged fonts, and a descriptive title for each fundamental equation 
and concept. In additional, many equation numbers have been elim-
inated to make it easier to distinguish fundamental equations from 
the many other equations in the text.

• Circuit simulation software – The PSpice® and Multisim® manu-
als have been revised to include screenshots from the most recent 
 versions of these software simulation applications. Each manual 
 presents the simulation material in the same order as the material is 
encountered in the text. These manuals include example simulations 
of circuits from the text. Icons identify end-of-chapter problems that 
are good candidates for simulation using either PSpice or Multisim.

Preface
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• Solving simultaneous equations – Most circuit analysis techniques in 
this text eventually require you to solve two or more simultaneous 
linear algebraic equations. Appendix A has been extensively revised 
and includes examples of paper-and-pencil techniques, calculator 
techniques, and computer software techniques.

• Student Study Guides – Students who could benefit from additional 
examples and practice problems can use the Student Study Guides, 
which have been revised for the Eleventh Edition of the text. These 
guides have examples and problems covering the following material: 
balancing power, simple resistive circuits, node voltage method, mesh 
current method, Thévenin and Norton equivalents, op amp circuits, 
first-order circuits, second-order circuits, AC steady-state analysis, 
and Laplace transform circuit analysis.

• The Student Study Guides now include access to Video Solutions – 
complete, step-by-step solution walkthroughs to representative 
homework problems.

• Learning Catalytics – a “bring your own device” student engagement, 
assessment, and classroom intelligence system – is available with the 
Eleventh Edition. With Learning Catalytics you can:

• Use open-ended questions to get into the minds of students to un-
derstand what they do or don’t know, and adjust lectures  accordingly.

• Use a wide variety of question types to have students sketch a 
graph, annotate a circuit diagram, compose numeric or algebraic 
answers, and more.

• Access rich analytics to understand student performance.

• Use pre-built questions or add your own to make Learning Cata-
lytics fit your course exactly.

• Pearson Mastering Engineering is an online tutorial and assessment 
program that provides students with personalized feedback and hints 
and instructors with diagnostics to track students’ progress. With the 
Eleventh Edition, Mastering Engineering will offer new enhanced end-
of-chapter problems with hints and feedback, Coaching Activities, and 
Adaptive Follow-Up assignments. Visit www.masteringengineering.com 
for more information.

Hallmark Features
Analysis Methods
Students encountering circuit analysis for the first time can benefit from 
step-by-step directions that lead them to a problem’s solution. We have 
compiled these directions in a collection of analysis methods, and revised 
many of the examples in the text to employ these analysis methods.

Chapter Problems
Users of Electric Circuits have consistently rated the Chapter Problems as 
one of the book’s most attractive features. In the Eleventh Edition, there 
are 1185 end-of-chapter problems with approximately 30% that have been 
revised from the previous edition. Problems are organized at the end of 
each chapter by section.

Practical Perspectives
The Eleventh Edition continues using Practical Perspectives to  introduce 
the chapter. They provide real-world circuit examples, taken from  real-world 
devices. Every chapter begins by describing a practical application of the 

www.masteringengineering.com
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material that follows. After presenting that material, the chapter revisits 
the Practical Perspective, performing a quantitative circuit analysis using 
the newly introduced chapter material. A special icon identifies end-of-
chapter problems directly related to the Practical Perspective application. 
These problems provide additional opportunities for solving real-world 
problems using the chapter material.

Assessment Problems
Each chapter begins with a set of chapter objectives. At key points in the 
chapter, you are asked to stop and assess your mastery of a particular ob-
jective by solving one or more assessment problems. The answers to all of 
the assessment problems are given at the conclusion of each problem, so 
you can check your work. If you are able to solve the assessment problems 
for a given objective, you have mastered that objective. If you need more 
practice, several end-of-chapter problems that relate to the objective are 
suggested at the conclusion of the assessment problems.

Examples
Every chapter includes many examples that illustrate the concepts pre-
sented in the text in the form of a numeric example. There are now nearly 
200 examples in this text, an increase of about 35% when compared to 
the  previous edition. The examples illustrate the application of a partic-
ular concept, often employ an Analysis Method, and exemplify good 
 problem-solving skills.

Fundamental Equations and Concepts
Throughout the text, you will see fundamental equations and concepts set 
apart from the main text. This is done to help you focus on some of the key 
principles in electric circuits and to help you navigate through the import-
ant topics.

Integration of Computer Tools
Computer tools can assist students in the learning process by provid-
ing a visual representation of a circuit’s behavior, validating a calcu-
lated solution, reducing the computational burden of more complex 
circuits, and iterating toward a desired solution using parameter vari-
ation. This computational support is often invaluable in the design 
process. The Eleventh Edition supports PSpice and Multisim, both 
popular computer tools for circuit simulation and analysis. Chapter 
problems suited for exploration with PSpice and Multisim are marked 
accordingly.

Design Emphasis
The Eleventh Edition continues to support the emphasis on the design of 
circuits in many ways. First, many of the Practical Perspective discussions 
focus on the design aspects of the circuits. The accompanying Chapter 
Problems continue the discussion of the design issues in these practical ex-
amples. Second, design-oriented Chapter Problems have been labeled ex-
plicitly, enabling students and instructors to identify those problems with 
a design focus. Third, the identification of problems suited to exploration 
with PSpice or Multisim suggests design opportunities using these software 
tools. Fourth, some problems in nearly every chapter focus on the use of 
realistic component values in achieving a desired circuit design. Once such 
a problem has been analyzed, the student can proceed to a laboratory to 
build and test the circuit, comparing the analysis with the measured perfor-
mance of the actual circuit.



 Preface 25

Accuracy
All text and problems in the Eleventh Edition have undergone our strict hall-
mark accuracy checking process, to ensure the most error-free book possible.

Resources For Students
Mastering Engineering. Mastering Engineering provides tutorial homework 
problems designed to emulate the instructor’s office hour environment, guid-
ing students through engineering concepts with self-paced individualized 
coaching. These in-depth tutorial homework problems provide students with 
feedback specific to their errors and optional hints that break problems down 
into simpler steps. Visit www.masteringengineering.com for more information.

Learning Catalytics. Learning Catalytics is an interactive student response 
tool that encourages team-based learning by using student’s smartphones, 
tablets, or laptops to engage them in interactive tasks and thinking. Visit 
www.learningcatalytics.com for more information.

Student Study Guides. These resources teach students techniques for solv-
ing problems presented in the text. Organized by concepts, these guides are 
a valuable problem-solving resource for all levels of students. The Student 
Study Guides now include access to Video Solutions, complete, step-by-
step solution walkthroughs to representative homework problems.

Introduction to Multisim and Introduction to PSpice Manuals—Updated 
for the Eleventh Edition, these manuals are excellent resources for those 
wishing to integrate PSpice or Multisim into their classes.

Resources for Instructors
All instructor resources are available for download at the Instructor 
 Resources Center. If you are in need of a login and password for this site, 
please contact your local Pearson representative.

Instructor Solutions Manual—Fully worked-out solutions to Assessment 
Problems and end-of-chapter problems.

PowerPoint lecture images—All figures from the text are available in Pow-
erPoint for your lecture needs. An additional set of full lecture slides with 
embedded assessment questions are available upon request.

MasteringEngineering. This online tutorial and assessment program allows 
you to integrate dynamic homework with automated grading and person-
alized feedback. MasteringEngineering allows you to easily track the per-
formance of your entire class on an assignment-by-assignment basis, or the 
detailed work of an individual student. For more information visit www.
masteringengineering.com.

Learning Catalytics—This “bring your own device” student engagement, 
assessment and classroom intelligence system enables you to measure stu-
dent learning during class, and adjust your lectures accordingly. A wide 
variety of question and answer types allows you to author your own ques-
tions, or you can use questions already authored into the system. For more 
information visit www.learningcatalytics.com or click on the Learning Cat-
alytics link inside Mastering  Engineering.

Prerequisites
In writing the first 12 chapters of the text, we have assumed that the reader 
has taken a course in elementary differential and integral calculus. We have 
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also assumed that the reader has had an introductory physics course, at  either 
the high school or university level, that introduces the concepts of energy, 
power, electric charge, electric current, electric potential, and electromagnet-
ic fields. In writing the final six chapters, we have assumed the student has 
had, or is enrolled in, an introductory course in differential equations.

Course Options
The text has been designed for use in a one-semester, two-semester, or a 
three-quarter sequence.

• Single-semester course: After covering Chapters 1–4 and Chapters 
6–10 (omitting Sections 7.7 and 8.5) the instructor can develop the de-
sired emphasis by covering Chapter 5 (operational amplifiers), Chap-
ter 11 (three-phase circuits), Chapters 13 and 14 (Laplace methods), 
or Chapter 18 (Two-Port Circuits).

• Two-semester sequence: Assuming three lectures per week, cover the 
first nine chapters during the first semester, leaving Chapters 10–18 
for the second semester.

• Academic quarter schedule: Cover Chapters 1–6 in the first quarter, 
Chapters 7–12 in the second quarter, and Chapters 13–18 in the third 
quarter.

Note that the introduction to operational amplifier circuits in Chapter 5 can 
be omitted with minimal effect on the remaining material. If Chapter 5 is 
omitted, you should also omit Section 7.7, Section 8.5, Chapter 15, and those 
assessment problems and end-of-chapter problems that pertain to opera-
tional amplifiers.

There are several appendixes at the end of the book to help readers 
make effective use of their mathematical background. Appendix A presents 
several different methods for solving simultaneous linear equations; com-
plex numbers are reviewed in Appendix B; Appendix C contains additional 
material on magnetically coupled coils and ideal transformers; Appendix D 
contains a brief discussion of the decibel; Appendix E is dedicated to Bode 
diagrams; Appendix F is devoted to an abbreviated table of trigonometric 
identities that are useful in circuit analysis; and an abbreviated table of use-
ful integrals is given in Appendix G. Appendix H provides tables of common 
standard component values for resistors, inductors, and capacitors, to be 
used in solving many end-of-chapter problems. Selected Answers provides 
answers to selected end-of-chapter problems.
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CHAPTER CONTENTS

1
CHAPTER 

Circuit Variables
Electrical engineering is an exciting and challenging profession 
for anyone who has a genuine interest in, and aptitude for, ap-
plied science and mathematics. Electrical engineers play a dom-
inant role in developing systems that change the way people live 
and work. Satellite communication links, cell phones, computers, 
televisions, diagnostic and surgical medical equipment, robots, 
and aircraft represent systems that define a modern technological 
society. As an electrical engineer, you can participate in this on-
going technological revolution by improving and refining existing 
systems and by discovering and developing new systems to meet 
the needs of our ever-changing society.

This text introduces you to electrical engineering using the 
analysis and design of linear circuits. We begin by presenting an 
overview of electrical engineering, some ideas about an engi-
neering point of view as it relates to circuit analysis, and a review 
of the International System of Units. We then describe generally 
what circuit analysis entails. Next, we introduce the concepts of 
voltage and current. We continue by discussing the ideal basic 
element and the need for a polarity reference system. We con-
clude the chapter by describing how current and voltage relate to 
power and energy.

1.1 Electrical Engineering: An Overview p. 32

1.2 The International System of Units p. 37

1.3 Circuit Analysis: An Overview p. 39

1.4 Voltage and Current p. 40

1.5 The Ideal Basic Circuit Element p. 42

1.6 Power and Energy p. 43

1 Understand and be able to use SI units and 
the standard prefixes for powers of 10.

2 Know and be able to use the definitions of 
voltage and current.

3 Know and be able to use the definitions of 
power and energy.

4 Be able to use the passive sign convention 
to calculate the power for an ideal basic cir-
cuit element given its voltage and current.

CHAPTER OBJECTIVES



Practical Perspective
Balancing Power
One of the most important skills you will develop is the 
ability to check your answers for the circuits you design 
and analyze using the tools developed in this text. A 
common method used to check for valid answers is to 
calculate the power in the circuit. The linear circuits we 
study have no net power, so the sum of the power as-
sociated with all circuit components must be zero. If the 
total power for the circuit is zero, we say that the power 
balances, but if the total power is not zero, we need to 
find the errors in our calculation.

As an example, we will consider a simple model for 
distributing electricity to a typical home. (Note that a 

more realistic model will be investigated in the Practical 
Perspective for Chapter 9.) The components labeled a and 
b represent the source of electrical power for the home. 
The components labeled c, d, and e represent the wires 
that carry the electrical current from the source to the de-
vices in the home requiring electrical power. The compo-
nents labeled f, g, and h represent lamps, televisions, hair 
dryers, refrigerators, and other devices that require power.

Once we have introduced the concepts of voltage, 
current, power, and energy, we will examine this circuit 
model in detail, and use a power balance to determine 
whether the results of analyzing this circuit are correct.
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1.1 Electrical Engineering: An Overview
The electrical engineering profession focuses on systems that produce, 
transmit, and measure electric signals. Electrical engineering combines the 
physicist’s models of natural phenomena with the mathematician’s tools for 
manipulating those models to produce systems that meet practical needs. 
Electrical systems pervade our lives; they are found in homes, schools, work-
places, and transportation vehicles everywhere. We begin by presenting a 
few examples from each of the five major classifications of electrical systems:

• communication systems
• computer systems
• control systems
• power systems
• signal-processing systems

Then we describe how electrical engineers analyze and design such systems.
Communication systems are electrical systems that generate, trans-

mit, and distribute information. Well-known examples include television 
equipment, such as cameras, transmitters, receivers, and monitors; radio 
telescopes, used to explore the universe; satellite systems, which return 
images of other planets and our own; radar systems, used to coordinate 
plane flights; and telephone systems.

Figure 1.1 depicts the major components of a modern telephone system 
that supports mobile phones, landlines, and international calling. Inside a tele-
phone, a microphone turns sound waves into electric signals. These signals 
are carried to local or mobile exchanges, where they are combined with the 
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Figure 1.1 ▲ A telephone system.
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signals from tens, hundreds, or thousands of other telephones. The form of 
the signals can be radio waves traveling through air, electrical signals travel-
ing in underground coaxial cable, light pulses traveling in fiber-optic cable, or 
microwave signals that travel through space. The combined signals are broad-
cast from a transmission antenna to a receiving antenna. There the  combined 
signals are separated at an exchange, and each is routed to the appropriate 
telephone, where an earphone acts as a speaker to convert the received elec-
tric signals back into sound waves. At each stage of the process, electric circuits 
operate on the signals. Imagine the challenge involved in designing, building, 
and  operating each circuit in a way that guarantees that all of the hundreds of 
 thousands of simultaneous calls have high-quality connections.

Computer systems use electric signals to process information ranging 
from word processing to mathematical computations. Systems range in 
size and power from simple calculators to personal computers to super-
computers that perform such complex tasks as processing weather data 
and modeling chemical interactions of complex organic molecules. These 
systems include networks of integrated circuits—miniature assemblies 
of hundreds, thousands, or millions of electrical components that often 
 operate at speeds and power levels close to fundamental physical limits, 
including the speed of light and the thermodynamic laws.

Control systems use electric signals to regulate processes. Examples 
include the control of temperatures, pressures, and flow rates in an oil 
refinery; the fuel–air mixture in a fuel-injected automobile engine; mech-
anisms such as the motors, doors, and lights in elevators; and the locks in 
the Panama Canal. The autopilot and autolanding systems that help to fly 
and land airplanes are also familiar control systems.

Power systems generate and distribute electric power. Electric power, 
which is the foundation of our technology-based society, usually is generated 
in large quantities by nuclear, hydroelectric, solar, and thermal (coal-, oil-, or 
gas-fired) generators. Power is distributed by a grid of conductors that criss-
cross the country. A major challenge in designing and operating such a system 
is to provide sufficient redundancy and control so that failure of any piece of 
equipment does not leave a city, state, or region completely without power.

Signal-processing systems act on electric signals that represent informa-
tion. They transform the signals and the information contained in them into a 
more suitable form. There are many different ways to 
process the signals and their information. For exam-
ple, image-processing systems gather massive quanti-
ties of data from orbiting weather satellites, reduce the 
amount of data to a manageable level, and transform 
the remaining data into a video image for the evening 
news broadcast. A magnetic resonance imaging (MRI) 
scan is another example of an image-processing sys-
tem. It takes signals generated by powerful magnetic 
fields and radio waves and transforms them into a de-
tailed, three-dimensional image such as the one shown in  
Fig. 1.2, which can be used to diagnose disease and injury.

Considerable interaction takes place among the 
engineering disciplines involved in designing and op-
erating these five classes of systems. Thus, communi-
cations engineers use digital computers to control the 
flow of information. Computers contain control sys-
tems, and control systems contain computers. Power 
systems require extensive communications systems to 
coordinate safely and reliably the operation of com-
ponents, which may be spread across a continent. A 
signal-processing system may involve a communica-
tions link, a computer, and a control system.

Meniscus

Tibia

Patellar
tendon

Patella
(knee cap)

Femur

Figure 1.2 ▲ An MRI scan of an adult knee joint.
Neil Borden/Science Source/Getty Images
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A good example of the interaction among systems is a  commercial 
airplane, such as the one shown in Fig. 1.3. A sophisticated communica-
tions system enables the pilot and the air traffic controller to monitor 
the plane’s location, permitting the air traffic controller to design a safe 
flight path for all of the nearby aircraft and enabling the pilot to keep 
the plane on its designated path. An onboard computer system manages 
engine functions, implements the navigation and flight control systems, 
and generates video information screens in the cockpit. A complex con-
trol system uses cockpit commands to adjust the position and speed of 
the airplane, producing the appropriate signals to the engines and the 
control surfaces (such as the wing flaps, ailerons, and rudder) to ensure 
the plane remains safely airborne and on the desired flight path. The 
plane must have its own power system to stay aloft and to provide and 
distribute the electric power needed to keep the cabin lights on, make 
the coffee, and activate the entertainment system. Signal-processing 
systems reduce the noise in air traffic communications and transform 
information about the plane’s location into the more meaningful form 
of a video display in the cockpit. Engineering challenges abound in the 
design of each of these systems and their integration into a coherent 
whole. For example, these systems must operate in widely varying and 
unpredictable environmental conditions. Perhaps the most important 
engineering challenge is to guarantee that sufficient redundancy is in-
corporated in the designs,  ensuring that passengers  arrive safely and on 
time at their desired destinations.

Although electrical engineers may be interested primarily in one area, 
they must also be knowledgeable in other areas that interact with this area 
of interest. This interaction is part of what makes electrical engineering 
a challenging and exciting profession. The emphasis in engineering is on 
making things work, so an engineer is free to acquire and use any tech-
nique from any field that helps to get the job done.

Electrical
distribution

Landing
gear

Ice
protection

Environmental
controlFlight 

control

Navigation

Air traf�c 
communications

Secondary
controls

Primary
controls

Primary
controls

Starter
generator

Engine
systems

Figure 1.3 ▲ Interacting systems on a commercial aircraft.
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Circuit Theory
An electric circuit is a mathematical model that approximates the behav-
ior of an actual electrical system. Since electric circuits are found in every 
branch of electrical engineering, they provide an important foundation for 
learning how to design and operate systems such as those just described. The 
models, the mathematical techniques, and the language of circuit theory will 
form the intellectual framework for your future engineering endeavors.

Note that the term electric circuit is commonly used to refer to an ac-
tual electrical system as well as to the model that represents it. In this text, 
when we talk about an electric circuit, we always mean a model, unless 
otherwise stated. It is the modeling aspect of circuit theory that has broad 
applications across engineering disciplines.

Circuit theory is a special case of electromagnetic field theory: the 
study of static and moving electric charges. But applying generalized 
field theory to the study of electric signals is cumbersome and requires 
advanced mathematics. Consequently, a course in electromagnetic field 
theory is not a prerequisite to understanding the material in this book. We 
do, however, assume that you have had an introductory physics course in 
which electrical and magnetic phenomena were discussed.

Three basic assumptions permit us to use circuit theory, rather than 
electromagnetic field theory, to study a physical system represented by an 
electric circuit.

1. Electrical effects happen instantaneously throughout a system. We 
can make this assumption because we know that electric signals 
travel at or near the speed of light. Thus, if the system is physically 
small, electric signals move through it so quickly that we can con-
sider them to affect every point in the system simultaneously. A 
system that is small enough so that we can make this assumption is 
called a lumped-parameter system.

2. The net charge on every component in the system is always zero. 
Thus, no component can collect a net excess of charge, although 
some components, as you will learn later, can hold equal but oppo-
site separated charges.

3. There is no magnetic coupling between the components in a system. 
As we demonstrate later, magnetic coupling can occur within a 
component.

That’s it; there are no other assumptions. Using circuit theory provides 
simple solutions (of sufficient accuracy) to problems that would become 
hopelessly complicated if we were to use electromagnetic field theory. 
These benefits are so great that engineers sometimes specifically design 
electrical systems to ensure that these assumptions are met. The impor-
tance of assumptions 2 and 3 becomes apparent after we introduce the 
basic circuit elements and the rules for analyzing interconnected elements.

Let’s take a closer look at assumption 1. The question is, “How 
small does a physical system have to be to qualify as a lumped-parameter 
 system?” To get a quantitative answer to this question, remember that 
electric signals propagate as waves. If the wavelength of the signal is large 
compared to the physical dimensions of the system, we have a lumped- 
parameter system. The wavelength l is the velocity divided by the repe-
tition rate, or frequency, of the signal; that is, l = c>f . The frequency f is 
measured in hertz (Hz). For example, power systems in the United States 
operate at 60 Hz. If we use the speed of light (c = 3 * 108 m>s) as the ve-
locity of propagation, the wavelength is 5 * 106 m. If the power system of 
interest is physically smaller than this wavelength, we can represent it as a 
lumped-parameter system and use circuit theory to analyze its behavior. 



36 Circuit Variables

How do we define smaller? A good rule is the rule of 1>10th: If the dimen-
sion of the system is less than 1N10th the dimension of the wavelength, you 
have a lumped-parameter system. Thus, as long as the physical dimension 
of the power system is less than 5 * 105 m (which is about 310 miles), we 
can treat it as a lumped-parameter system.

Now consider a communication system that sends and receives radio 
signals. The propagation frequency of radio signals is on the order of 
109 Hz, so the wavelength is 0.3 m. Using the rule of 1N10th, a commu-
nication system qualifies as a lumped-parameter system if its dimension 
is less than 3 cm. Whenever any of the pertinent physical dimensions of a 
system under study approaches the wavelength of its signals, we must use 
electromagnetic field theory to analyze that system. Throughout this book 
we study circuits derived from lumped-parameter systems.

Problem Solving
As a practicing engineer, you will not be asked to solve problems that 
have already been solved. Whether you are improving the performance 
of an existing system or designing a new system, you will be working on 
unsolved problems. As a student, however, you will read and discuss 
problems with known solutions. Then, by solving related homework and 
exam problems on your own, you will begin to develop the skills needed 
to  attack the unsolved problems you’ll face as a practicing engineer.

Let’s review several general problem-solving strategies. Many of 
these pertain to thinking about and organizing your solution strategy 
 before proceeding with calculations.

1. Identify what’s given and what’s to be found. In problem solving, 
you need to know your destination before you can select a route 
for getting there. What is the problem asking you to solve or find? 
Sometimes the goal of the problem is obvious; other times you may 
need to paraphrase or make lists or tables of known and unknown 
information to see your objective.

On one hand, the problem statement may contain extraneous 
information that you need to weed out before proceeding. On the 
other hand, it may offer incomplete information or more complexi-
ties than can be handled by the solution methods you know. In that 
case, you’ll need to make assumptions to fill in the missing infor-
mation or simplify the problem context. Be prepared to circle back 
and reconsider supposedly extraneous information and/or your 
assumptions if your calculations get bogged down or produce an 
answer that doesn’t seem to make sense.

2. Sketch a circuit diagram or other visual model. Translating a verbal 
problem description into a visual model is often a useful step in the 
solution process. If a circuit diagram is already provided, you may 
need to add information to it, such as labels, values, or reference 
directions. You may also want to redraw the circuit in a simpler, but 
equivalent, form. Later in this text you will learn the methods for 
developing such simplified equivalent circuits.

3. Think of several solution methods and decide on a way of choosing 
among them. This course will help you build a collection of analyt-
ical tools, several of which may work on a given problem. But one 
method may produce fewer equations to be solved than another, or 
it may require only algebra instead of calculus to reach a solution. 
Such efficiencies, if you can anticipate them, can streamline your cal-
culations considerably. Having an alternative method in mind also 
gives you a path to pursue if your first solution attempt bogs down.
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4. Calculate a solution. Your planning up to this point should have helped 
you identify a good analytical method and the correct equations for 
the problem. Now comes the solution of those equations. Paper-and- 
pencil, calculator, and computer methods are all available for per-
forming the actual calculations of circuit analysis. Efficiency and your  
instructor’s preferences will dictate which tools you should use.

5. Use your creativity. If you suspect that your answer is off base or if 
the calculations seem to go on and on without moving you toward a 
solution, you should pause and consider alternatives. You may need 
to revisit your assumptions or select a different solution method. Or 
you may need to take a less conventional problem-solving approach, 
such as working backward from a solution. This text provides an-
swers to all of the Assessment Problems and many of the Chapter 
Problems so that you may work backward when you get stuck. In 
the real world, you won’t be given answers in advance, but you may 
have a desired problem outcome in mind from which you can work 
backward. Other creative approaches include allowing yourself to 
see parallels with other types of problems you’ve successfully solved, 
following your intuition or hunches about how to proceed, and sim-
ply setting the problem aside temporarily and coming back to it later.

6. Test your solution. Ask yourself whether the solution you’ve obtained 
makes sense. Does the magnitude of the answer seem reasonable? Is 
the solution physically realizable? Are the units correct? You may 
want to rework the problem using an alternative method to validate 
your original answer and help you develop your intuition about the 
most efficient solution methods for various kinds of problems. In the 
real world, safety-critical designs are always checked by several inde-
pendent means. Getting into the habit of checking your answers will 
benefit you both as a student and as a practicing engineer.

These problem-solving steps cannot be used as a recipe to solve every prob-
lem in this or any other course. You may need to skip, change the order of, 
or elaborate on certain steps to solve a particular problem. Use these steps 
as a guideline to develop a problem-solving style that works for you.

1.2 The International System of Units
Engineers use quantitative measures to compare theoretical results to ex-
perimental results and compare competing engineering designs. Modern en-
gineering is a multidisciplinary profession in which teams of engineers work 
together on projects, and they can communicate their results in a meaning-
ful way only if they all use the same units of measure. The International 
System of Units (abbreviated SI) is used by all the major engineering soci-
eties and most engineers throughout the world; hence we use it in this book.

The SI units are based on seven defined quantities:

• length
• mass
• time
• electric current
• thermodynamic temperature
• amount of substance
• luminous intensity

These quantities, along with the basic unit and symbol for each, are 
listed in Table 1.1. Although not strictly SI units, the familiar time units 
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of minute (60 s), hour (3600 s), and so on are often used in engineering 
calculations. In addition, defined quantities are combined to form derived 
units. Some quantities, such as force, energy, power, and electric charge, 
you already know through previous physics courses. Table 1.2 lists the de-
rived units used in this book.

In many cases, the SI unit is either too small or too large to use con-
veniently. Standard prefixes corresponding to powers of 10, as listed in 
Table 1.3, are then applied to the basic unit. Engineers often use only the 
prefixes for powers divisible by 3; thus centi, deci, deka, and hecto are 
used rarely. Also, engineers often select the prefix that places the base 
number in the range between 1 and 1000. Suppose that a time calculation 
yields a result of 10 - 5 s, that is, 0.00001 s. Most engineers would describe this 
quantity as 10 ms, that is, 10 * 10 - 6 s, rather than as 0.01 ms or 10,000 ns.

Example 1.1 illustrates a method for converting from one set of units 
to another and also uses power-of-10 prefixes.

TABLE 1.1 The International System of Units (SI)

National Institute of Standards and Technology Special Publication 330, 2008 Edition, Natl. 
Inst. Stand. Technol. Spec. Pub. 330, 2008 Ed., 96 pages (March 2008)

Quantity Basic Unit Symbol

Length meter m

Mass kilogram kg

Time second s

Electric current ampere A

Thermodynamic temperature degree kelvin K

Amount of substance mole mol

Luminous intensity candela cd

TABLE 1.2 Derived Units in SI

National Institute of Standards and Technology Special Publication 330,  
2008 Edition, Natl. Inst. Stand. Technol. Spec. Pub. 330, 2008 Ed., 96 pages 
(March 2008)

Quantity Unit Name (Symbol) Formula

Frequency hertz (Hz) s - 1

Force newton (N) kg # m>s2

Energy or work joule (J) N # m

Power watt (W) J>s

Electric charge coulomb (C) A # s

Electric potential volt (V) J>C

Electric resistance ohm (Ω) V>A

Electric conductance siemens (S) A>V

Electric capacitance farad (F) C>V

Magnetic flux weber (Wb) V # s

Inductance henry (H) Wb>A

TABLE 1.3  Standardized Prefixes to Signify 
Powers of 10

National Institute of Standards and Technology Special  
Publication 330, 2008 Edition, Natl. Inst. Stand. Technol. Spec. 
Pub. 330, 2008 Ed., 96 pages (March 2008)

Prefix Symbol Power

atto a 10-18

femto f 10-15

pico p 10-12

nano n 10-9

micro m 10-6

milli m 10-3

centi c 10-2

deci d 10-1

deka da 10

hecto h 102

kilo k 103

mega M 106

giga G 109

tera T 1012
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1.3 Circuit Analysis: An Overview
We look broadly at engineering design, specifically the design of electric cir-
cuits, before becoming involved in the details of circuit analysis. This over-
view provides you with a perspective on where circuit analysis fits within the 
whole of circuit design. Even though this book focuses on circuit analysis, we 
try to provide opportunities for circuit design where appropriate.

All engineering designs begin with a need 1 , as shown in Fig. 1.4. 
This need may come from the desire to improve on an existing design, or it 
may be something brand new. A careful assessment of the need results in 
design specifications, which are measurable characteristics of a proposed 
design. Once a design is proposed, the design specifications 2  allow us 
to assess whether or not the design actually meets the need.

A concept 3  for the design comes next. The concept derives from a 
complete understanding of the design specifications coupled with an insight 
into the need, which comes from education and experience. The concept may 
be realized as a sketch, as a written description, or as some other form. Often 
the next step is to translate the concept into a mathematical model. A com-
monly used mathematical model for electrical systems is a circuit model 4 .

The elements that make up the circuit model are called ideal circuit 
components. An ideal circuit component is a mathematical model of an 
actual electrical component, like a battery or a light bulb. The ideal circuit 

EXAMPLE 1.1 Using SI Units and Prefixes for Powers of 10

If a signal can travel in a cable at 80% of the speed of 
light, what length of cable, in inches, represents 1 ns?

Solution
First, note that 1 ns = 10 - 9 s. Also, recall that 
the speed of light c = 3 * 108 m>s. Then, 80% 
of the speed of light is 0.8c = (0.8)(3 * 108) =
2.4 * 108 m>s. Using a product of ratios, we can 
convert 80% of the speed of light from meters per 
second to inches per nanosecond. The result is the 
distance in inches traveled in 1 nanosecond:

2.4 * 108 meters
1 second

 #  
1 second

109 nanoseconds
 #  

100 centimeters
1 meter

 #  
1 inch

2.54 centimeters

= 9.45 inches>nanosecond.

Therefore, a signal traveling at 80% of the speed of 
light will cover 9.45 inches of cable in 1  nanosecond.

Objective 1—Understand and be able to use SI units and the standard prefixes for powers of 10

 1.1 Assume a telephone signal travels through a cable 
at two-thirds the speed of light. How long does 
it take the signal to get from New York City to 
 Miami if the distance is approximately 1100 miles? 

Answer:  8.85 ms.

 1.2 How many dollars per millisecond would the 
federal government have to collect to retire a 
deficit of $100 billion in one year? 

Answer: $3.17>ms.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 1.2, 1.3, and 1.6.
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components used in a circuit model should rep-
resent the behavior of the actual electrical com-
ponents to an acceptable degree of accuracy. The 
tools of circuit analysis 5 , the focus of this book, 
are then applied to the circuit. Circuit  analysis 
uses mathematical techniques to predict the be-
havior of the circuit model and its ideal circuit 
components. A comparison between the desired 
behavior, from the design specifications, and the 
predicted behavior, from circuit analysis, may 
lead to refinements in the circuit model and its 
ideal circuit elements. Once the desired and 
 predicted behaviors are in agreement, a physical 
prototype 6  can be constructed.

The physical prototype is an actual electrical 
system, constructed from actual electrical com-
ponents. Measurements determine the quantita-
tive behavior of the physical system. This actual 
behavior is compared with the desired behavior 
from the design specifications and the predicted 
behavior from circuit analysis. The comparisons 
may result in refinements to the physical proto-
type, the circuit model, or both. This iterative 
process, in which models, components, and sys-
tems are continually refined, usually produces a 
design that accurately satisfies the design specifi-
cations and thus meets the need.

Circuit analysis clearly plays a very import-
ant role in the design process. Because circuit 
analysis is applied to circuit models, practicing 
engineers try to use mature circuit models so that 
the resulting designs will meet the design specifi-
cations in the first iteration. In this book, we use 
models that have been tested for at least 40 years; 

you can assume that they are mature. The ability to model actual electrical 
systems with ideal circuit elements makes circuit theory extremely useful to 
engineers.

Saying that the interconnection of ideal circuit elements can be used to 
quantitatively predict the behavior of a system implies that we can  describe 
the interconnection with mathematical equations. For the  mathematical 
equations to be useful, we must write them in terms of measurable quanti-
ties. In the case of circuits, these quantities are voltage and current, which we 
discuss in Section 1.4. The study of circuit analysis involves  understanding 
the behavior of each ideal circuit element in terms of its voltage and current 
and understanding the constraints imposed on the voltage and current as a 
result of interconnecting the ideal elements.

1.4 Voltage and Current
The concept of electric charge is the basis for describing all electrical phe-
nomena. Let’s review some important characteristics of electric charge.

• Electric charge is bipolar, meaning that electrical effects are  described 
in terms of positive and negative charges.

• Electric charge exists in discrete quantities, which are integer 
 multiples of the electronic charge, 1.6022 * 10-19 C.

• Electrical effects are attributed to both the separation of charge and 
charges in motion.

Circuit
model

Need

Circuit which
meets design
speci�cationsConcept

Design speci�cations

Physical
insight

Physical
prototype

Circuit
analysis

Re�nement
based on analysis

Laboratory
measurements

Re�nement based
on measurements

1

2

3 4 6

5

Figure 1.4 ▲ A conceptual model for electrical engineering design.
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In circuit theory, the separation of charge creates an electric force 
 (voltage), and the motion of charge creates an electric fluid (current).

The concepts of voltage and current are useful from an engineering 
point of view because they can be expressed quantitatively. Whenever 
positive and negative charges are separated, energy is expended. Voltage 
is the energy per unit charge created by the separation. We express this 
ratio in differential form as

DEFINITION OF VOLTAGE

 v =
dw

dq
, (1.1)

where

 v = the voltage in volts,

 w = the energy in joules,

 q = the charge in coulombs.

The electrical effects caused by charges in motion depend on the rate 
of charge flow. The rate of charge flow is known as the electric current, 
which is expressed as

DEFINITION OF CURRENT

 i =
dq
dt

, (1.2)

where

 i = the current in amperes,

 q = the charge in coulombs,

 t = the time in seconds.

Equations 1.1 and 1.2 define the magnitude of voltage and current, 
respectively. The bipolar nature of electric charge requires that we assign 
polarity references to these variables. We will do so in Section 1.5.

Although current is made up of discrete moving electrons, we do not 
need to consider them individually because of the enormous number of 
them. Rather, we can think of electrons and their corresponding charge 
as one smoothly flowing entity. Thus, i is treated as a continuous variable.

One advantage of using circuit models is that we can model a compo-
nent strictly in terms of the voltage and current at its terminals. Thus, two 
physically different components could have the same relationship between 
the terminal voltage and terminal current. If they do, for purposes of circuit 
analysis, they are identical. Once we know how a component behaves at its 
terminals, we can analyze its behavior in a circuit. However, when develop-
ing component models, we are interested in a component’s internal behavior. 
We might want to know, for example, whether charge conduction is taking 
place because of free electrons moving through the crystal lattice structure 
of a metal or whether it is because of electrons moving within the covalent 
bonds of a semiconductor material. These concerns are beyond the realm of 
circuit theory, so in this book we use component models that have already 
been developed.
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1.5 The Ideal Basic Circuit Element
An ideal basic circuit element has three attributes.

1. It has only two terminals, which are points of connection to other 
circuit components.

2. It is described mathematically in terms of current and/or voltage.

3. It cannot be subdivided into other elements.

Using the word ideal implies that a basic circuit element does not exist as a 
realizable physical component. Ideal elements can be connected in order 
to model actual devices and systems, as we discussed in Section 1.3. Using 
the word basic implies that the circuit element cannot be further reduced 
or subdivided into other elements. Thus, the basic circuit elements form 
the building blocks for constructing circuit models, but they themselves 
cannot be modeled with any other type of element.

Figure 1.5 represents an ideal basic circuit element. The box is blank 
because we are making no commitment at this time as to the type of cir-
cuit element it is. In Fig. 1.5, the voltage across the terminals of the box is 
denoted by v, and the current in the circuit element is denoted by i. The 
plus and minus signs indicate the polarity reference for the voltage, and 
the arrow placed alongside the current indicates its reference direction. 
Table 1.4 interprets the voltage polarity and current direction, given posi-
tive or negative numerical values of v and i. Note that algebraically the no-
tion of positive charge flowing in one direction is equivalent to the notion 
of negative charge flowing in the opposite direction.

Assigning the reference polarity for voltage and the reference direction 
for current is entirely arbitrary. However, once you have assigned the refer-
ences, you must write all subsequent equations to agree with the chosen ref-
erences. The most widely used sign convention applied to these references 
is called the passive sign convention, which we use throughout this book.

TABLE 1.4 Interpretation of Reference Directions in Fig. 1.5

Positive Value Negative Value

v voltage drop from terminal 1 to terminal 2 voltage rise from terminal 1 to terminal 2

or or

voltage rise from terminal 2 to terminal 1 voltage drop from terminal 2 to terminal 1

i positive charge flowing from terminal 1 to terminal 2 positive charge flowing from terminal 2 to terminal 1

or or

negative charge flowing from terminal 2 to terminal 1 negative charge flowing from terminal 1 to terminal 2

21

vi 1 2

Figure 1.5 ▲ An ideal basic circuit element.

PASSIVE SIGN CONVENTION

Whenever the reference direction for the current in an 
element is in the direction of the reference voltage drop 
across the element (as in Fig. 1.5), use a positive sign in 
any expression that relates the voltage to the current. 
Otherwise, use a negative sign.

We apply this sign convention in all the analyses that follow. Our pur-
pose for introducing it even before we have introduced the different types 
of basic circuit elements is to emphasize that selecting polarity references 
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is not a function either of the basic elements or the type of interconnec-
tions made with the basic elements. We apply and interpret the passive 
sign convention for power calculations in Section 1.6.

Example 1.2 illustrates one use of the equation defining current.

EXAMPLE 1.2 Relating Current and Charge

No charge exists at the upper terminal of the ele-
ment in Fig. 1.5 for t 6 0. At t = 0, a 5 A current 
begins to flow into the upper terminal.

a) Derive the expression for the charge accumu-
lating at the upper terminal of the element for 
t 7 0.

b) If the current is stopped after 10 seconds, how 
much charge has accumulated at the upper 
 terminal?

Solution

a) From the definition of current given in Eq. 1.2, 
the expression for charge accumulation due to 
current flow is

q(t) = L
t

0
i(x)dx.

Therefore,

q(t) = L
t

0
 5dx = 5x `

t

0
= 5t - 5(0) = 5t C for t 7 0.

b) The total charge that accumulates at the upper 
terminal in 10 seconds due to a 5 A current is 
q(10) = 5(10) = 50 C.

Objective 2—Know and be able to use the definitions of voltage and current

 1.3 The current at the terminals of the element in 
Fig. 1.5 is

 i = 0, t 6 0;

 i = 20e - 5000t A, t Ú 0.

Calculate the total charge (in microcoulombs) 
entering the element at its upper terminal.

Answer: 4000 mC.

 1.4 The expression for the charge entering the 
upper terminal of Fig. 1.5 is

q =
1
a2 - a t

a
+

1
a2 be - at C.

Find the maximum value of the current entering 
the terminal if a = 0.03679 s - 1.

Answer: 10 A.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problem 1.7.

1.6 Power and Energy
Power and energy calculations are important in circuit analysis. Although 
voltage and current are useful variables in the analysis and design of elec-
trically based systems, the useful output of the system often is nonelectrical 
(e.g., sound emitted from a speaker or light from a light bulb), and this out-
put is conveniently expressed in terms of power or energy. Also, all practical 
devices have limitations on the amount of power that they can handle. In the 
design process, therefore, voltage and current calculations by themselves are 
not sufficient to determine whether or not a design meets its specifications.

We now relate power and energy to voltage and current and at the 
same time use the power calculation to illustrate the passive sign conven-
tion. Recall from basic physics that power is the time rate of expending or 
absorbing energy. (A water pump rated 75 kW can deliver more liters per 
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second than one rated 7.5 kW.) Mathematically, energy per unit time is 
expressed in the form of a derivative, or

DEFINITION OF POWER

 p =
dw

dt
, (1.3)

POWER EQUATION
 p = vi, (1.4)

where
 p = the power in watts,

 w = the energy in joules,

 t = the time in seconds.

Thus, 1 W is equivalent to 1 J>s.
The power associated with the flow of charge follows directly from 

the definition of voltage and current in Eqs. 1.1 and 1.2, or

p =
dw

dt
= adw

dq
b adq

dt
b ,

so

1 2

v1 2
i

i

1

(b) p = −vi

(a) p = vi

2

v1 2
i

1

(c) p = −vi

2

v 12

v 12

1

(d) p = vi

2
i

Figure 1.6 ▲ Polarity references and the  
expression for power.

INTERPRETING ALGEBRAIC SIGN OF POWER

• If the power is positive (that is, if p 7 0), power is being 
delivered to the circuit element represented by the box.

• If the power is negative (that is, if p 6 0), power is be-
ing extracted from the circuit element.

where
 p = the power in watts,

 v = the voltage in volts,

 i = the current in amperes.

Equation 1.4 shows that the power associated with a basic circuit element is 
the product of the current in the element and the voltage across the element. 
Therefore, power is a quantity associated with a circuit element, and we have 
to determine from our calculation whether power is being delivered to the 
circuit element or extracted from it. This information comes from correctly 
applying and interpreting the passive sign convention (Section 1.5).

If we use the passive sign convention, Eq. 1.4 is correct if the refer-
ence direction for the current is in the direction of the reference voltage 
drop across the terminals. Otherwise, Eq. 1.4 must be written with a minus 
sign. In other words, if the current reference is in the direction of a refer-
ence voltage rise across the terminals, the expression for the power is

 p = -vi. 

The algebraic sign of power is based on charge movement through 
voltage drops and rises. As positive charges move through a drop in volt-
age, they lose energy, and as they move through a rise in voltage, they 
gain energy. Figure 1.6 summarizes the relationship between the polarity 
references for voltage and current and the expression for power.

We can now state the rule for interpreting the algebraic sign of power:
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Example 1.3 shows that the passive sign convention generates the correct 
sign for power regardless of the voltage polarity and current direction you 
choose.

EXAMPLE 1.3 Using the Passive Sign Convention

a) Suppose you have selected the polarity references 
shown in Fig. 1.6(b). Your calculations for the cur-
rent and voltage yield the following numerical 
results:

i = 4 A and v = -10 V.

Calculate the power associated with the circuit 
element and determine whether it is absorbing 
or supplying power.

b) Your classmate is solving the same problem but 
has chosen the reference polarities shown in  
Fig. 1.6(c). Her calculations for the current and 
voltage show that

i = -4 A and v = 10 V.

What power does she calculate?

Solution

a) The power associated with the circuit element in 
Fig. 1.6(b) is

p = -(-10)(4) = 40 W.

Thus, the circuit element is absorbing 40 W.

b) Your classmate calculates that the power associ-
ated with the circuit element in Fig. 1.6(c) is

p = -(10)(-4) = 40 W.

Using the reference system in Fig. 1.6(c) gives the 
same conclusion as using the reference system 
in Fig. 1.6(b)—namely, that the circuit element is 
absorbing 40 W. In fact, any of the reference sys-
tems in Fig. 1.6 yields this same result.

Example 1.4 illustrates the relationship between voltage, current, 
power, and energy for an ideal basic circuit element and the use of the 
passive sign convention.

EXAMPLE 1.4 Relating Voltage, Current, Power, and Energy

Assume that the voltage at the terminals of the 
element in Fig. 1.5, whose current was defined in 
Assessment Problem 1.3, is

v = 0 t 6 0;

v = 10e - 5000t kV, t Ú 0.

a) Calculate the power supplied to the element at 1 ms.
b) Calculate the total energy (in joules) delivered to 

the circuit element.

Solution

a) Since the current is entering the + terminal of 
the voltage drop defined for the element in Fig. 
1.5, we use a “+” sign in the power equation.

p = vi = (10,000e - 5000t)(20e - 5000t) = 200,000e - 10,000t W.

p(0.001) = 200,000e - 10,000(0.001) = 200,000e - 10

= 200,000(45.4 * 10 - 6) = 9.08 W.

b) From the definition of power given in Eq. 1.3, the 
expression for energy is

w(t) = L
t

0
 p(x)dx.

To find the total energy delivered, integrate 
the expresssion for power from zero to infinity. 
Therefore,

wtotal = L
∞

0
200,000e - 10,000x dx =

200,000e - 10,000x

-10,000
 `

∞

0

= -20e-∞ - (-20e - 0) = 0 + 20 = 20 J.

Thus, the total energy supplied to the circuit 
 element is 20 J.
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Objective 3—Know and use the definitions of power and energy; Objective 4—Be able to use the passive 
sign convention

 1.5 Assume that a 20 V voltage drop occurs across 
an element from terminal 2 to terminal 1 and 
that a current of 4 A enters terminal 2.
a) Specify the values of v and i for the polarity 

references shown in Fig. 1.6(a)–(d).
b) Calculate the power associated with the 

circuit element.
c) Is the circuit element absorbing or delivering 

power?

Answer: (a) Circuit 1.6(a): v = -20 V, i = -4 A; 
circuit 1.6(b):   v = -20 V, i = 4 A;  
circuit 1.6(c):    v = 20 V, i = -4 A;  
circuit 1.6(d):    v = 20 V, i = 4 A;

(b) 80 W;
(c) absorbing.

 1.6 The voltage and current at the terminals of the 
circuit element in Fig. 1.5 are zero for t 6 0. For 
t Ú 0, they are

v = 80,000te - 500t V, t Ú 0;

i = 15te - 500t A, t Ú 0.

a)  Find the time when the power delivered to 
the circuit element is maximum.

b) Find the maximum value of power.
c)  Find the total energy delivered to the circuit 

element.

Answer: (a) 2 ms; (b) 649.6 mW; (c) 2.4 mJ.

 1.7 A high-voltage direct-current (dc)  transmission 
line between Celilo, Oregon, and Sylmar, 
California, is operating at 800 kV and  carrying 
1800 A, as shown. Calculate the power (in 
megawatts) at the Oregon end of the line and 
state the direction of power flow.

�

�

Celilo,
Oregon

Sylmar,
California

1.8 kA

800 kV

Answer: 1440 MW, Celilo to Sylmar

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 1.15, 1.18, and 1.25.

Practical Perspective
Balancing Power
A circuit model for distributing power to a typical home is shown in 
Fig. 1.7, with voltage polarities and current directions defined for all of 
the circuit components. Circuit analysis gives values for all of these volt-
ages and currents, as summarized in Table 1.5. To determine whether 
or not the values given are correct, calculate the power associated with 
each component. Use the passive sign convention in the power calcu-
lations, as shown in the following.
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Figure 1.7 ▲ Circuit model for power distribution  
in a home, with voltages and currents defined.

pa = vaia = (120)(-10) = -1200 W pb = -vbib = -(120)(9) = -1080 W

pc = vc ic = (10)(10) = 100 W pd = -vdid = -(10)(1) = -10 W

pe = veie = (-10)(-9) = 90 W  pf = -vf if = -(-100)(5) = 500 W

pg = vgig = (120)(4) = 480 W ph = vhih = (-220)(-5) = 1100 W

The power calculations show that components a, b, and d are sup-
plying power, since the power values are negative, while components 
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Something is wrong—if the values for voltage and current in this circuit 
are correct, the total power should be zero! There is an error in the data, 
and we can find it from the calculated powers if the error exists in the 
sign of a single component. Note that if we divide the total power by 2, 
we get -10 W, which is the power calculated for component d. If the 
power for component d is +10 W, the total power would be 0. Circuit 
analysis techniques from upcoming chapters can be used to show that 
the current through component d should be -1 A, not +1 A as given in 
Table 1.5.

TABLE 1.5  Voltage and Current Values 
for the Circuit in Fig. 1.7

Component Y(V) i(A)

a  120 -10

b  120   9

c   10   10

d   10   1

e   -10  -9

f -100   5

g  120   4

h -220  -5

SELF-CHECK: Assess your understanding of the Practical Perspective 
by trying Chapter Problems 1.34 and 1.35.

Summary

• The International System of Units (SI) enables engineers 
to communicate in a meaningful way about quantitative 
results. Table 1.1 summarizes the SI units; Table 1.2 pres-
ents some useful derived SI units. (See page 38.)

• A circuit model is a mathematical representation of an 
electrical system. Circuit analysis, used to predict the 
behavior of a circuit model, is based on the variables of 
voltage and current. (See page 40.)

• Voltage is the energy per unit charge created by 
charge separation and has the SI unit of volt. (See 
page 41.)

v = dw>dq

• Current is the rate of charge flow and has the SI unit 
of ampere. (See page 41.)

i = dq>dt

• The ideal basic circuit element is a two-terminal com-
ponent that cannot be subdivided; it can be described 

mathematically in terms of its terminal voltage and cur-
rent. (See page 42.)

• The passive sign convention uses a positive sign in the 
expression that relates the voltage and current at the 
terminals of an element when the reference direction 
for the current through the element is in the direction 
of the reference voltage drop across the element. (See 
page 42.)

• Power is energy per unit of time and is equal to the 
product of the terminal voltage and current; it has the SI 
unit of watt. (See page 44.)

p = dw>dt = vi

The algebraic sign of power is interpreted as follows:

• If p 7 0, power is being delivered to the circuit or 
circuit component.

• If p 6 0, power is being extracted from the circuit or 
circuit component. (See page 44.)

c, e, f, g, and h are absorbing power. Now check to see if the power 
balances by finding the total power supplied and the total power 
absorbed.

 psupplied = pa + pb + pd = -1200 - 1080 - 10 = -2290 W

 pabsorbed = pc + pe + pf + pg + ph

 = 100 + 90 + 500 + 480 + 1100 = 2270 W

psupplied + pabsorbed = -2290 + 2270 = -20 W
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Problems

Section 1.2

 1.1 There are approximately 520 million passenger ve-
hicles registered in the United States. Assume that 
the battery in an average vehicle stores 480 watt-
hours (Wh) of energy. Estimate (in gigawatt-hours) 
the total energy stored in US passenger vehicles.

 1.2 Each frame of a movie file is played at a resolution 
of 960 * 640 picture elements (pixels). Each pixel 
requires 4 bytes of memory. Videos are displayed at 
the rate of 40 frames per second. If the size of this 
file is 64 gigabytes, find its length.

 1.3 The 8 gigabyte (1 GB = 230 bytes) flash memory 
chip for an MP3 player is 10 mm by 20 mm by 2 mm. 
This memory chip holds 15,000 photos.

a) How many photos fit into a cube whose sides are 
2 mm?

b) How many bytes of memory are stored in a cube 
whose sides are 100 mm?

 1.4 The line described in Assessment Problem 1.7 is 
900 mi in length. The line contains two conductors, 
each weighing 2526 lb per 1000 ft. How many kilo-
grams of conductor are in the line?

 1.5 A 40-inch monitor contains 4800 * 2160 picture el-
ements, or pixels. Each pixel is represented in 32 bits 
of memory. A byte of memory is 8 bits.
a) How many megabytes (MB) of memory are re-

quired to store the information displayed on the 
monitor?

b) To display a video on the monitor, the image 
must be refreshed 30 times per second. How 
many terabytes (TB) of memory are required to 
store a 2 hr video?

c) For the video described in part (a), how fast 
must the image data in memory be moved to the 
monitor? Express your answer in gigabits per 
second (Gb/s).

 1.6 Some species of bamboo can grow (250 mm>day). 
Assume individual cells in the plant are 10 mm long.

a) How long, on average, does it take a bamboo 
stalk to grow 1 cell length?

b) How many cell lengths are added in one week, 
on average?

Section 1.4

 1.7 There is no charge at the upper terminal of the el-
ement in Fig. 1.5 for t 6 0. At t = 0 a current of 
125e - 2500t mA enters the upper terminal.

a) Derive the expression for the charge that accu-
mulates at the upper terminal for t 7 0.

b) Find the total charge that accumulates at the 
 upper terminal.

c) If the current is stopped at t = 0.5 ms, how much 
charge has accumulated at the upper terminal?

 1.8 The current entering the upper terminal of Fig. 1.5 is

i = 24  cos  4000t A

Assume the charge at the upper terminal is zero at 
the instant the current is passing through its maxi-
mum value. Find the expression for q(t).

 1.9 The current at the terminals of the element in Fig. 1.5 is

i = 0, t 6 0;

i = 40te - 500t A, t Ú 0.

a) Find the expression for the charge accumulating 
at the upper terminal.

b) Find the charge that has accumulated at t = 1 ms.

 1.10 In electronic circuits it is not unusual to encounter 
currents in the microampere range. Assume a 35 mA 
current, due to the flow of electrons. What is the av-
erage number of electrons per second that flow past 
a fixed reference cross section that is perpendicular 
to the direction of flow?

 1.11 How much energy is imparted to an electron as it 
flows through a 1.5 V battery from the positive to 
the negative terminals? Express your answer in 
joules.

Sections 1.5–1.6

 1.12 The references for the voltage and current at the 
terminals of a circuit element are as shown in Fig. 
1.6(d). The numerical values for v and i are -20 V 
and 5 A.

a) Calculate the power at the terminals and state 
whether the power is being absorbed or deliv-
ered by the element in the box.
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 1.16 The manufacturer of a 1.5 V D flashlight battery 
says that the battery will deliver 9 mA for 40 contin-
uous hours. During that time the voltage will drop 
from 1.5 V to 1.0 V. Assume the drop in voltage is 
linear with time. How much energy does the battery 
deliver in this 40 h interval?

 1.17 One 12 V battery supplies 100 mA to a boom box. 
How much energy does the battery supply in 4 h?

 1.18 The voltage and current at the terminals of the  
circuit elements in Fig 1.5 are zero for t 6 0. For 
t Ú 0, they are

 v = 3e - 50t V,

 i = 5e - 50t mA.

a) Calculate the power supplied to the element at 5 ms.

b) Calculate the total energy delivered to the cir-
cuit element.

 1.19 The voltage and current at the terminals of the circuit 
element in Fig. 1.5 are zero for t 6 0. For t Ú 0 they are

 v = 75 - 75e - 1000t V,

 i = 50e - 1000tmA.

a) Find the maximum value of the power delivered 
to the circuit.

b) Find the total energy delivered to the element.

 1.20 The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zero for t 6 0. For t Ú 0 
they are

v = 50e - 1600t - 50e - 400t V,

i = 5e - 1600t - 5e - 400t mA.

a) Find the power at t = 625 ms.

b) How much energy is delivered to the circuit ele-
ment between 0 and 625 ms?

c) Find the total energy delivered to the element.

 1.21 The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zero for t 6 0. For t Ú 0,  
they are

 v = (1600t + 1)e-800t V,    t Ú 0;

 i = 50e-800t mA,              t Ú 0.

a) Find the time when the power delivered to the 
circuit element is maximum.

b) Find the maximum value of p in milliwatts.

c) Find the total energy delivered to the circuit 
element in microjoules.
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b) Given that the current is due to electron flow, 
state whether the electrons are entering or leav-
ing terminal 2.

c) Do the electrons gain or lose energy as they pass 
through the element in the box?

 1.13 Repeat Problem 1.12 with a voltage of -60 V.

 1.14 Two electric circuits, represented by boxes A and B, 
are connected as shown in Fig. P1.14. The reference 
direction for the current i in the interconnection and 
the reference polarity for the voltage v across the 
interconnection are as shown in the figure. For each 
of the following sets of numerical values, calculate 
the power in the interconnection and state whether 
the power is flowing from A to B or vice versa.

a) i = 8 A,   v = 40 V

b) i = -2A,   v = -10 V

c) i = 2A,   v = -50 V

d) i = -10 A,  v = 20 V

 1.15 When a car has a dead battery, it can often be started 
by connecting the battery from another car across 
its terminals. The positive terminals are connected 
together as are the negative terminals. The connec-
tion is illustrated in Fig. P1.15. Assume the current i 
in Fig. P1.15 is measured and found to be 40 A.

a) Which car has the dead battery?

b) If this connection is maintained for 1.5 min, how 
much energy is transferred to the dead battery?
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 1.22 The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zero for t 6 0. For t Ú 0,  
they are

 v = (4000t + 3.2)e-1200t V,

 i = (160t + 0.26)e-1200t A.

a) At what instant of time is the maximum power 
delivered to the element?

b) Find the maximum power in watts.

c) Find the total energy delivered to the element in 
microjoules.

 1.23 The voltage and current at the terminals of the 
circuit element in Fig. 1.5 are zero for t 6 0 and 
t 7 50 s. In the interval between 0 and 50 s, the 
expressions are

 v = t(1 - 0.030t) V,  0 6 t 6 50 s;

 i = 4 - 0.3t A, 0 6 t 6 50 s.

a) At what instant of time is the maximum power 
delivered to the element?

b) What is the power at the time found in part (a)?

c) At what instant of time is the power being 
extracted from the circuit element the maximum?

d) What is the power at the time found in part (c)?

e) Calculate the net energy delivered to the circuit 
at 0, 10, 20, 30, 40 and 50 s.

 1.24 The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are zero for t 6 0. For t Ú 0,  
they are

 v = 500e-120t sin 250t V,

 i = 6e-150t sin 250t A.

a) Find the power absorbed by the element at 
t = 20 ms.

b) Find the total energy absorbed by the element.

 1.25 The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are

v = 260 cos 850pt V, i = 9 sin 850pt A.

a) Find the maximum value of the power being de-
livered to the element.

b) Find the maximum value of the power being ex-
tracted from the element.

c) Find the average value of p in the interval 
0 … t … 3 ms.

d) Find the average value of p in the interval 
0 … t … 16.525 ms.
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 1.26 The voltage and current at the terminals of an auto-
mobile battery during a charge cycle are shown in 
Fig. P1.26.

a) Calculate the total charge transferred to the 
battery.

b) Calculate the total energy transferred to the 
battery.

 1.27 The voltage and current at the terminals of the 
circuit element in Fig. 1.5 are shown in Fig. P1.27.

a) Sketch the power versus t plot for 0 … t … 80 ms. 

b) Calculate the energy delivered to the circuit 
element at t = 10, 30, and 80 ms.
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 1.28 An industrial battery is charged over a period of 
several hours at a constant voltage of 120 V. Ini-
tially, the current is 20 mA and increases linearly to 
30 mA in 10 ks. From 10 ks to 20 ks, the current is 
constant at 30 mA. From 20 ks to 30 ks the current 
decreases linearly to 10 mA. At 30 ks the power is 
disconnected from the battery.

a) Sketch the current from t = 0 to t = 30 ks.

b) Sketch the power delivered to the battery from 
t = 0 to t = 30 ks.

c) Using the sketch of the power, find the total 
energy delivered to the battery.

 1.29 The numerical values for the currents and voltages 
in the circuit in Fig. P1.29 are given in Table P1.29. 
Find the total power developed in the circuit.
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TABLE P1.29

Element Voltage (V) Current (mA)

a    40 -4

b -24 -4

c -16   4

d -80 -1.5

e  40 2.5

f  120 -2.5
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 1.31 Assume you are an engineer in charge of a project 
and one of your subordinate engineers reports that 
the interconnection in Fig. P1.31 does not pass the 
power check. The data for the interconnection are 
given in Table P1.31.

a) Is the subordinate correct? Explain your answer.

b) If the subordinate is correct, can you find the 
 error in the data?

 1.30 The numerical values of the voltages and currents 
in the interconnection seen in Fig. P1.30 are given 
in Table P1.30. Does the interconnection satisfy the 
power check?

TABLE P1.30

Element Voltage (kV) Current (mA)

a -3 -250

b  4 -400

c  1  400

d  1  150

e -4  200

f  4   50
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TABLE P1.31

Element Voltage (V) Current (A)

a  46.16   6.0

b  14.16   4.72

c  -32.0 -6.4

d 22.0   1.28

e -33.6   -1.68

f  66.0 0.4

g 2.56 1.28

g -0.4  0.4
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 1.32 The voltage and power values for each of the ele-
ments shown in Fig. P1.32 are given in Table P1.32.

a) Show that the interconnection of the elements 
satisfies the power check.

b) Find the value of the current through each of 
the elements using the values of power and 
voltage and the current directions shown in the 
figure.

TABLE P1.33

Element Power (mW) Current (mA)

a  175   25

b  375   75

c  150 -50

d -320   40

e  160   20

f  120 -30

g -660   55
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TABLE P1.32

Element Power (kW) Voltage (V)

a 0.6 supplied    400

b 0.05 supplied -100

c 0.4 absorbed    200

d 0.6 supplied    300

e 0.1 absorbed -200

f 2.0 absorbed    500

g 1.25 supplied -500

 1.33 The current and power for each of the interconnect-
ed elements in Fig. P1.33 is measured. The values are 
listed in Table P1.33.

a) Show that the interconnection satisfies the 
power check.

b) Identify the elements that absorb power.

c) Find the voltage for each of the elements in the 
interconnection, using the values of power and 
current and the voltage polarities shown in the 
figure.



 Problems 53

b) The following voltages and currents are calculat-
ed for the components:

va = 120 V ia = -10 A

vb = 120 V ib = 10 A

vf = -120 V if = 3 A

vg = 120 V

vh = -240 V ih = -7 A

If the power in this modified model balances, 
what is the value of the current in component g?

 1.34 Show that the power balances for the circuit shown 
in Fig. 1.7, using the voltage and current values given 
in Table 1.5, with the value of the current for compo-
nent d changed to -1 A.

 1.35 Suppose there is no power lost in the wires used to 
distribute power in a typical home.

a) Create a new model for the power distribution 
circuit by modifying the circuit shown in Fig 1.7. 
Use the same names, voltage polarities, and cur-
rent directions for the components that remain 
in this modified model.

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE
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CHAPTER CONTENTS

2
CHAPTER 

Circuit Elements
There are five ideal basic circuit elements:

• voltage sources
• current sources
• resistors
• inductors
• capacitors

In this chapter, we discuss the characteristics of the first three 
circuit elements—voltage sources, current sources, and resistors. 
Although this may seem like a small number of elements, many 
practical systems can be modeled with just sources and resistors. 
They are also a useful starting point because of their relative sim-
plicity; the mathematical relationships between voltage and cur-
rent in sources and resistors are algebraic. Thus, you will be able 
to begin learning the basic techniques of circuit analysis with only 
algebraic manipulations.

We will postpone introducing inductors and capacitors until 
Chapter 6, because their use requires that you solve integral and 
differential equations. However, the basic analytical techniques 
for solving circuits with inductors and capacitors are the same 
as those introduced in this chapter. So, by the time you need to 
begin manipulating more difficult equations, you should be very 
familiar with the methods of writing them.

2.1 Voltage and Current Sources p. 56

2.2 Electrical Resistance (Ohm’s Law) p. 60

2.3 Constructing a Circuit Model p. 64

2.4 Kirchhoff’s Laws p. 67

2.5 Analyzing a Circuit Containing Dependent 
Sources p. 73

1 Understand the symbols for and the 
 behavior of the following ideal basic circuit 
elements: independent voltage and current 
sources, dependent voltage and current 
sources, and resistors.

2 Be able to state Ohm’s law, Kirchhoff’s 
 current law, and Kirchhoff’s voltage law, 
and be able to use these laws to analyze 
simple circuits.

3 Know how to calculate the power for each 
element in a simple circuit and be able 
to determine whether or not the power 
 balances for the whole circuit.

CHAPTER OBJECTIVES



Practical Perspective
Heating with Electric Radiators
You want to heat your small garage using a couple of 
electric radiators. The power and voltage requirements 
for each radiator are 1200 W, 240 V. But you are not sure 
how to wire the radiators to the power supplied to the 
garage. Should you use the wiring diagram on the left or 
the one on the right? Does it make any difference?

Once you have studied the material in this chapter, 
you will be able to answer these questions and deter-
mine how to heat the garage. The Practical Perspective 
at the end of this chapter guides you through the anal-
ysis of two circuits based on the two wiring diagrams 
shown below.
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2.1 Voltage and Current Sources
An electrical source is a device capable of converting nonelectric energy to 
electric energy and vice versa. For example, a discharging battery  converts 
chemical energy to electric energy, whereas a charging battery converts elec-
tric energy to chemical energy. A dynamo is a machine that converts 
 mechanical energy to electric energy and vice versa. For operations in the 
mechanical-to-electric mode, it is called a generator. For transformations 
from electric to mechanical energy, it is called a motor. Electric sources ei-
ther deliver or absorb electric power while maintaining either voltage or cur-
rent. This behavior led to the creation of the ideal voltage source and the 
ideal current source as basic circuit elements.

• An ideal voltage source is a circuit element that maintains a pre-
scribed voltage across its terminals regardless of the current flowing 
in those terminals.

• An ideal current source is a circuit element that maintains a pre-
scribed current through its terminals regardless of the voltage across 
those terminals.

These circuit elements do not exist as practical devices—they are ideal-
ized models of actual voltage and current sources.

Using an ideal model for current and voltage sources constrains 
the mathematical descriptions of these components. For example, be-
cause an ideal voltage source provides a steady voltage even if the cur-
rent in the element changes, it is impossible to specify the current in 
an ideal voltage source as a function of its voltage. Likewise, if the 
only information you have about an ideal current source is the value 
of current supplied, it is impossible to determine the voltage across 
that current source. We have sacrificed our ability to relate voltage and 
current in a practical source for the simplicity of using ideal sources in 
circuit analysis.

Ideal voltage and current sources can be further described as either 
independent sources or dependent sources.

• An independent source establishes a voltage or current in a circuit 
without relying on voltages or currents elsewhere in the circuit. The 
value of the voltage or current supplied is specified by the value of 
the independent source alone.

• A dependent source, in contrast, establishes a voltage or current 
whose value depends on the value of a voltage or current elsewhere 
in the circuit. You cannot specify the value of a dependent source 
unless you know the value of the voltage or current on which it 
depends.

The circuit symbols for the ideal independent sources are shown in   
Fig. 2.1. Note that a circle is used to represent an independent source. To 
completely specify an ideal independent voltage source in a circuit, you 
must include the value of the supplied voltage and the reference polarity, 
as shown in Fig. 2.1(a). Similarly, to completely specify an ideal indepen-
dent current source, you must include the value of the supplied current 
and its reference direction, as shown in Fig. 2.1(b).

The circuit symbol for an ideal dependent source is a diamond, as 
shown in Fig. 2.2. There are four possible variations because both depen-
dent current sources and dependent voltage sources can be controlled by 
either a voltage or a current elsewhere in the circuit. Dependent sources 
are sometimes called controlled sources.

To completely specify an ideal dependent voltage-controlled volt-
age source, you must identify the controlling voltage, the equation that 

1

2

(a) (b)

vs is

Figure 2.1 ▲ The circuit symbols for (a) an ideal 
independent voltage source and (b) an ideal 
 independent current source.
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Voltage Sources Current Sources

Supplied
voltage (vs)
depends...

(a) ideal, dependent, voltage-
controlled voltage source

(c) ideal, dependent, voltage-
controlled current source

Voltage
Controlled

Current
Controlled

....on the
controlling
voltage (vx)

Supplied
current (is)
depends

....on the
controlling
voltage (vx)

vs 5    vx is 5   vx 

1

2

Supplied
voltage (vs)
depends...

(b) ideal, dependent, current-
controlled voltage source

....on the
controlling
current (ix)

1

2

(d) ideal, dependent, current-
controlled current source

Supplied
current (is)
depends...

....on the
controlling
current (ix)

vs 5   ix is 5    ix 

Figure 2.2 ▲ (a) (b) Circuit symbols for ideal dependent voltage sources and (c) (d) ideal  dependent current sources.

permits you to compute the supplied voltage from the controlling volt-
age, and the reference polarity for the supplied voltage. For example, in 
Fig. 2.2(a), the controlling voltage is vx, the equation that determines the 
supplied voltage vs is

vs = mvx,

and the reference polarity for vs is as indicated. Note that m is a multiply-
ing constant that is dimensionless.

Similar requirements exist for completely specifying the other ideal 
dependent sources. In Fig. 2.2(b), the controlling current is ix, the equa-
tion for the supplied voltage vs is

vs = rix,

the reference polarity is as shown, and the multiplying constant r has the 
dimension volts per ampere. In Fig. 2.2(c), the controlling voltage is vx, 
the equation for the supplied current is is

is = avx,

the reference direction is as shown, and the multiplying constant a has the 
dimension amperes per volt. In Fig. 2.2(d), the controlling current is ix, the 
equation for the supplied current is is

is = bix,

the reference direction is as shown, and the multiplying constant b is 
dimensionless.

Note that the ideal independent and dependent voltage and current 
sources generate either constant voltages or currents, that is, voltages and 
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currents that are invariant with time. Constant sources are often called dc 
sources. The dc stands for direct current, a description that has a historical 
basis but can seem misleading now. Historically, a direct current was de-
fined as a current produced by a constant voltage. Therefore, a constant 
voltage became known as a direct current, or dc, voltage. The use of dc 
for constant stuck, and the terms dc current and dc voltage are now uni-
versally accepted in science and engineering to mean constant current and 
constant voltage.

Finally, we note that ideal sources are examples of active circuit ele-
ments. An active element is one that models a device capable of generat-
ing electric energy. Passive elements model physical devices that cannot 
generate electric energy. Resistors, inductors, and capacitors are exam-
ples of passive circuit elements. Examples 2.1 and 2.2 illustrate how the 
characteristics of ideal independent and dependent sources limit the types 
of permissible interconnections of the sources.

EXAMPLE 2.1 Testing Interconnections of Ideal Sources

Use the definitions of the ideal independent voltage 
and current sources to determine which intercon-
nections in Fig. 2.3 are permitted and which violate 
the constraints imposed by the ideal sources.

Solution
Connection (a) is permitted. Each source supplies 
voltage across the same pair of terminals, marked 
a and b. This requires that each source supply the 
same voltage with the same polarity, which they do.

Connection (b) is permitted. Each source supplies 
current through the same pair of terminals, marked a 
and b. This requires that each source supply the same 
current in the same direction, which they do.

Connection (c) is not permitted. Each source sup-
plies voltage across the same pair of terminals, 
marked a and b. This requires that each source sup-
ply the same voltage with the same polarity, which 
they do not.

Connection (d) is not permitted. Each source supplies 
current through the same pair of terminals, marked a 
and b. This requires that each source supply the same 
current in the same direction, which they do not.

Connection (e) is permitted. The voltage source 
supplies voltage across the pair of terminals 
marked a and b. The current source supplies cur-
rent through the same pair of terminals. Because an 
ideal voltage source supplies the same voltage re-
gardless of the current, and an ideal current source 
supplies the same current regardless of the voltage, 
this connection is permitted.

(a) (b)

2 A

(c)

10 V

a

b
(d)

5 A

(e)

a b

a b

a

b

1

2
10 V 5 V

1

2

1

2

a

b

1

2
10 V 10 V

1

2
5 A

5 A

5 A

Figure 2.3 ▲ The circuits for Example 2.1.
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State which interconnections in Fig. 2.4 are permit-
ted and which violate the constraints imposed by 
the ideal sources, using the definitions of the ideal 
independent and dependent sources.

Solution
Connection (a) is not permitted. Both the indepen-
dent source and the dependent source supply  voltage 
across the same pair of terminals, labeled a and b. 
This requires that each source supply the same volt-
age with the same polarity. The independent source 
supplies 5 V, but the dependent source supplies 15 V.

Connection (b) is permitted. The independent 
voltage source supplies voltage across the pair of 
terminals marked a and b. The dependent current 
source supplies current through the same pair of 
terminals. Because an ideal voltage source supplies 
the same voltage regardless of current, and an ideal 
current source supplies the same current regardless 
of voltage, this is a valid connection.

Connection (c) is permitted. The independent cur-
rent source supplies current through the pair of 
terminals marked a and b. The dependent voltage 
source supplies voltage across the same pair of ter-
minals. Because an ideal current source supplies 
the same current regardless of voltage, and an ideal 

EXAMPLE 2.2  Testing Interconnections of Ideal Independent  
and Dependent Sources

ix 5 2 A

is 5 3 ix

(d)

a

b

ix 5 2 A

vs 5 4 ix

(c)

a

b

1

2

vx 5 5 V

is 5 3 vx

(b)

a

b

1

2
vx 5 5 V

vs 5 3 vx

(a)

a

b

1

2

1

2

Figure 2.4 ▲ The circuits for Example 2.2.

voltage source supplies the same voltage regardless 
of current, this is a valid connection.

Connection (d) is not permitted. Both the inde-
pendent source and the dependent source supply 
current through the same pair of terminals, labeled 
a and b. This requires that each source supply the 
same current in the same direction. The indepen-
dent source supplies 2 A, but the dependent source 
supplies 6 A in the opposite direction.

Objective 1—Understand ideal basic circuit elements

 2.1 For the circuit shown,

a) What value of vg is required in order for the 
interconnection to be valid?

b) For this value of vg, find the power 
 associated with the 8 A source.

Answer:   (a) -2 V;
(b) -16 W (16 W delivered).

 2.2 For the circuit shown,

a) What value of a is required in order for the 
interconnection to be valid?

b) For the value of a calculated in part (a), find 
the power associated with the 25 V source.

Answer:   (a) 0.6 A>V;
(b) 375 W (375 W absorbed).

SELF-CHECK: Also try Chapter Problems 2.6 and 2.7.

ASSESSMENT PROBLEMS

8 A
ib
4

vg
1

2

1

2

ib

2

1
25 V15 A vx

1

2

avx
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2.2 Electrical Resistance (Ohm’s Law)
Resistance is the capacity of materials to impede the flow of current or, 
more specifically, the flow of electric charge. The circuit element mod-
eling this behavior is the resistor. Figure 2.5 shows the resistor’s circuit 
symbol, with R denoting the resistance value of the resistor.

To understand resistance, think about the electrons that make up 
electric current moving through, interacting with, and being resisted by 
the atomic structure of some material. The interactions convert some 
electric energy to thermal energy, dissipated as heat. Many useful electri-
cal devices take advantage of resistance heating, including stoves, toast-
ers, irons, and space heaters.

Most materials resist electric current; the amount of resistance de-
pends on the material. Metals like copper and aluminum have small values 
of resistance, so they are often used as wires conducting electric current. 
When represented in a circuit diagram, copper or aluminum wiring isn’t 
usually modeled as a resistor; the wire’s resistance is so small compared 
to the resistance of other circuit elements that we can neglect the wiring 
resistance to simplify the diagram.

A resistor is an ideal basic circuit element, which is described mathe-
matically using its voltage and current. The relationship between voltage 
and current for a resistor is known as Ohm’s law, after Georg Simon Ohm, 
a German physicist who established its validity early in the nineteenth 
century. Consider the resistor shown in Fig. 2.6(a), where the current in 
the resistor is in the direction of the voltage drop across the resistor. For 
this resistor, Ohm’s law is

R

Figure 2.5 ▲ The circuit symbol for a resistor 
 having a resistance R.

1

2

Ri

v 5 2iR

1

2

Ri

v 5 iR

(a) (b)

v v

Figure 2.6 ▲ Two possible reference choices  
for the current and voltage at the terminals of  
a resistor and the resulting equations.

8 V

Figure 2.7 ▲ The circuit symbol for an 8 Ω resistor.

OHM’S LAW 

 v = iR, (2.1)

where

 v = the voltage in volts,

 i = the current in amperes,

 R = the resistance in ohms.

For the resistor in Fig. 2.6(b), Ohm’s law is

 v = - iR, (2.2)

where v, i, and R are again measured in volts, amperes, and ohms, respec-
tively. We use the passive sign convention (Section 1.5) in determining the 
algebraic signs in Eqs. 2.1 and 2.2.

Resistance is measured in the SI unit ohms. The Greek letter Omega 
(Ω) is the standard symbol for an ohm. The circuit diagram symbol for an 
8 Ω resistor is shown in Fig. 2.7.

Ohm’s law expresses the voltage as a function of the current. 
However, expressing the current as a function of the voltage also is conve-
nient. Thus, from Eq. 2.1,

 i =
v

R
, (2.3)
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or, from Eq. 2.2,

 i = -
v

R
. (2.4)

The reciprocal of the resistance is referred to as conductance, is sym-
bolized by the letter G, and is measured in siemens (S). Thus,

 G =
1
R

. (2.5)

An 8 Ω resistor has a conductance value of 0.125 S.
Ideal resistors model the behavior of physical devices. The word 

ideal reminds us that the resistor model makes several simplifying as-
sumptions about the behavior of actual resistive devices. Assuming the 
resistance of the ideal resistor is constant, so that its value does not 
vary over time, is the most important of these simplifications. Most ac-
tual resistive devices have a time-varying resistance, often because the 
temperature of the device changes over time. The ideal resistor model 
represents a physical device whose resistance doesn’t vary much from 
some constant value over the time period of interest in the circuit anal-
ysis. In this book, we assume that the simplifying assumptions about 
resistance devices are valid, and we thus use ideal resistors in circuit 
analysis.

We can calculate the power at the terminals of a resistor in several 
ways. The first approach is to use the defining equation (Section 1.6) to 
calculate the product of the terminal voltage and current. For the resistor 
shown in Fig. 2.6(a), we write

 p = vi, (2.6)

and for the resistor shown in Fig. 2.6(b), we write

 p = -vi. (2.7)

A second method expresses resistor power in terms of the current and 
the resistance. Substituting Eq. 2.1 into Eq. 2.6, we obtain

p = vi = 1 iR2 i.

So

POWER IN A RESISTOR IN TERMS OF CURRENT
 p = i2R. (2.8)

Likewise, substituting Eq. 2.2 into Eq. 2.7, we have

 p = -vi = - 1 - iR2 i = i2 R. (2.9)

Equations 2.8 and 2.9 are identical, demonstrating that regardless 
of voltage polarity and current direction, the power at the terminals 
of a resistor is positive. Therefore, resistors absorb power from the 
circuit.
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A third method expresses resistor power in terms of the voltage 
and resistance. The expression is independent of the polarity refer-
ences, so

Sometimes a resistor’s value will be expressed as a conductance 
rather than as a resistance. Using the relationship between resistance and 
conductance given in Eq. 2.5, we can also write Eqs. 2.9 and 2.10 in terms 
of the conductance, or

 p =
i2

G
, (2.11)

 p = v

2G. (2.12)

Equations 2.6–2.12 provide a variety of methods for calculating the power 
absorbed by a resistor. Each yields the same answer. In analyzing a circuit, 
look at the information provided and choose the power equation that uses 
that information directly.

Example 2.3 illustrates Ohm’s law for a circuit with an ideal source 
and a resistor. Power calculations at the terminals of a resistor also are 
illustrated.

EXAMPLE 2.3  Calculating Voltage, Current, and Power for a Simple  
Resistive Circuit

In each circuit in Fig. 2.8, either the value of v or i 
is not known.

a) Calculate the values of v and i.
b) Determine the power dissipated in each  

resistor.

Solution
a) The voltage va in Fig. 2.8(a) is a drop in the 

direction of the resistor current. The resistor 
voltage is the product of its current and its 
 resistance, so,

va = 112 182 = 8 V.

The current ib in the resistor with a conductance 
of 0.2 S in Fig. 2.8(b) is in the direction of the 
voltage drop across the resistor. The resistor 

1 A

(a) (b)

1

2

1 A

8 V 50 V 0.2 Sva

1

2

ib

(c) (d)

1

2
20 V 50 V 25 Vvc

1

2 id

Figure 2.8 ▲ The circuits for Example 2.3.

POWER IN A RESISTOR IN TERMS OF VOLTAGE

 p =
v

2

R
 . (2.10)
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current is the product of its voltage and its con-
ductance, so

ib = 1502 10.22 = 10 A.

The voltage vc in Fig. 2.8(c) is a rise in the direc-
tion of the resistor current. The resistor voltage 
is the product of its current and its resistance, so

vc = - 112 1202 = -20 V.

The current id in the 25 Ω resistor in Fig. 2.8(d) 
is in the direction of the voltage rise across the 
resistor. The resistor current is its voltage divided 
by its resistance, so

id = -
50
25

= -2 A.

b) The power dissipated in each of the four 
 resistors is

p8Ω =
1822

8
= 1122182 = 8 W

(using Eq. 2.10 and Eq. 2.9);

 p0.2S = 1502210.22 = 500 W
(using Eq. 2.12);

 p20Ω =
1 -2022

20
= 11221202 = 20 W

(using Eq. 2.10 and Eq. 2.9);

 p25Ω =
15022

25
= 1 -2221252 = 100 W

(using Eq. 2.10 and Eq. 2.9).

Objective 2—Be able to state and use Ohm’s law

 2.3 For the circuit shown,

a) If vg = 1 kV and ig = 5 mA, find the value of 
R and the power absorbed by the resistor.

b) If ig = 75 mA and the power delivered by 
the voltage source is 3 W, find vg, R, and the 
power absorbed by the resistor.

c) If R = 300 Ω and the power absorbed by R 
is 480 mW, find ig and vg.

 2.4 For the circuit shown,

a) If ig = 0.5 A and G = 50 mS, find vg and the 
power delivered by the current source.

b) If vg = 15 V and the power delivered to the 
conductor is 9 W, find the conductance G 
and the source current ig.

c) If G = 200 mS and the power delivered to 
the conductance is 8 W, find ig and vg.

ASSESSMENT PROBLEMS

1

2
R

ig

vg

Answer:    (a) 200 kΩ, 5 W;
(b) 40 V, 533.33 Ω, 3 W;
(c) 40 mA, 12 V.

Gig vg

1

2

Answer:    (a) 10 V, 5 W;
(b) 40 mS, 0.6 A;
(c) 40 mA, 200 V.

SELF-CHECK: Also try Chapter Problems 2.11 and 2.12.
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2.3 Constructing a Circuit Model
Let’s now move on to using ideal sources and resistors to construct circuit 
models of real-world systems. Developing a circuit model of a device or 
system is an important skill. Although this text emphasizes circuit-solving 
skills, as an electrical engineer you’ll need other skills as well, one of the 
most important of which is modeling.

We develop circuit models in the next two examples. In Example 2.4, we 
construct a circuit model based on knowing how the system’s components 
behave and how the components are interconnected. In Example 2.5, we 
create a circuit model by measuring the terminal behavior of a device.

EXAMPLE 2.4 Constructing a Circuit Model of a Flashlight

Construct a circuit model of a flashlight. Figure 2.9 
shows a photograph of a widely available flashlight.

Solution
When a flashlight is regarded as an electrical sys-
tem, the components of primary interest are the 
batteries, the lamp, the connector, the case, and the 
switch. Figure 2.10 shows these components. We 
now consider the circuit model for each component.

• A dry-cell battery maintains a reasonably con-
stant terminal voltage if the current demand is 
not excessive. Thus, if the dry-cell battery is op-
erating within its intended limits, we can model 
it with an ideal voltage source. The prescribed 
voltage is constant and equal to the sum of two 
dry-cell values.

• The ultimate output of the lamp is light energy, 
the result of heating the lamp’s filament to a tem-
perature high enough to cause radiation in the vis-
ible range. We can model the lamp with an  ideal 
resistor. The resistor accounts for the amount of 
electric energy converted to thermal energy, but it 
does not predict how much of the thermal energy 
is converted to light energy. The resistor represent-
ing the lamp also predicts the steady current drain 
on the batteries, a characteristic of the system that 
also is of interest. In this model, Rl symbolizes the 
lamp resistance.

• The connector used in the flashlight serves a 
dual role. First, it provides an electrical conduc-
tive path between the dry cells and the case. Sec-
ond, it is formed into a springy coil that applies 
mechanical pressure to the contact between the 
batteries and the lamp, maintaining contact be-
tween the two dry cells and between the dry cells 
and the lamp. Hence, in choosing the wire for 
the connector, we may find that its mechanical 
properties are more important than its electrical 

Figure 2.9 ▲ A flashlight can be viewed as an electri-
cal system.
Thom Lang/Corbis/Getty Imagess

properties for the flashlight design. Electrically, 
we can model the connector with an ideal resis-
tor with resistance R1.

• The case also serves both a mechanical and an 
electrical purpose. Mechanically, it contains all 
the other components and provides a grip for 
the person using the flashlight. Electrically, it 
provides a connection between other elements 
in the flashlight. If the case is metal, it conducts 
current between the batteries and the lamp. If it 
is plastic, a metal strip inside the case connects 
the coiled connector to the switch. An ideal re-
sistor with resistance Rc models the electrical 
connection provided by the case.
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Our flashlight example provides some general modeling guidelines.

1. The electrical behavior of each physical component is of primary in-
terest in a circuit model. In the flashlight model, three very different 
physical components—a lamp, a coiled wire, and a metal case—are 
all represented by resistors because each circuit component resists 
the current flowing through the circuit.

2. Circuit models may need to account for undesired as well as desired 
electrical effects. For example, the heat resulting from the lamp re-
sistance produces the light, a desired effect. However, the heat re-
sulting from the case and coil resistance represents an unwanted or 
parasitic resistance. It drains the dry cells and produces no useful 
output. Such parasitic effects must be considered, or the resulting 
model may not adequately represent the system.

Lamp

Filament
terminal

Dry cell # 1

Case

Connector spring

Sliding switch

Dry cell # 2

Figure 2.10 ▲ The arrangement of flashlight 
components.

• The switch has two electrical states: on or off. An 
ideal switch in the on state offers no  resistance 
to the current, but it offers infinite resistance to 
current in the off state. These two states repre-
sent the limiting values of a resistor; that is, the 
on state corresponds to a zero resistance, called 
a short circuit 1R = 02 , and the off state corre-
sponds to an infinite resistance called an open 
circuit 1R = ∞2 . Figures 2.11(a) and (b) depict 
a short circuit and an open circuit, respective-
ly. The symbol shown in Fig. 2.11(c) represents 
a switch that can be either a short circuit or an 

OFF

ON

(a)

(b)

(c)

Figure 2.11 ▲ Circuit symbols. (a) Short circuit.  
(b) Open circuit. (c) Switch.

Rc

Rl

R1

vs
1

2

Figure 2.12 ▲ A circuit model for a flashlight.

open circuit, depending on the position of its 
contacts.

We now construct the circuit model of the flash-
light shown in Fig. 2.10. Starting with the dry-cell 
batteries, the positive terminal of the first cell is con-
nected to the negative terminal of the second cell. 
The positive terminal of the second cell is connected 
to one terminal of the lamp. The other terminal of 
the lamp makes contact with one side of the switch, 
and the other side of the switch is connected to the 
metal case. The metal spring connects the metal 
case to the negative terminal of the first dry cell. 
Note that the connected elements in Fig. 2.10 form 
a closed path or circuit. Figure 2.12 shows a circuit 
model for the flashlight.
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3. Modeling requires approximation. We made several simplifying as-
sumptions in developing the flashlight’s circuit model. For example, 
we assumed an ideal switch, but in practical switches, contact re-
sistance may be large enough to interfere with proper operation 
of the system. Our model does not predict this behavior. We also 
assumed that the coiled connector exerts enough pressure to elim-
inate any contact resistance between the dry cells. Our model does 
not predict the effect of inadequate pressure. Our use of an ideal 
voltage source ignores any internal dissipation of energy in the dry 
cells, which might be due to the parasitic heating just mentioned. 
We could account for this by adding an ideal resistor between the 
source and the lamp resistor. Our model assumes the internal loss 
to be negligible.

We used a basic understanding of the internal components of 
the flashlight to construct its circuit model. However, sometimes we 
know only the terminal behavior of a device and must use this infor-
mation to construct the model. Example 2.5 presents such a modeling 
problem.

EXAMPLE 2.5 Constructing a Circuit Model Based on Terminal Measurements

The voltage and current are measured at the ter-
minals of the device illustrated in Fig. 2.13(a), and 
the values of vt and it are tabulated in Fig. 2.13(b). 
Construct a circuit model of the device inside the 
box.

Solution
Plotting the voltage as a function of the current 
yields the graph shown in Fig. 2.14(a). The equation 
of the line in this figure is vt = 4it, so the terminal 
voltage is directly proportional to the terminal cur-
rent. Using Ohm’s law, the device inside the box 
behaves like a 4 Ω resistor. Therefore, the circuit 
model for the device inside the box is a 4 Ω resistor, 
as seen in Fig. 2.14(b).

We come back to this technique of using termi-
nal characteristics to construct a circuit model after 
introducing Kirchhoff’s laws and circuit analysis.

SELF-CHECK: Assess your understanding of this example by trying Chapter Problems 2.14 and 2.16.

vt (V) it (A)

240

220

0

20

40

210

25

0

5

10

(b)(a)

1

2

vt Device

it

Figure 2.13 ▲ The (a) device and (b) data for Example 2.5.
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220
240
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4 V

(b)

vt

1

2
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Figure 2.14 ▲ (a) The values of vt versus it for the device in Fig. 2.13. (b) The circuit 
model for the device in Fig. 2.13.
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2.4 Kirchhoff’s Laws
A circuit is solved when we determine the voltage across and the current 
in every element. While Ohm’s law is an important tool for solving a cir-
cuit, it may not be enough to provide a complete solution. Generally, we 
need two additional algebraic relationships, known as Kirchhoff’s laws, to 
solve most circuits.

Kirchhoff’s Current Law
Let’s try to solve the flashlight circuit from Example 2.4. We begin by 
redrawing the circuit as shown in Fig. 2.15, with the switch in the on state. 
We have labeled the current and voltage variables associated with each 
resistor and the current associated with the voltage source, including 
reference polarities. For convenience, we use the same subscript for the 
voltage, current, and resistor labels. In Fig. 2.15, we also removed some 
of the terminal dots of Fig. 2.12 and have inserted nodes. Terminal dots 
are the start and end points of an individual circuit element. A node is a 
point where two or more circuit elements meet. In Fig. 2.15, the nodes 
are labeled a, b, c, and d. Node d connects the battery and the lamp and 
stretches all the way across the top of the diagram, though we label a sin-
gle point for convenience. The dots on either side of the switch indicate 
its terminals, but only one is needed to represent a node, labeled node c.

The circuit in Fig. 2.15 has seven unknowns: is, i1, ic, il, v1, vc, and vl. 
Recall that vs = 3 V, as it represents the sum of the terminal voltages of 
the two dry cells. To solve the flashlight circuit, we must find values for 
the seven unknown variables. From algebra, you know that to find n un-
known quantities you must solve n simultaneous independent equations. 
Applying Ohm’s law (Section 2.2) to each of the three resistors gives us 
three of the seven equations we need:

  v1 = i1R1, (2.13)

  vc = icRc,  (2.14)

  vl = ilRl.  (2.15)

What about the other four equations?
Connecting the circuit elements constrains the relationships among 

the terminal voltages and currents. These constraints are called Kirchhoff’s 
laws, after Gustav Kirchhoff, who first stated them in a paper published 
in 1848. The two laws that state the constraints in mathematical form are 
known as Kirchhoff’s current law and Kirchhoff’s voltage law.

We can now state Kirchhoff’s current law (KCL):

a b c

d

vl

1

2

vs
1

2

v12 1

i1
vc1 2

ic
is il Rl

RcR1

Figure 2.15 ▲ Circuit model of the flashlight with 
assigned voltage and current variables.

KIRCHHOFF’S CURRENT LAW (KCL)

The algebraic sum of all the currents at any node in a circuit 
equals zero.

To use Kirchhoff’s current law at a node, assign an algebraic sign cor-
responding to the current’s reference direction for every current at the 
node. Assigning a positive sign to a current leaving the node requires as-
signing a negative sign to a current entering a node. Conversely, giving a 
negative sign to a current leaving a node requires giving a positive sign to 
a current entering a node.
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We apply Kirchhoff’s current law to the four nodes in the circuit 
shown in Fig. 2.15, using the convention that currents leaving a node are 
positive. The four equations are:

 node a       is - i1 = 0, (2.16)

 node b       i1 + ic = 0, (2.17)

   node c    - ic - il = 0, (2.18)

   node d          il - is = 0. (2.19)

But Eqs. 2.16–2.19 are not an independent set because any one of 
the four can be derived from the other three. In any circuit with n nodes, 
n - 1 independent equations can be derived from Kirchhoff’s current 
law.1 Let’s disregard Eq. 2.19 so that we have six independent equations, 
namely, Eqs. 2.13–2.18. We need one more, which we can derive from 
Kirchhoff’s voltage law.

Kirchhoff’s Voltage Law
Before we can state Kirchhoff’s voltage law, we must define a closed 
path or loop. Starting at an arbitrarily selected node, we trace a closed 
path in a circuit through selected basic circuit elements and return to the 
original node without passing through any intermediate node more than 
once. The circuit shown in Fig. 2.15 has only one closed path or loop. For 
example, choosing node a as the starting point and tracing the circuit 
clockwise, we form the closed path by moving through nodes d, c, b, and 
back to node a. We can now state Kirchhoff’s voltage law (KVL):

KIRCHHOFF’S VOLTAGE LAW (KVL)

The algebraic sum of all the voltages around any closed 
path in a circuit equals zero.

To use Kirchhoff’s voltage law, assign an algebraic sign (reference di-
rection) to each voltage in the loop. As we trace a closed path, a voltage 
will appear either as a rise or a drop in the tracing direction. Assigning a 
positive sign to a voltage rise requires assigning a negative sign to a volt-
age drop. Conversely, giving a negative sign to a voltage rise requires giv-
ing a positive sign to a voltage drop.

We now apply Kirchhoff’s voltage law to the circuit shown in Fig. 
2.15, tracing the closed path clockwise and assigning a positive algebraic 
sign to voltage drops. Starting at node d leads to the expression

 vl - vc + v1 - vs = 0. (2.20)

Now we have the seven independent equations needed to find the seven 
unknown circuit variables in Fig. 2.15.

Solving seven simultaneous equations for the simple flashlight lamp 
seems excessive. In the coming chapters, we present analytical techniques 
that solve a simple one-loop circuit like the one shown in Fig. 2.15 using a sin-
gle equation. Before leaving the flashlight circuit, we observe two analysis de-
tails that are important for the techniques presented in subsequent chapters.

1 We say more about this observation in Chapter 4.
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1. If you know the current in a resistor, you also know the voltage 
across the resistor because current and voltage are directly related 
through Ohm’s law. Thus, you can associate one unknown variable 
with each resistor, either the current or the voltage. For example, 
choose the current as the unknown variable. Once you solve for the 
unknown current in the resistor, you can find the voltage across the 
resistor. In general, if you know the current in a passive element, 
you can find the voltage across it, greatly reducing the number of 
simultaneous equations to solve. In the flashlight circuit, choosing 
the current as the unknown variable eliminates the voltages vc, vl, 
and v1 as unknowns, and reduces the analytical task to solving four 
simultaneous equations rather than seven.

2. When only two elements connect to a node, if you know the current 
in one of the elements, you also know it in the second element by 
applying Kirchhoff’s current law at the node. When just two ele-
ments connect at a single node, the elements are said to be in series, 
and you need to define only one unknown current for the two el-
ements. Note that each node in the circuit shown in Fig. 2.15 con-
nects only two elements, so you need to define only one unknown 
current. Equations 2.16–2.18 lead directly to

 is = i1 = - ic = il, 

which states that if you know any one of the element currents, you 
know them all. For example, choosing is as the unknown eliminates 
i1, ic, and il. The problem is reduced to determining one unknown, 
namely, is.

Examples 2.6 and 2.7 illustrate how to write circuit equations based 
on Kirchhoff’s laws. Example 2.8 illustrates how to use Kirchhoff’s laws 
and Ohm’s law to find an unknown current. Example 2.9 expands on the 
technique presented in Example 2.5 for constructing a circuit model for a 
device whose terminal characteristics are known.

EXAMPLE 2.6 Using Kirchhoff’s Current Law

Sum the currents at each node in the circuit shown 
in Fig. 2.16. Note that there is no connection dot (•) 
in the center of the diagram, where the 4 Ω branch 
crosses the branch containing the ideal current 
source ia.

Solution
In writing the equations, we use a positive sign for a 
current leaving a node. The four equations are

node a i1 +  i4 - i2 - i5 = 0,

node b i2 + i3 - i1 - ib - ia = 0,

node c ib - i3 - i4 - ic = 0,

node d i5 + ia + ic = 0.

5 V

i5

a c

1 V

i1

d

b

ic

ibia 3 V

i3
2 V

i2

4 V

i4

Figure 2.16 ▲ The circuit for Example 2.6.
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EXAMPLE 2.7 Using Kirchhoff’s Voltage Law

Sum the voltages around each designated path in 
the circuit shown in Fig. 2.17.

Solution
In writing the equations, we use a positive sign for a 
voltage drop. The four equations are

path a -v1 +  v2 + v4 - vb - v3 = 0,

path b -va + v3 + v5 = 0,

path c vb - v4 - vc - v6 - v5 = 0,

path d -va - v1 + v2 - vc + v7 - vd = 0.

d

d

a

b c

1 2

vd

vc
2

1

1 2

vb

2 V

v2 21

1 V

v1 12

1

2
va

7 V

v7 12

6 V

v6 21

3 V

v3 21 4 V

v4 12

5 Vv5

1

2

Figure 2.17 ▲ The circuit for Example 2.7.

EXAMPLE 2.8  Applying Ohm’s Law and Kirchhoff’s Laws to Find  
an Unknown Current

a) Use Kirchhoff’s laws and Ohm’s law to find io in 
the circuit shown in Fig. 2.18.

b) Test the solution for io by verifying that the total 
power generated equals the total power dissipated.

Solution
a) We begin by redrawing the circuit and assigning 

an unknown current to the 50 Ω resistor and un-
known voltages across the 10 Ω and 50 Ω resis-
tors. Figure 2.19 shows the circuit. The nodes are 
labeled a, b, and c to aid the discussion.

Because io also is the current in the 
120 V source, we have two unknown cur-
rents and therefore must derive two si-
multaneous equations involving io and i1.  
One of the equations results from applying 
Kirchhoff’s current law to either node b or c. 
Summing the currents at node b and assigning a 
positive sign to the currents leaving the node gives

i1 - io -  6 = 0.

We obtain the second equation from Kirchhoff’s 
voltage law in combination with Ohm’s law. 
Noting from Ohm’s law that vo = 10io and 
v1 = 50i1, we sum the voltages clockwise around 
the closed path c-a-b-c to obtain

-120 + 10io + 50i1 = 0.

In writing this equation, we assigned a positive 
sign to voltage drops in the clockwise direction. 
Solving these two equations (see Appendix A) 
for io and i1 yields

io = -3 A  and  i1 = 3 A.

b) The power for the 50 Ω resistor is

p50Ω = 1 i1221502 = 13221502 = 450 W.

1

2
120 V 6 A

10 V

io
50 V

Figure 2.18 ▲ The circuit for Example 2.8.

1

2
120 V 6 A

10 V

50 V

io

o

i1

ba

c

1v

v

Figure 2.19 ▲ The circuit shown in Fig. 2.18, with 
the unknowns i1, vo, and v1 defined.
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The power for the 10 Ω resistor is

p10Ω = 1 io221102 = 1-3221102 = 90 W.

The power for the 120 V source is

p120V = -120io = -1201-32 = 360 W.

The power for the 6 A source is

p6A = -v1162 , and v1 = 50i1 = 50132 = 150 V; 

therefore

p6A = -150162 = -900 W.

The 6 A source is delivering 900 W, and the 
120 V source and the two resistors are ab-
sorbing power. The total power absorbed is 
p6A + p50Ω + p10Ω = 360 + 450 + 90 = 900 W. 
Therefore, the solution verifies that the power de-
livered equals the power absorbed.

EXAMPLE 2.9 Constructing a Circuit Model Based on Terminal Measurements

We measured the terminal voltage and terminal 
current on the device shown in Fig. 2.20(a) and tab-
ulated the values of vt and it in Fig. 2.20(b).

a) Construct a circuit model of the device inside the 
box.

b) Using this circuit model, predict the power this 
device will deliver to a 10 Ω resistor.

Solution
a) Plotting the voltage as a function of the current 

yields the graph shown in Fig. 2.21(a). The equa-
tion of the line plotted is

vt = 30 - 5it.

What circuit model components produce this 
relationship between voltage and current? 
Kirchhoff’s voltage law tells us that the voltage 
drops across two components in series add. From 
the equation, one of those components pro-
duces a 30 V drop regardless of the current, so 
this component’s model is an ideal independent 
voltage source. The other component produces a 

positive voltage drop in the direction of the cur-
rent it. Because the voltage drop is proportional 
to the current, Ohm’s law tells us that this com-
ponent’s model is an ideal resistor with a value of 
5 Ω. The resulting circuit model is depicted in the 
dashed box in Fig. 2.21(b).

b) Now we attach a 10 Ω resistor to the device in  
Fig. 2.21(b) to complete the circuit. Kirchhoff’s cur-
rent law tells us that the current in the 10 Ω resistor 
equals the current in the 5 Ω resistor.  Using Kirch-
hoff’s voltage law and Ohm’s law, we can write the 

it (A)

0

3

6

vt (V)

30

15

0

(b)(a)

1

2

vtDevice

it

Figure 2.20 ▲ (a) Device and (b) data for Example 2.9.

(b)

(a)

vt (V)

30

15

3 6
it (A)

1

2
30 V

b

10 V

5 V a

i
vt

1

2

Figure 2.21 ▲ (a) The graph of vt versus it for the device in 
Fig. 2.20(a). (b) The resulting circuit model for the device in 
Fig. 2.20(a), connected to a 10 Ω resistor.
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Objective 3—Be able to state and use Ohm’s law and Kirchhoff’s current and voltage laws

 2.5 For the circuit shown, calculate (a) i5; (b) v1;  
(c) v2; (d) v5; and (e) the power delivered by  
the 24 V source.

Answer:   (a) 2 A;
(b) -4 V;
(c) 6 V;
(d) 14 V;
(e) 48 W.

7 V24 V i5
1

2

3 V

v21 2

v11 2

2 V

v5

1

2

 2.6 Use Ohm’s law and Kirchhoff’s laws to find the 
value of R in the circuit shown.

Answer: R = 4 Ω.

1

2
200 V

R

24 V 8 V120 V
1

2

 2.7 a)  The terminal voltage and terminal current 
were measured on the device shown. The 
values of vt and it are provided in the table. 
Using these values, create the straight-line 
plot of vt versus it. Compute the equation of 
the line and use the equation to construct a 
circuit model for the device using an ideal 
voltage source and a resistor.

b) Use the model constructed in (a) to predict 
the power that the device will deliver to a 
25 Ω resistor.

Answer:    (a)  A 25 V source in series with a 100 Ω 
resistor;

(b) 1 W.

1

2

vt

it (A)vt (V)

Device

0

0.1

0.2

0.25

25

15

5

0

(b)(a)

it

 2.8 Repeat Assessment Problem 2.7, but use the 
equation of the graphed line to construct a 
circuit model containing an ideal current source 
and a resistor.

Answer:   (a)  A 0.25 A current source connected be-
tween the terminals of a 100 Ω resistor;

(b) 1 W.

SELF-CHECK: Also try Chapter Problems 2.17, 2.18, 2.29, and 2.30.

ASSESSMENT PROBLEMS

equation for the voltage drops around the circuit, start-
ing at the voltage source and proceeding clockwise:

-30 + 5i + 10i = 0.

Solving for i, we get

i = 2 A.

This is the value of current flowing in the 10 Ω 
resistor, so compute the resistor’s power using 
the equation p = i2R:

p10Ω = 12221102 = 40 W.
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2.5  Analyzing a Circuit Containing 
Dependent Sources

We conclude this introduction to elementary circuit analysis by con-
sidering circuits with dependent sources. One such circuit is shown in 
Fig. 2.22.

We want to use Kirchhoff’s laws and Ohm’s law to find vo in this cir-
cuit. Before writing equations, it is good practice to examine the circuit di-
agram closely. This will help us identify the information that is known and 
the information we must calculate. It may also help us devise a strategy for 
solving the circuit using only a few calculations.

A look at the circuit in Fig. 2.22 reveals that:

• Once we know io, we can calculate vo using Ohm’s law.
• Once we know i∆, we also know the current supplied by the depen-

dent source 5i∆.
• The current in the 500 V source is i∆, using Kirchhoff’s current law 

at node a.

There are thus two unknown currents, i∆ and io. We need to construct and 
solve two independent equations involving these two currents to produce 
a value for vo. This is the approach used in Example 2.10.

1

2
500 V 20 V

io

5 V

iD

a b

c

5iDvo

1

2

Figure 2.22 ▲ A circuit with a dependent source.

EXAMPLE 2.10  Analyzing a Circuit with a Dependent Source

Find the voltage vo for the circuit in Fig. 2.22.

Solution
The closed path consisting of the voltage source, 
the 5 Ω resistor, and the 20 Ω resistor contains the 
two unknown currents. Apply Kirchhoff’s voltage 
law around this closed path, using Ohm’s law to ex-
press the voltage across the resistors in terms of the 
currents in those resistors. Starting at node c and 
traversing the path clockwise gives:

 -500 + 5i∆ + 20io = 0. 

Now we need a second equation containing 
these two currents. We can’t apply Kirchhoff’s 
voltage law to the closed path formed by the 20 Ω 
resistor and the dependent current source because 
we don’t know the value of the voltage across the 
dependent current source. For this same reason, we 
cannot apply Kirchhoff’s voltage law to the closed 
path containing the voltage source, the 5 Ω resistor, 
and the dependent source.

We turn to Kirchhoff’s current law to gener-
ate the second equation. Either node b or node c 
can be used to construct the second equation from 
Kirchhoff’s current law, since we have already used 
node a to determine that the current in the voltage 
source and the 5 Ω resistor is the same. We select 
node b and produce the following equation, sum-
ming the currents leaving the node:

 - i∆ + io - 5i∆ = 0. 

Solve the KCL equation for io in terms of 
i∆1 io = 6i∆2 , and then substitute this expression 
for io into the KVL equation to give 

500 = 5i∆ +  2016i∆2 = 125i∆. 

Therefore,

i∆ = 500>125 = 4 A  and  io = 6142 = 24 A.

Using io and Ohm’s law for the 20 Ω resistor, we 
can solve for the voltage vo:

vo = 20io = 480 V.
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6 V 3 V3 is10 V vo

1

2

1

2

1

2

is

2 V

io

Figure 2.23 ▲ The circuit for Example 2.11.

EXAMPLE 2.11    Applying Ohm’s Law and Kirchhoff’s Laws to Find  
an Unknown Voltage

a) Use Kirchhoff’s laws and Ohm’s law to find the 
voltage vo as shown in Fig. 2.23.

b) Show that your solution is consistent with the re-
quirement that the total power developed in the 
circuit equals the total power dissipated.

Applying Ohm’s law to the 3 Ω resistor gives the 
desired voltage:

vo = 3io = 3 V.

b) To compute the power delivered to the voltage 
sources, we use the power equation, p = vi,  
together with the passive sign convention. The 
power for the independent voltage source is

p = -10is = -1011.672 = -16.7 W.

The power for the dependent voltage source is

p = - 13is2 io = - 152112 = -5 W.

Both sources are supplying power, and the total 
power supplied is 21.7 W.

To compute the power for the resistors, we use 
the power equation, p = i2R. The power for the 
6 Ω resistor is

p = 11.6722162 = 16.7 W.

The power for the 2 Ω resistor is

p = 1122122 = 2 W.

The power for the 3 Ω resistor is

p = 1122132 = 3 W.

The resistors all absorb power, and the total 
power absorbed is 21.7 W, equal to the total 
power supplied by the sources.

Solution
a) A close look at the circuit in Fig. 2.23 reveals that:

• There are two closed paths, the one on the left 
with the current is and the one on the right with 
the current io.

• Once io is known, we can compute vo using 
Ohm’s law.

We need two equations for the two currents. 
Because there are two closed paths and both have 
voltage sources, we can apply Kirchhoff’s voltage 
law to each, using Ohm’s law to express the voltage 
across the resistors in terms of the current in those 
resistors. The resulting equations are:

-10 + 6is = 0 and -3is + 2io + 3io = 0.

Solving for the currents yields

is = 1.67 A and io = 1 A.

Think about a circuit analysis strategy before beginning to write 
equations because not every closed path yields a useful Kirchhoff’s volt-
age law equation and not every node yields a useful Kirchhoff’s current 
law equation. Think about the problem and select a fruitful approach 
and useful analysis tools to reduce the number and complexity of equa-
tions to be solved. Example 2.11 applies Ohm’s law and Kirchhoff’s 
laws to another circuit with a  dependent source. Example 2.12 involves 
a much more complicated circuit, but with a careful choice of analysis 
tools, the analysis is relatively uncomplicated.
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EXAMPLE 2.12  Applying Ohm’s Law and Kirchhoff’s Law in an Amplifier Circuit

The circuit in Fig. 2.24 represents a common con-
figuration encountered in the analysis and design 
of transistor amplifiers. Assume that the values of 
all the circuit elements—R1, R2, RC, RE, VCC, and  
V0—are known.

a) Develop the equations needed to determine the 
current in each element of this circuit.

b) From these equations, devise a formula for com-
puting iB in terms of the circuit element values.

A fourth equation results from imposing the 
constraint presented by the series connection of 
RC and the dependent source:

 (4) iC = biB.

We use Kirchhoff’s voltage law to derive the 
remaining two equations. We must select two 
closed paths, one for each Kirchhoff’s voltage 
law equation. The voltage across the dependent 
current source is unknown and cannot be deter-
mined from the source current biB, so select two 
closed paths that do not contain this dependent 
current source.

We choose the paths b-c-d-b and b-a-d-b, 
then use Ohm’s law to express resistor voltage 
in terms of resistor current. Traverse the paths in 
the clockwise direction and specify voltage drops 
as positive to yield

 (5) V0 + iERE - i2R2 = 0,

 (6) - i1R1 +  VCC - i2R2 = 0.

b) To get a single equation for iB in terms of the 
known circuit variables, you can follow these 
steps:

• Solve Eq. (6) for i1, and substitute this solution 
for i1 into Eq. (2).

• Solve the transformed Eq. (2) for i2, and sub-
stitute this solution for i2 into Eq. (5).

• Solve the transformed Eq. (5) for iE, and sub-
stitute this solution for iE into Eq. (3). Use 
Eq. (4) to eliminate iC in Eq. (3).

• Solve the transformed Eq. (3) for iB, and rear-
range the terms to yield

 iB =
1VCCR22 > 1R1 + R22 - V0

1R1R22 > 1R1 + R22 + 11 + b2RE
 .  (2.21)

Problem 2.38 asks you to verify these steps. Note 
that once we know iB, we can easily obtain the re-
maining currents.

a

d
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1
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c1 2

VCC
1

2

iCC

iB
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iC
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iE

R2
i2

R1
i1

V0
biB

Figure 2.24 ▲ The circuit for Example 2.12.

Solution
Carefully examine the circuit to identify six un-
known currents, designated i1, i2, iB, iC, iE, and iCC. 
In defining these six unknown currents, we observed 
that the resistor RC is in series with the dependent 
current source biB, so these two components have 
the same current. We now must derive six indepen-
dent equations involving these six unknowns.

a) We can derive three equations by applying Kirch-
hoff’s current law to any three of the nodes a, b, 
c, and d. Let’s use nodes a, b, and c and label the 
currents away from the nodes as positive:

 (1) i1 +  iC - iCC = 0,

 (2) iB +  i2 - i1 = 0,

 (3) iE - iB - iC = 0.
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   Practical Perspective
Heating with Electric Radiators
Let’s determine which of the two wiring diagrams introduced at the be-
ginning of this chapter should be used to wire the electric radiators to 
the power supplied to the garage. We begin with the diagram shown 
in Fig. 2.25. We can turn this into a circuit by modeling the radiators 
as resistors. The resulting circuit is shown in Fig. 2.26. Note that each 
radiator has the same resistance, R, and is labeled with a voltage and 
current value.

To find the unknown voltages and currents for the circuit in  
Fig. 2.26, begin by using Kirchhoff’s voltage law to sum the voltage 
drops around the path on the circuit’s left side:

-240 + v1 = 0 1 v1 = 240 V.

Now use Kirchhoff’s voltage law to sum the voltage drops around the 
path on the circuit’s right side:

-v1 +  v2 = 0 1 v2 = v1 = 240 V.

Objective 4—Know how to calculate power for each element in a simple circuit

 2.9 For the circuit shown, find (a) the current i1 in 
microamperes, (b) the voltage v in volts, (c) the 
total power generated, and (d) the total power 
absorbed.

Answer:   (a) 25 mA;
(b) -2 V;
(c) 6150 mW;
(d) 6150 mW.

5 V
1

2
8 V

1

2

i1

54 kV

6 kV

1.8 kV
2 1

1 V
v1 2

30 i1

 2.10 The current if in the circuit shown is 2 A. 
 Calculate

a) vs,
b) the power absorbed by the independent 

 voltage source,

c) the power delivered by the independent 
current source,

d) the power delivered by the controlled 
current source,

e) the total power dissipated in the two 
resistors.

Answer:   (a) 70 V;
(b) 210 W;
(c) 300 W;
(d) 40 W;
(e) 130 W.

10 V

5 A vs
1

2
30 V

if

2if

SELF-CHECK: Also try Chapter Problems 2.33 and 2.34.

ASSESSMENT PROBLEMS

2

1
240 V radiator radiator

Figure 2.25 ▲ A wiring diagram for two radiators.
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1
v1
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v2R R

2

1

i1

240 V
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Figure 2.26 ▲ A circuit based on Fig. 2.25.
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Remember that the power and voltage specifications for each radiator 
are 1200 W, 240 V. Therefore, the configuration shown in Fig. 2.25 satis-
fies the voltage specification, since each radiator would have a supplied 
voltage of 240 V.

Next, calculate the value of resistance R that correctly models each 
radiator. We want the power associated with each radiator to be 1200 W.  
Use the equation for resistor power that involves the resistance and the 
voltage:

p1 =
v1

2

R
=

v2
2

R
= p2  1  R =

v1
2

p1
=

2402

1200
= 48 Ω.

Each radiator can be modeled as a 48 Ω resistor, with a voltage drop of 
240 V and power of 1200 W. The total power for two radiators is thus 
2400 W.

Finally, calculate the power for the 240 V source. To do this, calcu-
late the current in the voltage source, is, using Kirchhoff’s current law to 
sum the currents leaving the top node in Fig. 2.26. Then use is to find the 
power for the voltage source.

- is + i1 + i2 = 0 1 is = i1 + i2 =
v1

R
+

v2

R
=

240
48

  +  
240
48

= 10 A.

ps = - 12402 1 is2 = - 124021102 = -2400 W.

Thus, the total power in the circuit is -2400 + 2400 = 0, and the power 
balances.

Now look at the other wiring diagram for the radiators, shown in  
Fig. 2.27. We know that the radiators can be modeled using 48 Ω resis-
tors, which are used to turn the wiring diagram into the circuit in Fig. 2.28.

Start analyzing the circuit in Fig. 2.28 by using Kirchhoff’s voltage 
law to sum the voltage drops around the closed path:

-240 + vx +  vy = 0  1  vx +  vy = 240.

Next, use Kirchhoff’s current law to sum to currents leaving the node 
labeled a:

- ix +  iy = 0  1  ix = iy = i.

The current in the two resistors is the same, and we can use that cur-
rent in Ohm’s law equations to replace the two unknown voltages in the 
Kirchhoff’s voltage law equation:

48i +  48i = 240 = 96i  1  i =
240
96

= 2.5 A.

Use the current in the two resistors to calculate the power for the two 
radiators.

px = py = Ri2 = 148212.52 2 = 300 W.

Thus, if the radiators are wired as shown in Fig. 2.27, their total power is 
600 W. This is insufficient to heat the garage.

Therefore, the way the radiators are wired has a big impact on the 
amount of heat that will be supplied. When they are wired using the 
 diagram in Fig. 2.25, 2400 W of power will be available, but when they are 
wired using the diagram in Fig. 2.27, only 600 W of power will be available.

SELF-CHECK: Assess your understanding of the Practical Perspective 
by solving Chapter Problems 2.41–2.43.
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2
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Figure 2.27 ▲ Another way to wire two radiators.
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Figure 2.28 ▲ A circuit based on Fig. 2.27.
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   Summary

• The circuit elements introduced in this chapter are volt-
age sources, current sources, and resistors:

• An ideal voltage source maintains a prescribed 
voltage regardless of the current in the source. An 
ideal current source maintains a prescribed current 
regardless of the voltage across the source. Voltage 
and current sources are either independent, that is, 
not influenced by any other current or voltage in the 
circuit, or dependent, that is, determined by some 
other current or voltage in the circuit. (See pages 
56 and 57.)

• A resistor constrains its voltage and current to be 
proportional to each other. The value of the propor-
tional constant relating voltage and current in a re-
sistor is called its resistance and is measured in ohms. 
(See page 60.)

• Ohm’s law establishes the proportionality of voltage 
and current in a resistor. Specifically,

v = iR

if the current flow in the resistor is in the direction of 
the voltage drop across it, or

v = - iR

if the current flow in the resistor is in the direction of 
the voltage rise across it. (See page 60.)

• By combining the equation for power, p = vi, with Ohm’s 
law, we can determine the power absorbed by a resistor:

p = i 2R = v

2>R.

(See pages 61–62.)

• Circuits have nodes and closed paths. A node is a point 
where two or more circuit elements join. When just two el-
ements connect to form a node, they are said to be in series. 
A closed path is a loop traced through connecting elements, 
starting and ending at the same node and encountering in-
termediate nodes only once each. (See pages 67–68.)

• The voltages and currents of interconnected circuit ele-
ments obey Kirchhoff’s laws:

• Kirchhoff’s current law states that the algebraic sum 
of all the currents at any node in a circuit equals zero. 
(See page 67.)

• Kirchhoff’s voltage law states that the algebraic sum 
of all the voltages around any closed path in a circuit 
equals zero. (See page 68.)

• A circuit is solved when the voltage across and the cur-
rent in every element have been determined. By com-
bining an understanding of independent and dependent 
sources, Ohm’s law, and Kirchhoff’s laws, we can solve 
many simple circuits.

 2.2 If the interconnection in Fig. P2.2 is valid, find the 
total power developed in the circuit. If the intercon-
nection is not valid, explain why.

   Problems

Section 2.1

 2.1 a) Is the interconnection of an ideal source in the 
circuit in Fig. P2.1 valid? Explain.

b) Identify which sources are developing power 
and which sources are absorbing power.

c) Verify that the total power developed in the  
circuit equals the total power absorbed.

d) Repeat (a)–(c), reversing the polarity of the  
30 V source.

8 A30 V

20 V

�

�

� �

Figure P2.1

60 V

20 V

��

�

�
50 V

�

�6 A

Figure P2.2
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10 A 5 A
1

2

40 V

12

100 V

Figure P2.3

 2.3 If the interconnection in Fig. P2.3 is valid, find the 
power developed by the current sources. If the in-
terconnection is not valid, explain why.

15 V
�

�

2 A

5 A 10 V

3 A

�

�

Figure P2.4

 2.4 If the interconnection in Fig. P2.4 is valid, find the 
power developed by the voltage sources. If the in-
terconnection is not valid, explain why.

 2.5 The interconnection of ideal sources can lead to an 
indeterminate solution. With this thought in mind, 
explain why the solutions for v1 and v2 in the circuit 
in Fig. P2.5 are not unique.

1 A 4 A 2 A

10 V

6 V

�

v2

�

�

v1

�

� �

� �

Figure P2.5

 2.7 Consider the interconnection shown in Fig. P2.7.

a) What value of a is required to make this a valid 
interconnection?

b) For this value of a, find the power associated 
with the current source.

c) Is the current source supplying or absorbing 
power?

1
2

1
21

2

1
2

30 V

40 V

50 mA

1800 ix
ix

60 V

Figure P2.9

 2.10 Find the total power developed in the circuit in  
Fig. P2.10 if vo = 10 V.

9 A

1

2
20 V 6 A

2

1
vg

10 va
1

2

1

2

vo

1

2

va

Figure P2.10

1 2

400 mA v1>50
v1

Figure P2.6

 2.6 Consider the interconnection shown in Fig. P 2.6.

a) What value of v1 is required to make this a valid 
interconnection?

b) For this value of v1, find the power associated 
with the voltage source.

 2.8 a) Is the interconnection in Fig. P2.8 valid? Explain.

b) Can you find the total energy developed in the 
circuit? Explain.

 2.9 If the interconnection in Fig. P 2.9 is valid, find the 
total power developed in the circuit. If the intercon-
nection is not valid, explain why.

3iD

1

2

1

2

iD

20 V

8 A

16 A

100 V

Figure P2.8

110 V 20 mA
2

2
1

iD

aiD

Figure P2.7
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2

12 V battery

Switch

Lamp A

Lamp B

1

Figure P2.13

 2.13 A pair of automotive headlamps is connected to a  
12 V battery via the arrangement shown in Fig. P2.13. 
In the figure, the triangular symbol ▼ is used to in-
dicate that the terminal is connected directly to the 
metal frame of the car.

a) Construct a circuit model using resistors and an 
independent voltage source.

b) Identify the correspondence between the ideal 
circuit element and the symbol component that 
it represents.

 2.14 The terminal voltage and terminal current were 
measured on the device shown in Fig. P2.14(a). 
The values of v and i are given in the table of  
Fig. P2.14(b). Use the values in the table to con-
struct a circuit model for the device consisting of a 
single resistor from Appendix H.

2120

260

60

120

180

v (V)i (mA)

210

25

5

10

15

(b)(a)

i

1

2

vDevice

Figure P2.14

 2.15 A variety of voltage source values were applied to 
the device shown in Fig. P 2.15(a). The power ab-
sorbed by the device for each value of voltage is 
recorded in the table given in Fig. P 2.15(b). Use 
the values in the table to construct a circuit mod-
el for the device consisting of a single resistor from 
 Appendix H.

i (mA)

0.5

1.0

1.5

2.0

2.5

3.0

12.5

50

112.5

200

312.5

450

(b)

1

2

v

p (mW)

(a)

Device i

Figure P2.16

 2.16 A variety of current source values were applied to 
the device shown in Fig. P2.16(a). The power ab-
sorbed by the device for each value of current is 
recorded in the table given in Fig. P2.16(b). Use 
the values in the table to construct a circuit mod-
el for the device consisting of a single resistor from  
Appendix H.

 2.12 For the circuit shown in Fig. P2.12

a) Find i.

b) Find the power supplied by the voltage source.

c) Reverse the polarity of the voltage source 
and repeat parts (a) and (b).

Figure P2.12

10 V 2 k�

i

�

�
v (V) p (mW)

28

24

4

8

12

16

640

160

160

640

1440

2560

(b)(a)

Device v

1

2

i

Figure P2.15

Section 2.2–2.3

 2.11 For the circuit shown in Fig. P2.11

a) Find v.

b) Find the power absorbed by the resistor.

c) Reverse the direction of the current source 
and repeat parts (a) and (b).

20 mA 2 k�v

�

�

Figure P2.11



 Problems 81

1

2
200 V

40 V

300 Via

ib

75 Vvo

1

2

Figure P2.18

2

1
20 mA

2 kV

5 V5 kV

2

1
vo

Figure P2.20

 2.20 Consider the circuit shown in Fig. P 2.20.

a) Find vo using Kirchoff’s laws and Ohm’s law.

b) Test the solution for vo by verifying that the  total 
power supplied equals the total power  absorbed.

Section 2.4

 2.17 a)  Find the currents i1 and i2 in the circuit in Fig. P 2.17.

b) Find the voltage vo.

c) Verify that the total power developed equals the 
total power dissipated.

PSPICE

MULTISIM

1.5 A 250 V100 Vi1

150 V

i2
vo

1

2

Figure P2.17

5 

8 

6 

12 

R

18 

12 

250 V

5 A

Figure P2.24

 2.24 For the circuit shown in Fig. P2.24, find (a) R and (b) 
the power supplied by the 250 V source.PSPICE

MULTISIM

�

�

3.5 k�2 k�

R

800 �100 V 6 k�
io

Figure P2.23

 2.23 The variable resistor R in the circuit in Fig. P2.23 is 
adjusted until i0 equals 20 mA. Find the value of R.PSPICE

MULTISIM

5 �

60 �

35 �
�

�
180 V

25 �

70 �i1

io

Figure P2.22

 2.22 The current io in the circuit in Fig. P2.22 is 2 A.

a) Find i1.

b) Find the power dissipated in each resistor.

c) Verify that the total power dissipated in the circuit 
equals the power developed by the 180 V source.

PSPICE

MULTISIM

3 A 280 120 i1

180 

i2
vo

Figure P2.19

 2.19 a) Find the currents i1 and i2 in the circuit in  
Fig. P2.19.

b) Find the voltage vo.

c) Verify that the total power developed equals the 
total power dissipated.

PSPICE

MULTISIM

 2.18 Given the circuit shown in Fig. P 2.18, find

a) the value of ia,

b) the value of ib,

c) the value of vo,

d) the power dissipated in each resistor,

e) the power delivered by the 200 V source.

PSPICE

MULTISIM

5 k�3 k�ioig

4 k�

2 k�

ia

Figure P2.21

 2.21 The current ia in the circuit shown in Fig. P2.21 is  
2 mA. Find (a) io; (b) ig; and (c) the power delivered 
by the independent current sources.

PSPICE

MULTISIM
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2 �

1 �

1 �

35 �

i2 10 �

i1 5 �

�

�
147 V

�

�
147 V

Figure P2.27

 2.27 The currents i1 and i2 in the circuit in Fig. P2.27 are 
21 A and 14 A, respectively.

a) Find the power supplied by each voltage source.

b) Show that the total power supplied equals the 
total power dissipated in the resistors.

 2.28 The voltage and current were measured at the ter-
minals of the device shown in Fig. P2.28(a). The  
results are tabulated in Fig. P2.28(b).

a) Construct a circuit model for this device using an 
ideal voltage source in series with a resistor.

b) Use the model to predict the value of it when vt 
is zero.

50

66

82

98

114

130

vt (V)

0

2

4

6

8

10

it (A)

(b)(a)

it

�

�

vtDevice

Figure P2.28

 2.29 The voltage and current were measured at the termi-
nals of the device shown in Fig. P2.29(a). The results 
are tabulated in Fig. P2.29(b).

a) Construct a circuit model for this device using an 
ideal current source in parallel with a resistor.

b) Use the model to predict the amount of power 
the device will deliver to a 20 Ω resistor.

(a)

it

1

2

vtDevice

50

65

80

95

110

vt (V)

0

3

6

9

12

it (A)

(b)

Figure P2.29

 2.30 The table in Fig. P2.30(a) gives the relationship be-
tween the terminal current and voltage of the practical 
constant current source shown in Fig. P2.30(b).

a) Plot is versus vs.

b) Construct a circuit model of this current source 
that is valid for 0 … vs … 75 V, based on the 
equation of the line plotted in (a).

c) Use your circuit model to predict the current de-
livered to a 2.5 kΩ resistor.

d) Use your circuit model to predict the open-circuit 
voltage of the current source.

e) What is the actual open-circuit voltage?

f) Explain why the answers to (d) and (e) are not 
the same.

125 V

7 �

30 �

5 � �

�

15 �

80 V 16 �

�

�

Figure P2.25

 2.25 The voltage across the 16 Ω resistor in the circuit in 
Fig. P2.25 is 80 V, positive at the upper terminal.

a) Find the power dissipated in each resistor.

b) Find the power supplied by the 125 V ideal volt-
age source.

c) Verify that the power supplied equals the total 
power dissipated.

PSPICE

MULTISIM

 2.26 For the circuit shown in Fig. P 2.26, find (a) R and 
(b) the power supplied by the 240 V source.

1

2

4 V

6 V

5 V

10 V

R

14 V

10 V

240 V

4 A

Figure P2.26
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20.0

17.5

15.0

12.5

9.0

4.0

0.0

0

25

50

75

100

125

140

is (mA) vs (V)

(a) (b)

CCS

is

�

�

vs

Figure P2.30

 2.31 The table in Fig. P2.31(a) gives the relationship be-
tween the terminal voltage and current of the practi-
cal constant voltage source shown in Fig. P2.31(b).

a) Plot vs versus is.

b) Construct a circuit model of the practical source 
that is valid for 0 … is … 24 mA, based on the 
equation of the line plotted in (a). (Use an ideal 
voltage source in series with an ideal resistor.)

c) Use your circuit model to predict the current de-
livered to a 1 kΩ resistor connected to the ter-
minals of the practical source.

d) Use your circuit model to predict the current de-
livered to a short circuit connected to the termi-
nals of the practical source.

e) What is the actual short-circuit current?

f) Explain why the answers to (d) and (e) are not 
the same.

24

22

20

18

15

10

0

vs (V)

0

8

16

24

32

40

48

is (mA)

(a) (b)

is

1

2

vsCVS

Figure P2.31

 2.32 For the circuit shown in Fig. P2.32, find vo and the 
total power supplied in the circuit.

50 A 1
2

4ix

2 V

ix

8 V

21 vo

Figure P2.32

 2.33 For the circuit shown in Fig. P2.33, find vo and the 
total power absorbed in the circuit.

40 V 300 V
1

2
300 V

500 V

1

2

vo

1

2

vx
vx

100

Figure P2.33

 2.34 Consider the circuit shown in Fig. P2.34.

a) Find io.

b) Verify the value of io by showing that the pow-
er generated in the circuit equals the power ab-
sorbed in the circuit.

20 mA 5 kV 3 kV
1

2

1 kV

1

2

v1
v1
2

io

Figure P2.34

 2.36 For the circuit shown in Fig. P2.36, calculate (a) i∆ 
and vo and (b) show that the power developed equals 
the power absorbed.

�

�

�

�
50 V 20 V

20is
� �

5is
� �

18 �i� 40 �

is�

�

vo

8i�

Figure P2.36

 2.35 Find (a) io, (b) i1, and (c) i2 in the circuit in Fig. P2.35.

18 V 6 �

�

�

�

�
10 � 5 �

12 �

v�

i1

io

i2

v�

2

Figure P2.35
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 2.38 Derive Eq. 2.21. Hint: Use Eqs. (3) and (4) from Ex-
ample 2.12 to express iE as a function of iB. Solve 
Eq. (2) for i2 and substitute the result into both Eqs. 
(5) and (6). Solve the “new” Eq. (6) for i1 and sub-
stitute this result into the “new” Eq. (5). Replace iE 
in the “new” Eq. (5) and solve for iB. Note that be-
cause iCC appears only in Eq. (1), the solution for iB 
involves the manipulation of only five equations.

 2.39 For the circuit shown in Fig. 2.24, R1 = 40 kΩ,  
R2 =  60 kΩ, RC =  750 Ω, RE =  120 Ω, VCC =  10 V,  
V0 = 600 mV, and b = 49. Calculate iB, iC, iE, v3d,  
vbd, i2, i1, vab, iCC, and v13. (Note: In the double subscript 
notation on voltage variables, the first subscript is 
positive with respect to the second subscript. See Fig. 
P2.39.)

3

d

RE v3d

1

2

Figure P2.39

Sections 2.1–2.5

 2.40 It is often desirable in designing an electric wir-
ing system to be able to control a single appliance 
from two or more locations, for example, to con-
trol a lighting fixture from both the top and bottom 
of a stairwell. In home wiring systems, this type of 
control is implemented with three-way and four-
way switches. A three-way switch is a three-termi-
nal, two-position switch, and a four-way switch is 
a four-terminal, two-position switch. The switches 
are shown schematically in Fig. P2.40(a), which il-
lustrates a three-way switch, and P2.40(b), which 
illustrates a four-way switch.

a) Show how two three-way switches can be con-
nected between a and b in the circuit in Fig. 
P2.40(c) so that the lamp l can be turned on or 
off from two locations.

b) If the lamp (appliance) is to be controlled from 
more than two locations, four-way switches are 

(a)

1

2 3
Position 1

1

2 3
Position 2

(b)

1 2

3 4
Position 1

1 2

3 4
Position 2

(c)

a
b

vg
1

2 l

Figure P2.40

radiator radiator radiator
1

2
240 V

Figure P2.41

 2.41 Suppose you want to add a third radiator to your ga-
rage that is identical to the two radiators you have 
already installed. All three radiators can be modeled 
by 48 Ω resistors. Using the wiring diagram shown 
in Fig. P2.41, calculate the total power for the three 
radiators.

radiator

radiator

radiator
1

2
240 V

Figure P2.42

 2.42 Repeat Problem 2.41 using the wiring diagram 
shown in Fig. P2.42. Compare the total radiator 
power in this configuration with the total radiator 
power in the configuration shown in Fig. P2.41.

 2.37 Find v1 and vg in the circuit shown in Fig. P2.37 
when vo equals 10 V. (Hint: Start at the right end of 
the circuit and work back toward vg.)

v1

1

2

vo

1

2
80 i2

120 V

i1

i2

25 i1

520 V 10 V 80 V40 V 20 Vvg
1

2

Figure P2.37

used in conjunction with two three-way switches. 
One four-way switch is required for each location 
in excess of two. Show how one four-way switch 
plus two three-way switches can be connected be-
tween a and b in Fig. P2.40(c) to control the lamp 
from three locations. (Hint: The four-way switch is 
placed between the three-way switches.)

PRACTICAL
PERSPECTIVE
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PERSPECTIVE
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 2.43 Repeat Problem 2.41 using the wiring diagram 
shown in Fig. P2.43. Compare the total radiator 
power in this configuration with the total radiator 
power in the configuration shown in Fig. P2.41.

radiator

radiator

radiator
1

2
240 V

Figure P2.43

radiator radiator

radiator
1

2
240 V

Figure P2.44

 2.44 Repeat Problem 2.41 using the wiring diagram 
shown in Fig. P2.44. Compare the total radiator pow-
er in this configuration with the total radiator power 
in the configuration shown in Fig. P2.41.
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CHAPTER CONTENTS

3
CHAPTER 

Simple Resistive Circuits
This chapter focuses on two important circuit element 
 interconnections: series connections and parallel connections.

• When resistors are connected in series and in parallel, we 
can combine these resistors into equivalent resistors, reduc-
ing the number of circuit elements and the circuit’s com-
plexity, and simplifying the circuit analysis.

• When a voltage source is connected to two or more resistors 

in series, the supplied voltage divides across the resistors. 
This common configuration is used as a voltage divider that 
outputs a specific (desired) voltage, smaller than the sup-
plied voltage. We introduce voltage division, a new tool that 
simplifies the analysis of these circuits.

• When a current source is connected to two or more resistors 

in parallel, the supplied current divides among the resistors. 
This common configuration is used as a current divider that 
outputs a specific (desired) current, smaller than the sup-
plied current. We introduce current division, a new tool that 
simplifies the analysis of these circuits.

Finally, we look at three important measurement instruments.

• The ammeter, which is a practical application of the current 
divider, is used to measure current.

• The voltmeter, which is a practical application of the voltage 
divider, is used to measure voltage.

• The Wheatstone bridge, which introduces two new inter-
connections known as delta and wye connections, is used  
to measure resistance.

3.1 Resistors in Series p. 88

3.2 Resistors in Parallel p. 89

3.3 The Voltage-Divider and Current-Divider 
Circuits p. 92

3.4 Voltage Division and Current Division p. 96

3.5 Measuring Voltage and Current p. 98

3.6 Measuring Resistance—The Wheatstone 
Bridge p. 101

3.7 Delta-to-Wye (Pi-to-Tee) Equivalent 
 Circuits p. 103

1 Be able to recognize resistors connected 
in series and in parallel and use the rules 
for combining series-connected resistors 
and parallel-connected resistors to yield 
 equivalent resistance.

2 Know how to design simple voltage-divider 
and current-divider circuits.

3 Be able to use voltage division and  current 
division appropriately to solve simple 
circuits.

4 Be able to determine the reading of an 
 ammeter when added to a circuit to 
 measure current; be able to determine the 
reading of a voltmeter when added to a 
 circuit to measure voltage.

5 Understand how a Wheatstone bridge is 
used to measure resistance.

6 Know when and how to use delta-to-wye 
equivalent circuits to solve simple circuits.

CHAPTER OBJECTIVES



Practical Perspective
Resistive Touch Screens
Many mobile phones and tablet computers use touch 
screens created by applying a transparent resistive 
material to the glass or acrylic screens. Two screens 
are typically used, separated by a transparent insulat-
ing layer. We can model a touch screen as a grid of 
resistors in the x-direction and a grid of resistors in the 
y-direction. The figure on the right depicts one row of 
the grid in the x-direction, with terminals x1 and x2, and 
one column of the grid in the y-direction, with terminals 
y1 and y2.

A separate electronic circuit repeatedly applies a volt-
age drop across the grid in the x-direction (between the 
points x1 and x2), then removes that voltage and applies 

a voltage drop across the grid in the y-direction (between 
points y1 and y2). When the screen is touched, the two 
resistive layers are pressed together, creating a voltage 
that is sensed in the x-grid and another voltage that is 
sensed in the y-grid. These two voltages precisely locate 
the point where the screen was touched.

How is the voltage created by touching the screen re-
lated to the position where the screen was touched? How 
are the properties of the grids used to calculate the touch 
position? We will answer these questions in the Practical 
Perspective at the end of this chapter. The circuit analysis 
required to answer these questions uses some of the new 
tools developed in this chapter.

y1

y2

x2x1

y1

y2

x2x1

x

y

The screen is not touched,
so the grids overlap but
do not connect

The screen is touched here,
so the grids are connected
at the toch point

Touch

Spacer

Top Layer

Resistive Coating

Bottom Layer

Denis Semenchenko/Shutterstock
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3.1 Resistors in Series
In Chapter 2, we learned that two elements connected at a single node are 
said to be in series. For example, the seven resistors in Fig. 3.1 are con-
nected in series. Series-connected circuit elements carry the same current. 
Applying Kirchhoff’s current law to each node in the circuit, we can show 
that these resistors carry the same current. The series interconnection in 
Fig. 3.1 requires that

 is = i1 = - i2 = i3 = i4 = - i5 = - i6 = i7,

so if we know any one of the seven currents, we know them all. Thus, we 
can redraw Fig. 3.1 as shown in Fig. 3.2, using the single current is.

To find is, we apply Kirchhoff’s voltage law around the single closed 
loop in the clockwise direction. Defining the voltage across each resistor 
as a drop in the direction of is (Ohm’s law) gives

 -vs + isR1 + isR2 + isR3 + isR4 + isR5 + isR6 + isR7 = 0,

or

 vs = is(R1 + R2 + R3 + R4 + R5 + R6 + R7).

This equation tells us we can simplify the circuit in Fig. 3.2 by replacing 
the seven resistors with a single equivalent resistor, Req, whose numerical 
value is the sum of the individual resistors; that is,

 Req = R1 + R2 + R3 + R4 + R5 + R6 + R7

and

 vs = isReq.

Thus, we can redraw Fig. 3.2 as shown in Fig. 3.3, which is a much simpler 
circuit.

In general, if k resistors are connected in series, the equivalent single 
resistor has a resistance equal to the sum of the k resistances, or

1

2
ys R4

a b dc

h g ef

R7

i7

R6

i6

R5

i5

R2

i2

R3

i3
i4is

R1

i1

Figure 3.1 ▲ Resistors connected in series.

1

2
ys R4

R1 R2a b dc R3

R7 R6 R5

h g ef

is

Figure 3.2 ▲ Series resistors with a single unknown 
current is.

1

2
ys Req

a

h

is

Figure 3.3 ▲ A simplified version of the circuit 
shown in Fig. 3.2.

COMBINING RESISTORS IN SERIES

 Req = a
k

i = 1
Ri = R1 + R2 + g +  Rk. (3.1)

Note that the resistance of the equivalent resistor is always larger than the 
largest resistor in the series connection.

Think about equivalent resistance by visualizing the series-connected 
resistors inside a black box, depicted on the left of Fig. 3.4. (An electrical 
engineer uses the term black box to imply an opaque container; that is, 
the contents are hidden from view.) The single equivalent resistor is in 
a second black box, on the right of Fig. 3.4. We can derive the equation 
for the equivalent resistor by writing the equations relating voltage and 
current for each black box and finding the condition that makes these two 
equations equivalent, given in Eq. 3.1 when k = 7.

R4 Req

R1 R2a R3

R7 R6 R5h

a

h

is

ys

1

2

is

ys

1

2

Figure 3.4 ▲ The black box equivalent of the circuit 
shown in Fig. 3.2.
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3.2 Resistors in Parallel
Two elements connected at both of their nodes are said to be in parallel. For 
example, the four resistors in the circuit in Fig. 3.5 are in parallel. Parallel-
connected circuit elements have the same voltage across their terminals. 
Don’t assume that two elements are parallel connected merely because they 
are lined up in parallel in a circuit diagram. The defining characteristic of 
parallel-connected elements is that they have the same voltage across their 
terminals. In Fig. 3.6, you can see that R1 and R3 are not parallel connected 
because, between their respective terminals, another resistor dissipates some 
of the voltage.

We can reduce resistors in parallel to a single equivalent resistor using 
Kirchhoff’s current law and Ohm’s law. In Fig. 3.5, we let the currents 
i1, i2, i3, and i4 be the currents in the resistors R1 through R4, respectively. 
Note that the positive reference direction for each resistor current is 
through the resistor from node a to node b. From Kirchhoff’s current law,

 is = i1 + i2 + i3 + i4.

The parallel connection of the resistors means that the voltage across each 
resistor must be the same. Hence, from Ohm’s law,

 i1R1 = i2R2 = i3R3 = i4R4 = vs.

Therefore,

 i1 =
vs

R1
, i2 =

vs

R2
, i3 =

vs

R3
, and i4 =

vs

R4
 .

Substituting the expressions for the four branch currents into the KCL 
equation and simplifying yields 

 is = vs a 1
R1

+
1

R2
+

1
R3

+
1

R4
 b ,

from which

 
is

vs
=

1
Req

=
1

R1
+

1
R2

+
1

R3
+

1
R4

 .

This equation shows that the four resistors in Fig. 3.5 can be replaced by 
a single equivalent resistor, thereby simplifying the circuit. The circuit in 
Fig. 3.7 illustrates the substitution. The equivalent resistance of k resistors 
connected in parallel is

R1 R2 R3 R4

a

b

isvs
1

2

Figure 3.5 ▲ Resistors in parallel.

R3R1

R2

Figure 3.6 ▲ Nonparallel resistors.

1

2
ys Req

a

b

is

Figure 3.7 ▲ Replacing the four parallel resistors 
shown in Fig. 3.5 with a single equivalent resistor.

COMBINING RESISTORS IN PARALLEL

 
1

Req
= a

k

i = 1
 
1
Ri

=
1

R1
+

1
R2

+ g +  
1

Rk
 . (3.2)

Note that the resistance of the equivalent resistor is always smaller 
than the resistance of the smallest resistor in the parallel connection. 
Using conductance when dealing with resistors connected in parallel is 
sometimes more convenient. In that case, Eq. 3.2 becomes

 Geq = a
k

i = 1
 Gi = G1 + G2 + g+  Gk.
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Many times only two resistors are connected in parallel. Figure 3.8 illus-
trates this special case. We calculate the equivalent resistance from Eq. 3.2:

 
1

Req
=

1
R1

+
1

R2
=

R2 + R1

R1R2
,

or

R2R1

a

b

Figure 3.8 ▲ Two resistors connected in parallel.

COMBINING TWO RESISTORS IN PARALLEL

 Req =
R1R2

R1 + R2
 . (3.3)

Thus, for just two resistors in parallel, the equivalent resistance equals 
the product of the resistances divided by the sum of the resistances. 
Remember that you can only use this result in the special case of just two 
resistors in parallel.

Work through Examples 3.1and 3.2 to practice using series and paral-
lel simplifications in circuit analysis.

EXAMPLE 3.1 Applying Series-Parallel Simplification

a) Find the equivalent resistance seen by the cur-
rent source in Fig. 3.9, using series and parallel 
simplifications.

b) Use your results in part (a) to find the power  
delivered by the current source.

Solution
a) Our goal is a circuit with the 50 mA current 

source and a single resistor. We start simplifying 
the circuit’s right-hand side, moving left toward 
the current source. The 2 kΩ and 3 kΩ resistors 
are in series and can be replaced by a single resis-
tor whose value is

2000 + 3000 = 5000 = 5 kΩ.

Figure 3.10(a) shows this simplified circuit where 
the 20 kΩ and the 5 kΩ resistors are now in par-
allel. We replace these parallel-connected resistors 
with a single equivalent resistor, calculating its 
value using the “product over the sum” equation 
(Eq. 3.3):

(20,000)(5000)

20,000 + 5000
= 4000 = 4 kΩ.

2 kV4 kV

6 kV 24 kV 20 kV 3 kV50 mA

Figure 3.9 ▲ The circuit for Example 3.1.

4 kV

6 kV 24 kV 20 kV 5 kV50 mA

(a)

4 kV

4 kV6 kV 24 kV50 mA

(b)

3 kV50 mA

(d)

6 kV 24 kV 8 kV50 mA

(c)

Figure 3.10 ▲ Simplifying the circuit in Fig. 3.9.

Figure 3.10(b) shows this result, and now we see 
the two 4 kΩ resistors are in series. They can be 
replaced with a single resistor whose value is

4000 + 4000 = 8000 = 8 kΩ.
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Figure 3.10(c) shows this simplification. Now the 
24 kΩ, 6 kΩ, and 8 kΩ resistors are in parallel. 
To find their equivalent, we add their inverses 
and invert the result (Eq. 3.2):

a 1
24,000

+
1

6000
+

1
8000

 b
-1

= a 1
24,000

+
4

24,000
+

3
24,000

 b
-1

= a 8
24,000

 b
-1

=
24,000

8
= 3000 = 3 kΩ.

The equivalent resistance seen by the current 
source is 3 kΩ, as shown in Fig. 3.10(d).

b) The power of the source and the power of the 
equivalent 3 kΩ resistor must sum to zero. Us-
ing Fig. 3.10(d), we can easily calculate the re-
sistor’s power using its current and resistance 
to give

p = (0.05)2(3000) = 7.5 W.

The equivalent resistor is absorbing 7.5 W, so the 
current source must be delivering 7.5 W.

EXAMPLE 3.2 Solving a Circuit Using Series-Parallel Simplification

Find is, i1, and i2 in the circuit shown in Fig. 3.11.

Solution
Using series-parallel simplifications, we reduce the re-
sistors to the right of the x-y terminals to a single equiv-
alent resistor. On the circuit’s right-hand side, the 3 Ω 
and 6 Ω resistors are in series. We replace this series 
combination with a 9 Ω resistor, reducing the circuit to 
the one shown in Fig. 3.12(a). Then we replace the par-
allel combination of the 9 Ω and 18 Ω resistors with 
a single equivalent resistance of (18 * 9)>(18 + 9), 
or 6 Ω. Figure 3.12(b) shows the resulting circuit. The 
nodes x and y marked on all diagrams should help you 
trace through the circuit simplification.

From Fig. 3.12(b) you can use Ohm’s law to 
verify that

is =
120

(6 + 4)
= 12 A.

Figure 3.13 shows this result and includes the volt-
age v1 to help clarify the subsequent discussion. 
Using Ohm’s law, we compute the value of v1:

v1 = (12)(6) = 72 V.

Since v1 is the voltage drop from node x to node y, 
we can return to the circuit shown in Fig. 3.12(a) and 
again use Ohm’s law to calculate i1 and i2. Thus,

i1 =
v1

18
=

72
18

= 4 A,

i2 =
v1

9
=

72
9

= 8 A.

We have found the three specified currents by us-
ing series-parallel reductions in combination with 
Ohm’s law.

18 V 6 V

x

y

4 V 3 V

120 V
is

i1 i2
1

2

Figure 3.11 ▲ The circuit for Example 3.2.

6 V

x

y

4 V

(b)

120 V

18 V 9 V

x

y

4 V

(a)

120 V

is

is

i1 i2

1

2

1

2

Figure 3.12 ▲ A simplification of the circuit shown 
in Fig. 3.11.

y1 6 V

x

y

4 V

120 V
12 A

1

2

1

2

Figure 3.13 ▲ The circuit of Fig. 3.12(b) showing 
the numerical value of is.



92 Simple Resistive Circuits

Objective 1—Be able to recognize resistors connected in series and in parallel

 3.1 For the circuit shown, find (a) the voltage v,  
(b) the power delivered to the circuit by the 
current source, and (c) the power dissipated in 
the 10 Ω resistor.

Answer: a) 60 V;

b) 300 W;

c) 57.6 W.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 3.1–3.4.

64 V30 V 10 V

6 V7.2 V

5 A y

1

2

3.3 The Voltage-Divider  
and Current-Divider Circuits

The Voltage-Divider Circuit
A voltage-divider circuit produces two or more smaller voltages from 
a single voltage supply. This is especially useful in electronic circuits, 
where a single circuit may require voltages of +15 V, -15 V, and +5 V.  
An example of a voltage-divider circuit that creates two voltages is shown 
in Fig 3.14. We introduce the current i, as shown in Fig. 3.14(b), and rec-
ognize (from Kirchhoff’s current law) that R1 and R2 carry this current. 
Using Ohm’s law to determine the resistor voltages from the  current i 
and applying Kirchhoff’s voltage law around the closed loop yields

 vs = iR1 +  iR2,

or

 i =
vs

R1 +  R2
 .

Using Ohm’s law and the expression for i, we calculate v1 and v2:

 v1 = iR1 = vs
R1

R1 + R2
, (3.4)

 v2 = iR2 = vs
R2

R1 + R2
 . (3.5)

Equations 3.4 and 3.5 show that v1 and v2 are fractions of vs. Expressed in 
words, each fraction is

the resistance across which the divided voltage is defined

the sum of the two resistances
 .

R1

R2

ys

y1

y2

(a)

R1

R2

ys

y1

y2

(b)

1

21

2 1

2

1

21

2 1

2

i

Figure 3.14 ▲ (a) A voltage-divider circuit and (b) 
the voltage-divider circuit with current i indicated.

Before leaving Example 3.2, you should verify that the solution sat-
isfies Kirchhoff’s current law at every node and Kirchhoff’s voltage law 
around every closed path. (There are three closed paths that can be tested.) 
You can also show that the power delivered by the voltage source equals 
the total power dissipated in the resistors, and thus the power in the circuit 
balances. (See Problems 3.8 and 3.9.)
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Because this ratio is always less than 1.0, the divided voltages v1 and v2 are 
always less than the source voltage vs.

Work through Example 3.3 to design a simple voltage divider.

EXAMPLE 3.3 Designing a Simple Voltage Divider

The voltage divider in Fig. 3.14 has a source voltage 
of 20 V. Determine the values of the resistors R1 
and R2 to give v1 = 15 V and v2 = 5 V.

Solution
From Eqs. 3.4 and 3.5,

15 =
R1

R1 + R2
 (20)  and 5 =

R2

R1 + R2
 (20).

Unfortunately, these two equations are not inde-
pendent. If you solve each equation for R1, you 
get R1 = 3R2. An infinite number of combinations 
of R1 and R2 yield the correct values for y1 and 
y2. For example, if you choose R2 = 10 kΩ, then 
R1 = 30 kΩ gives the correct voltages, but if you 
choose R2 = 400 Ω, then R1 = 1200 Ω gives the 
correct voltages.

EXAMPLE 3.4 Adding a Resistive Load to a Voltage Divider

a) For the voltage divider designed in Example 3.3, 
suppose resistors R2 = 10 kΩ and R1 = 30 kΩ.  
Connect a resistor RL = 10 kΩ in parallel with 
R2 and determine the voltage across RL.

b) Repeat part (a) using resistors R2 = 400 Ω and 
R1 = 1200 Ω, but the same value of RL.

Solution

a) The voltage divider with the resistor RL is shown 
in Fig. 3.15. The resistor RL acts as a load on the 
 voltage-divider circuit. A load on any circuit consists 
of one or more circuit elements that draw power  
from the circuit. The parallel combination of the 

two 10 kΩ resistors, one from the voltage divider 
and the other the load resistor RL, gives an equiva-
lent resistance of 5 kΩ. Therefore, from Eq. 3.5,

vo =
5000

30,000 + 5000
 (20) = 2.86 V.

This is certainly not the 5 V we were expecting the 
voltage divider to deliver to the load,  because adding 
the load resistor changed the voltage-divider circuit.

b) The voltage divider with a different set of re-
sistors and the same load resistor is shown in 
Fig. 3.16. Again, we expect the load resistor to 
change the voltage-divider circuit. The parallel 
combination of the 400 Ω and 10 kΩ resistors 

1

2

30 kV

10 kV 10 kV

20 V

yo

1

2

R1 =

R2 = RL =

Figure 3.15 ▲ The voltage divider from Example 3.3 
with a resistive load.

1

2

1200 V

400 V 10 kV

20 V

yo

1

2

Figure 3.16 ▲ The voltage divider from Example 3.3 
with a different choice of R1 and R2 resistors and a 
resistive load.

When selecting values for R1 and R2, you should consider the power the 
resistors must dissipate and the effects of connecting the voltage-divider 
circuit to other circuit components. Example 3.4 uses the voltage divider 
designed in Example 3.3 to supply 5 V to a 10 kΩ resistor.



94 Simple Resistive Circuits

Figure 3.17 shows a general voltage divider with a load RL connected. 
The expression for the output voltage is

 vo =
Req

R1 + Req
 vs, 

where

 Req =
R2RL

R2 + RL
 .

Substituting the expression for Req into the equation for vo and simplifying 
yields

 vo =
R2

R1 c 1 + (R2>RL) d + R2

 vs. (3.6)

Note that Eq. 3.6 reduces to Eq. 3.5 as RL S ∞, as it should. Equation 3.6 
shows that, as long as RL W R2, the voltage ratio vo>vs is essentially un-
disturbed by adding a load to the divider, as we saw in Example 3.4.

Another characteristic of the voltage-divider circuit is its sensitivity 
to the tolerances of the resistors. By tolerance we mean a range of possi-
ble values. The resistances of commercially available resistors always vary 
within some percentage of their stated value. Example 3.5 illustrates the 
effect of resistor tolerances in a voltage-divider circuit.

gives an equivalent resistance of 384.615 Ω. 
Therefore, from Eq. 3.5,

vo =
384.615

1200 + 384.615
 (20) = 4.85 V.

This is much closer to the 5 V we expected the 
voltage divider to deliver to the load. The effect 
of the load resistor is minimal because the load 
resistor value is much larger than the value of R2 
in the voltage divider.

yo

1

2

R1

RLR2

ys
1

2

Figure 3.17 ▲ A voltage divider connected to a 
load RL.

EXAMPLE 3.5 The Effect of Resistor Tolerance on the Voltage-Divider Circuit

The resistors used in the voltage-divider circuit 
shown in Fig. 3.18 have a tolerance of {10%. Find 
the maximum and minimum value of vo.

Solution
From Eq. 3.5, the maximum value of vo occurs 
when R2 = 110 kΩ (10% high) and R1 = 22.5 kΩ 
(10% low), and the minimum value of vo occurs 
when R2 = 90 kΩ (10% low) and R1 = 27.5 kΩ 
(10% high). Therefore

vo(max) =
110 k

110 k + 22.5 k
 (100) = 83.02 V

and

vo(min) =
90 k

90 k + 27.5 k
 (100) = 76.60 V.

If we choose 10% resistors for this voltage divider, 
the no-load output voltage will lie between 76.60 
and 83.02 V.

R1

R2

1

2

25 kV

100 kV

100 V

yo

1

2

Figure 3.18 ▲ The circuit for Example 3.5.
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The Current-Divider Circuit
The current-divider circuit shown in Fig. 3.19 consists of two resistors con-
nected in parallel across a current source. It divides the current is between 
R1 and R2. What is the relationship between the current is and the current 
in each resistor (i1 and i2)? The voltage across the parallel resistors can be 
expressed in three ways: as the product of the R1 resistor and its current 
i1, as the product of the R2 resistor and its current i2, and as the product of 
the equivalent resistance seen by the source and the source current. These 
three expressions for the voltage are given as

 v = i1R1 = i2R2 =
R1R2

R1 + R2
 is.

Therefore,

 i1 =
R2

R1 + R2
 is, (3.7)

 i2 =
R1

R1 + R2
 is. (3.8)

Equations 3.7 and 3.8 show that when the current divides between two re-
sistors in parallel, the current in one resistor equals the current entering the 
parallel pair multiplied by the other resistance and divided by the sum of the 
resistors. See how to design a current divider by working through Example 3.6.

is i2i1R1 R2y

1

2

Figure 3.19 ▲ The current-divider circuit.

Objective 2—Know how to design simple voltage-divider and current-divider circuits

ASSESSMENT PROBLEMS

1

2

25 kV

75 kV

200 V

yo

1

2

RL

EXAMPLE 3.6 Designing a Current-Divider Circuit

Suppose the current source for the current divider 
shown in Fig. 3.19 is 100 mA. Assuming you have 
0.25 W resistors available, what is the largest R2 
 resistor you can use to get i2 = 50 mA?

Solution
While you can use Eq. 3.8 to find the ratio of re-
sistors, it should be clear that if the current in one 
resistor is 50 mA, the current in the other resistor 
must also be 50 mA, so both resistors must have the 
same value. Therefore, there are an infinite number 
of different resistor values which, when used for R1 

and R2 will give i2 = 50 mA. If the resistors have 
the same value and the same current, they absorb 
the same amount of power, which cannot exceed 
0.25 W. From the power equation for resistors,

p = i 2R = (0.05)2 R = 0.25

so

R =
0.25

(0.05)2 = 100 Ω.

The largest 0.25 W resistors that can be used to cre-
ate a current i2 = 50 mA are 100 Ω resistors.

 3.2 a) Find the no-load value of vo in the circuit 
shown.

b) Find vo when RL is 150 kΩ.
c) How much power is dissipated in the 25 kΩ 

resistor if the load terminals are accidentally 
short-circuited?

d) What is the maximum power dissipated in 
the 75 kΩ resistor?

Answer: (a) 150 V; (c) 1.6 W;
(b) 133.33 V;  (d) 0.3 W.
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3.4 Voltage Division and Current 
Division

We now introduce two additional and very useful circuit analysis tech-
niques known as voltage division and current division. These techniques 
generalize the results from analyzing the voltage-divider circuit in Fig. 3.14 
and the current-divider circuit in Fig. 3.19. We begin with voltage division.

Voltage Division
Consider the circuit shown in Fig. 3.20, where the box on the left contains 
a single voltage source or any other combination of basic circuit elements 
that results in the voltage v shown in the figure. To the right of the box 
are n resistors connected in series. We are interested in finding the voltage 
drop vj across an arbitrary resistor Rj in terms of the voltage v. We start by 
using Ohm’s law to calculate i, the current through all of the resistors in 
series, in terms of the current v and the n resistors:

 i =
v

R1 + R2 + g + Rn
=

v

Req
 .

The equivalent resistance, Req, is the sum of the n resistor values because 
the resistors are in series, as shown in Eq. 3.1. We apply Ohm’s law a sec-
ond time to calculate the voltage drop vj across the resistor Rj, substituting 
v>Req for i:

 3.3 a) Find the value of R that will cause 4 A of 
current to flow through the 80 Ω resistor in 
the circuit shown.

b) How much power will the resistor R from 
part (a) need to dissipate?

c) How much power will the current source 
generate for the value of R from part (a)?

Answer: (a) 30 Ω;
(b) 7680 W;
(c) 33,600 W.

SELF-CHECK: Also try Chapter Problems 3.13, 3.14, and 3.20.

R

40 V

80 V

60 V

20 A

Rj

R1 R2

Rn Rn21

y

1

2

yj

1

2

i
Circuit

Figure 3.20 ▲ Circuit used to illustrate voltage 
division.

VOLTAGE DIVISION EQUATION

 vj = iRj =
Rj

Req
 v. (3.9)

Equation 3.9 is the voltage division equation. It says that the voltage 
drop vj across a single resistor Rj from a collection of series-connected 
resistors is proportional to the total voltage drop v across the set of 
 series-connected resistors. The constant of proportionality is the ratio of 
the single resistance to the equivalent resistance of the series-connected 
set of resistors, or Rj>Req.
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Current Division
Now consider the circuit shown in Fig. 3.21, where the box on the left con-
tains a single current source or any other combination of basic circuit ele-
ments that results in the current i shown in the figure. To the right of the 
box are n resistors connected in parallel. We are interested in finding the 
current ij through an arbitrary resistor Rj in terms of the current i. We start 
by using Ohm’s law to calculate v, the voltage drop across each of the resis-
tors in parallel, in terms of the current i and the n resistors:

 v = i(R1||R2|| g||Rn) = iReq.

The equivalent resistance of n resistors in parallel, Req, can be calculated 
using Eq. 3.2. We apply Ohm’s law a second time to calculate the current 
ij through the resistor Rj, replacing v with iReq: 

CURRENT DIVISION EQUATION

 ij =
v

Rj
=

Req

Rj
 i. (3.10)

Rn21 Rn y

1

2

Circuit R1 R2 Rj ij

i

Figure 3.21 ▲ Circuit used to illustrate current division.

Equation 3.10 is the current division equation. It says that the current ij 
through a single resistor Rj from a collection of parallel-connected resistors is 
proportional to the total current i supplied to the set of parallel-connected re-
sistors. The constant of proportionality is the ratio of the equivalent resistance 
of the parallel-connected set of resistors to the single resistance, or Req>Rj. 
Note that the constant of proportionality in the current division equation is 
the inverse of the constant of proportionality in the voltage division equation!

Example 3.7 uses voltage division and current division to solve for 
voltages and currents in a circuit.

EXAMPLE 3.7 Using Voltage Division and Current Division to Solve a Circuit

Use current division to find the current io and use 
voltage division to find the voltage vo for the circuit 
in Fig. 3.22.

Solution
We can use Eq. 3.10 if we can find the equivalent 
resistance of the four parallel branches containing 
resistors. Using “+” to represent series-connected 
resistors and “||” to represent parallel-connected 
resistors, the equivalent resistance is

 Req = (36 + 44)||10||(40 + 10 + 30)||24

 = 80||10||80||24 =
1

1
80

+
1
10

+
1
80

+
1
24

 
= 6 Ω.

36 V

44 V

24 V8 A 10 V

40 V

10 V

30 V

y
1

2

yo

1

2

io

Figure 3.22 ▲ The circuit for Example 3.7.
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Applying Eq. 3.10,

io =
6
24

 (8 A) = 2 A.

We can use Ohm’s law to find the voltage drop 
across the 24 Ω resistor:

v = (24)(2) = 48 V.

This is also the voltage drop across the branch con-
taining the 40 Ω, the 10 Ω, and the 30 Ω  resistors in 

series. Use voltage division to  determine the 
voltage drop vo across the 30 Ω resistor from 
the voltage drop across the series- connected 
resistors, using Eq. 3.9. The equivalent re-
sistance of the series- connected resistors is 
40 + 10 + 30 = 80 Ω, so

vo =
30
80

 (48 V) = 18 V.

Objective 3—Be able to use voltage and current division to solve simple circuits

 3.4 a) Use voltage division to determine the volt-
age vo across the 40 Ω resistor in the circuit 
shown.

b) Use vo from part (a) to determine the cur-
rent through the 40 Ω resistor, and use this 
current and current division to calculate the 
current in the 30 Ω resistor.

c) How much power is absorbed by the 50 Ω 
resistor?

40 V

70 V

50 V

60 V
1

2
10 V20 V 30 V

yo1 2

Answer: a) 20 V;
b) 166.67 mA;
c) 347.22 mW.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 3.26 and 3.27.

3.5 Measuring Voltage and Current
Working with actual circuits often requires making voltage and current 
measurements. The next two sections explore several common devices 
used to make these measurements. The devices are relatively simple to 
analyze and offer practical examples of the current- and voltage-divider 
configurations. We begin by looking at ammeters and voltmeters.

• An ammeter is an instrument designed to measure current; it is placed 
in series with the circuit element whose current is being measured.

• A voltmeter is an instrument designed to measure voltage; it is placed 
in parallel with the element whose voltage is being measured.

Ideal ammeters and voltmeters have no effect on the circuit variable 
they are designed to measure. That is, an ideal ammeter has an equivalent 
resistance of 0 Ω and functions as a short circuit in series with the ele-
ment whose current is being measured. An ideal voltmeter has an infinite 
equivalent resistance and functions as an open circuit in parallel with the 
element whose voltage is being measured. Figure 3.23 measures the cur-
rent in R1 using an ammeter and measures the voltage across R2 using a 
voltmeter. The ideal models for these meters in the same circuit are shown 
in Fig. 3.24.

There are two broad categories of meters used to measure continuous 
voltages and currents: analog meters and digital meters.

1

2
ys R2

R1

V

A

Figure 3.23 ▲ An ammeter connected to mea-
sure the current in R1, and a voltmeter connected 
to measure the voltage across R2.

1

2
ys R2

R1

V

A

Figure 3.24 ▲ A short-circuit model for the ideal 
ammeter, and an open-circuit model for the ideal 
voltmeter.
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Analog Meters
Analog meters are based on the d’Arsonval meter movement, which 
includes a dial readout pointer as shown in Fig. 3.25. The d’Arsonval 
meter movement consists of a movable coil placed in the field of a 
permanent magnet. When current flows in the coil, it creates a torque 
on the coil, causing it to rotate and move a pointer across a calibrated 
scale. By design, the deflection of the pointer is directly proportional 
to the current in the movable coil. The coil is characterized by both 
a voltage rating and a current rating. For example, one commercially 
available meter movement is rated at 50 mV and 1 mA. This means 
that when the coil is carrying 1 mA, the voltage drop across the coil is 
50 mV and the pointer is deflected to its full-scale position.

An analog ammeter consists of a d’Arsonval movement in paral-
lel with a resistor, as shown in Fig. 3.26. The parallel resistor limits 
the amount of current in the movement’s coil by shunting some of it 
through RA. In contrast, an analog voltmeter consists of a d’Arsonval 
movement in series with a resistor, as shown in Fig. 3.27. Here, the 
resistor limits the voltage drop across the meter’s coil. In both me-
ters, the added resistor determines the full-scale reading of the meter 
movement.

From these descriptions we see that an analog meter is nonideal; both 
the added resistor and the meter movement introduce resistance in the 
circuit where the meter is attached. In fact, any instrument used to make 
physical measurements extracts energy from the system while making 
measurements. The more energy extracted by the instruments, the more 
severely the measurement is disturbed. The equivalent resistance of a real 
ammeter is not zero, so it adds resistance to the circuit in series with the 
element whose current is being read. The equivalent resistance of a real 
voltmeter is not infinite, so it adds resistance to the circuit in parallel with 
the element whose voltage is being read.

How much these meters disturb the circuit being measured de-
pends on the effective resistance of the meters compared with the 
resistance in the circuit. For example, using the rule of 1>10th, the 
effective resistance of an ammeter should be no more than 1>10th of 
the value of the smallest resistance in the circuit to be sure that the 
current being measured is nearly the same with or without the amme-
ter. But in an analog meter, the value of resistance is determined by 
the desired full-scale reading we wish to make, and it cannot be arbi-
trarily selected. Examples 3.8 and 3.9 illustrate how to calculate the 
resistance needed in an analog ammeter or voltmeter. The examples 
also determine the effective resistance of the meter when it is inserted 
in a circuit.

Scale

Movable
coil

Permanent
magnet

Restoring spring

Magnetic steel core

Pointer

Figure 3.25 ▲ A schematic diagram of a d’Arsonval 
meter movement.

RA
Ammeter
terminals

Analog ammeter

d’Arsonval
movement

Figure 3.26 ▲ An analog ammeter circuit.

Ry

Voltmeter
terminals

d
movement

Arsonval

Analog voltmeter

Figure 3.27 ▲ An analog voltmeter 
circuit.

EXAMPLE 3.8 Using a d’Arsonval Ammeter

a) A 50 mV, 1 mA d’Arsonval movement is to be 
used in an ammeter with a full-scale reading of 
10 mA. Determine RA.

b) Repeat (a) for a full-scale reading of 1 A.

c) How much resistance is added to the circuit 
when the 10 mA ammeter is inserted to measure 
current?

d) Repeat (c) for the 1 A ammeter.

Solution

a) Look at the analog ammeter circuit in Fig. 3.26. 
The current in the ammeter must divide be-
tween the branch with the resistor RA and the 
branch with the meter movement. From the 
problem statement we know that when the cur-
rent in the ammeter is 10 mA, 1 mA is flowing 
through the meter coil, which means that 9 mA 
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must be diverted through RA. We also know 
that when the movement carries 1 mA, the volt-
age across its terminals is 50 mV, which is also 
the voltage across RA. Using Ohm’s law,

9 * 10-3RA = 50 * 10-3,

or

RA = 50>9 = 5.555 Ω.

b) When the full-scale deflection of the ammeter is 
1 A, RA must carry 999 mA when the movement 
carries 1 mA. In this case,

999 * 10-3RA = 50 * 10-3,

or

RA = 50>999 ≈ 50.05 mΩ.

c) Let Rm represent the equivalent resistance of the 
ammeter. When the ammeter current is 10 mA, 
its voltage drop is 50 mV, so from Ohm’s law,

Rm =
0.05
0.01

= 5 Ω.

Alternatively, the resistance of the ammeter is 
the equivalent resistance of the meter movement 
in parallel with RA. The resistance of the meter 
movement is the ratio of its voltage to its current, 
or 0.05>0.001 = 50 Ω. Therefore,

Rm = 50 || (50>9) =
(50)(50>9)

50 + (50>9)
= 5 Ω.

d) For the 1 A ammeter

Rm =
0.05

1
= 0.05 Ω,

or, alternatively,

Rm = 50 || (50>999) =
(50)(50>999)

50 + (50>999)
= 0.05 Ω.

EXAMPLE 3.9 Using a d’Arsonval Voltmeter

a) A 50 mV, 1 mA d’Arsonval movement is to be 
used in a voltmeter in which the full-scale read-
ing is 150 V. Determine R

v
.

b) Repeat (a) for a full-scale reading of 5 V.

c) How much resistance does the 150 V meter insert 
into the circuit?

d) Repeat (c) for the 5 V meter.

Solution

a) Look at the analog voltmeter circuit in Fig. 3.27. 
The voltage across the voltmeter must divide be-
tween the resistor R

v
 and the meter movement. 

From the problem statement we know that when 
the voltage across the voltmeter is 150 V, the volt-
age across the meter coil must be 50 mV. The re-
maining 149.95 V must be the voltage across R

v
. 

We also know that when the movement’s voltage 
drop is 50 mV, its current is 1 mA, which is also 
the current in R

v
. Using Ohm’s law,

R
v

=
149.95
0.001

= 149,950 Ω.

b) For a full-scale reading of 5 V, the voltage across 
R

v
 is 4.95 V and the current in R

v
 is still 1 mA, so 

from Ohm’s law,

R
v

=
4.95
0.001

= 4950 Ω.

c) Let Rm represent the equivalent resistance 
of the voltmeter. When the voltage across the 
voltmeter is 150 V, its current is 1 mA, so from 
Ohm’s law,

Rm =
150
10-3 = 150,000 Ω.

Alternatively, the resistance of the voltme-
ter is the equivalent resistance of R

v
 in series 

with the meter movement. The resistance of 
the meter movement is the ratio of its volt-
age to its current, or 50 m V>1 mA = 50 Ω . 
Therefore,

Rm = 149,950 + 50 = 150,000 Ω.

d) For the 5 V voltmeter,

Rm =
5

10-3 = 5000 Ω,

or, alternatively,

Rm = 4950 + 50 = 5000 Ω.
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Objective 4—Be able to determine the reading of ammeters and voltmeters

 3.5 a) Find the current in the circuit shown.
b) If the ammeter in Example 3.8(a) is used to 

measure the current, what will it read?

100 V1 V

i
1

2

Answer: (a) 10 mA;
(b) 9.524 mA.

 3.6 a) Find the voltage v across the 75 kΩ resistor 
in the circuit shown.

b) If the 150 V voltmeter of Example 3.9(a) is 
used to measure the voltage, what will be the 
reading?

y 75 kV

15 kV

60 V
1

2

1

2

Answer: (a) 50 V;
(b) 46.15 V.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 3.33 and 3.37.

Digital Meters
Digital meters measure the continuous voltage or current signal at dis-
crete points in time, called the sampling times. The signal is thus con-
verted from an analog signal, which is continuous in time, to a digital 
signal, which exists only at discrete instants in time. A more detailed ex-
planation of the workings of digital meters is beyond the scope of this 
text and course. However, you are likely to see and use digital meters in 
lab settings because they offer several advantages over analog meters. 
They introduce less resistance into the circuit to which they are connected 
(though they are still nonideal), are easier to connect, and take more pre-
cise measurements owing to the nature of their readout mechanism.

3.6 Measuring Resistance— 
The Wheatstone Bridge

While many different circuit configurations are used to measure resistance, 
here we will focus on just one, the Wheatstone bridge. The Wheatstone 
bridge circuit is used to precisely measure resistances of medium val-
ues, that is, in the range of 1 Ω to 1 MΩ. In commercial models of the 
Wheatstone bridge, accuracies on the order of {0.1% are possible. The 
bridge circuit, shown in Fig. 3.28, consists of four resistors, a dc voltage 
source, and a detector. The resistance of one of the four resistors can be 
varied, which is indicated by the arrow through R3. The dc voltage source 
is usually a battery, which is indicated by the battery symbol for the voltage 
source v in Fig. 3.28. The detector is generally a d’Arsonval movement in 
the microamp range and is called a galvanometer. In Fig. 3.28, R1, R2, and 
R3 are known resistors and Rx is the unknown resistor.

To find the value of Rx, we adjust the variable resistor R3 until there 
is no current in the galvanometer. We then calculate the unknown resistor 
from the simple expression

 Rx =
R2

R1
 R3. (3.11)

Rx

R1

R3

R2

y

1

2

Figure 3.28 ▲ The Wheatstone bridge circuit.
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We derive Eq. 3.11 by applying Kirchhoff’s laws to the bridge circuit. 
We redraw the bridge circuit as Fig. 3.29 to show the branch currents 
in the bridge. When ig is zero, we say the bridge is balanced. At node a, 
Kirchhoff’s current law requires that

 i1 = i3,

while at node b, Kirchhoff’s current law requires that

 i2 = ix.

Now, because ig is zero, the voltage drop across the detector is also zero, 
so nodes a and b are at the same potential. Thus, when the bridge is bal-
anced, Kirchhoff’s voltage law for the clockwise path containing the gal-
vanometer and resistors R3 and Rx gives

0 + Rx ix - R3i3 = 0

so

 i3R3 = ixRx.

Using Kirchhoff’s voltage law for the path containing the galvanometer 
and resistors R1 and R2 gives

 i1R1 = i2R2.

Divide the first KVL equation by the second KVL equation to give

 
i3R3

i1R1
=

ixRx

i2R2
. 

Eliminate the currents (because i1 = i3 and i2 = ix) and solve for Rx to 
get Eq. 3.11.

Now that we have verified the validity of Eq. 3.11, some comments 
about the result are in order. First, note that if R2>R1 = 1, the unknown 
resistor Rx equals R3, so R3 must vary over a range that includes the value 
Rx. For example, if the unknown resistance were 1000 Ω and R3 could 
be varied from 0 to 100 Ω, the bridge could never be balanced. Thus, to 
cover a wide range of unknown resistors, we must be able to vary the 
ratio R2>R1. In a commercial Wheatstone bridge, R1 and R2 consist of 
decimal values of resistances that can be switched into the bridge cir-
cuit. Normally, the decimal values are 1, 10, 100, and 1000 Ω, so that the 
ratio R2>R1 can be varied from 0.001 to 1000 in decimal steps. The vari-
able resistor R3 is usually adjustable in integral values of resistance from 
1 to 11,000 Ω.

Second, although Eq. 3.11 implies that Rx can vary from zero to infin-
ity, the practical range of Rx is approximately 1 Ω to 1 MΩ. Resistances 
smaller than 1 Ω are difficult to measure on a standard Wheatstone bridge 
because of thermoelectric voltages generated at the junctions of dissim-
ilar metals and because of thermal heating effects—that is, i2R effects. 
Resistances larger than 1 Ω are difficult to measure accurately because of 
leakage currents. In other words, if Rx is large, the current leakage in the 
electrical insulation may be comparable to the current in the branches of 
the bridge circuit.

Example 3.10 uses a Wheatstone bridge to measure a range of un-
known resistors.

ix

Rx

a b
ig

i1

R1

i3

R3

i2

R2

y

1

2

Figure 3.29 ▲ A balanced Wheatstone bridge 
(ig = 0).
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EXAMPLE 3.10 Using a Wheatstone Bridge to Measure Resistance

For the Wheatstone bridge in Fig. 3.30, R3 can be 
varied from 10 Ω to 2 kΩ. What range of resistor 
values can this bridge measure?

Solution
When R3 = 10 Ω, the bridge is balanced when

Rx =
4000
1000

 (10) = 40 Ω.

When R3 = 2 kΩ, the bridge is balanced when

Rx =
4000
1000

 (2000) = 8 kΩ.

Therefore, the range of resistor values the bridge 
can measure is 40 Ω to 8 kΩ.

RxR3

y

1

2

4 kV
1 kV

Figure 3.30 ▲ The circuit for Example 3.10.

Objective 5—Understand how a Wheatstone bridge is used to measure resistance

 3.7 The bridge circuit shown is balanced when 
R1 = 100 Ω, R2 = 1000 Ω, and R3 = 150 Ω. 
The bridge is energized from a 5 V dc source.

a) What is the value of Rx?

b) Suppose each bridge resistor is capable of 
dissipating 250 mW. Can the bridge be left 
in the balanced state without exceeding the 
power-dissipating capacity of the resistors, 
thereby damaging the bridge?

Rx

R1

R3

R2

y

1

2

Answer: a) 1500 Ω;
b) yes.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 3.51.

3.7 Delta-to-Wye (Pi-to-Tee) 
Equivalent Circuits

Look again at the Wheatstone bridge in Fig. 3.28; if we replace the gal-
vanometer with its equivalent resistance Rm, we get the circuit shown 
in Fig. 3.31(p. 104). Because this circuit does not have any series- 
connected or parallel-connected resistors, we cannot simplify it using 
the simple series or parallel equivalent circuits introduced earlier in this 
chapter. But the five interconnected resistors can be reduced to a single 
equivalent resistor using a delta-to-wye (∆-to-Y) or pi-to-tee (p-to-T) 
 equivalent circuit.1

1  ∆ and Y structures are present in a variety of useful circuits, not just resistive networks. 
Hence, the ∆-to-Y transformation is a helpful tool in circuit analysis.
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The resistors R1, R2, and Rm (or R3, Rm and Rx) in the circuit shown 
in Fig. 3.31 form a delta (∆) interconnection because the interconnec-
tion looks like the Greek letter ∆. It is also called a pi interconnection 
because the ∆ can be reshaped like the Greek letter p without disturb-
ing the electrical equivalence of the two configurations, as shown in 
Fig. 3.32.

The resistors R1, Rm, and R3 (or R2, Rm and Rx) in the circuit shown in 
Fig. 3.31 form a wye (Y) interconnection because the interconnection can 
be shaped to look like the letter Y. It is easier to see the Y shape of the 
interconnection in Fig. 3.33. The Y configuration is also called a tee (T) 
interconnection because the Y structure can be reshaped into a T struc-
ture without disturbing the electrical equivalence of the two structures, as 
shown in Fig. 3.33.

Figure 3.34 illustrates the ∆-to-Y (or p-to-T) equivalent cir-
cuit transformation. But we cannot transform the ∆ interconnection 
into the Y interconnection simply by changing the shape of the in-
terconnections. Saying the ∆-connected circuit is equivalent to the 
Y-connected circuit means that the ∆ configuration can be replaced 
with a Y configuration without changing the terminal behavior. Thus, 
if each circuit is placed in a black box, we can’t tell whether the box 
contains a set of ∆-connected resistors or a set of Y-connected resis-
tors by making external measurements. This condition is true only if 
the resistance between corresponding terminal pairs is the same for 
each box. For example, the resistance between terminals a and b must 
be the same whether we use the ∆-connected set or the Y-connected 
set. For each pair of terminals in the ∆-connected circuit, compute 
the equivalent resistance using series and parallel simplifications. For 
each pair of terminals in the Y-connected circuit, compute the equiv-
alent resistance using only series simplification. The three equivalent 
resistance equations are

 Rab =
Rc(Ra + Rb)

Ra + Rb + Rc
= R1 + R2, (3.12)

 Rbc =
Ra(Rb + Rc)

Ra + Rb + Rc
= R2 + R3, (3.13)

 Rca =
Rb(Rc + Ra)

Ra + Rb + Rc
= R1 + R3. (3.14)

Straightforward algebraic manipulation of Eqs. 3.12–3.14 gives values 
for the Y-connected resistors in terms of the ∆-connected resistors. Use 
these equations when transforming three ∆-connected resistors into an 
equivalent Y connection:

 R1 =
RbRc

Ra + Rb + Rc
, (3.15)

 R2 =
RcRa

Ra + Rb + Rc
, (3.16)

 R3 =
RaRb

Ra + Rb + Rc
 . (3.17)

Reversing the ∆-to-Y transformation also is possible, so we can start with a 
Y structure and replace it with an equivalent ∆ structure. The expressions 

Rm

Rx

R1

R3

R2

y

1

2

Figure 3.31 ▲ A resistive network generated by a 
Wheatstone bridge circuit.

Rc

Rb Ra

a

c

b
Rc

Rb

a

c

b

Ra

Figure 3.32 ▲ A ∆ configuration viewed as a p 
configuration.

R1 R2

c

R3

a b

c

R1 R2

R3

a b

Figure 3.33 ▲ A Y structure viewed as a  
T structure.

Rc

Rb

a

c

b
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a

c

b

R1 R2

R3

Figure 3.34 ▲ The ∆-to-Y transformation.
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for the three ∆-connected resistors as functions of the three Y-connected 
resistors are

 Ra =
R1R2 + R2R3 + R3R1

R1
, (3.18)

 Rb =
R1R2 + R2R3 + R3R1

R2
, (3.19)

 Rc =
R1R2 + R2R3 + R3R1

R3
 . (3.20)

Example 3.11 uses a ∆-to-Y transformation to simplify a circuit and 
its analysis.

EXAMPLE 3.11 Applying a Delta-to-Wye Transform

Find the current and power supplied by the 40 V 
source in the circuit shown in Fig. 3.35.

Substituting the Y resistors into the circuit 
shown in Fig. 3.35 produces the circuit shown in 
Fig. 3.37. From Fig. 3.37 we can easily calculate 
the resistance seen by the 40 V source using series- 
parallel simplifications:

 Req = 5 + 50 + (10 + 40) || (12.5 + 37.5)

 = 55 +
(50)(50)

50 + 50
= 80 Ω.

The circuit simplifies to an 80 Ω resistor across a 40 V  
source, as shown in Fig. 3.38, so the 40 V source 
delivers current i = 40>80 = 0.5 A and power 
p = 40(0.5) = 20 W is delivered to the circuit.

40 V
1

2

100 V 125 V

25 V

5 V

40 V 37.5 V

Figure 3.35 ▲ The circuit for Example 3.11.

Solution
This problem is easy to solve if we can find the 
equivalent resistance seen by the source. Begin 
this simplification by replacing either the upper 
∆ (100, 125, 25 Ω) or the lower ∆ (40, 25, 37.5 Ω)  
with its equivalent Y. We choose to replace the 
upper ∆ by computing the three Y resistances, de-
fined in Fig. 3.36, using Eqs. 3.15 to 3.17. Thus,

 R1 =
100 * 125

250
= 50 Ω,

 R2 =
125 * 25

250
= 12.5 Ω,

 R3 =
100 * 25

250
= 10 Ω.

R1100 V 125 V

25 V

R3
R2

Figure 3.36 ▲ The equivalent Y resistors.

40 V
1

2

5 V

10 V 12.5 V

50 V

40 V 37.5 V

Figure 3.37 ▲ A transformed version of the circuit 
shown in Fig. 3.35.

80 Vi40 V
1

2

Figure 3.38 ▲ The final step in the simplification of 
the circuit shown in Fig. 3.35.
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Practical Perspective
Resistive Touch Screens
Let’s analyze the resistive grid in the x-direction. We model the resis-
tance of the grid in the x-direction with the resistance Rx, as shown in 
Fig. 3.39. The x-location where the screen is touched is indicated by the 
arrow. Touching the screen effectively divides the total resistance, Rx, 
into two separate resistances aRx and (1 - a)Rx. The resulting voltage 
drop across the resistance aRx is Vx.

From the figure you can see that when the touch is on the far right 
side of the screen, a = 0 and Vx = 0. Similarly, when the touch is on 
the far left side of the screen, a = 1 and Vx = Vs. If the touch is inbe-
tween the two edges of the screen, the value of a is between 0 and 1 
and the two parts of the resistance Rx form a voltage divider. We can 
calculate the voltage Vx using the equation for voltage division:

Vx =
aRx

aRx + (1 - a)Rx
 Vs =

aRx

Rx
 Vs = aVs.

We can find the value of a, which represents the location of the touch 
point with respect to the far right side of the screen, by dividing the 
voltage across the grid resistance starting at the touch point, Vx, by the 
voltage applied across the entire resistive grid in the x-direction, Vs:

a =
Vx

Vs
 .

Now we want to use the value of a to determine the x-coordinate of 
the touch location on the screen. Typically, the screen coordinates are 
specified in terms of pixels (short for “picture elements”). For example, 
the screen of a mobile phone is a grid of pixels, with px pixels in the 
x-direction and py pixels in the y-direction. Each pixel is identified by its 
x-location (a number between 0 and px - 1) and its y-location (a number 
between 0 and py - 1). The pixel with the location (0, 0) is in the upper-
left-hand corner of the screen, as shown in Fig. 3.40.

Since a represents the location of the touch point with respect 
to the right side of the screen, (1 - a) represents the location of the 
touch point with respect to the left side of the screen. Therefore, the x- 
coordinate of the pixel corresponding to the touch point is

x = (1 - a)px.

Objective 6—Know when and how to use delta-to-wye equivalent circuits

 3.8 Use a Y-to-∆ transformation to find the voltage 
v in the circuit shown.

Answer: 35 V.

28 V

20 V 10 V

5 V 105 V2 A y

1

2

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 3.59, 3.60, and 3.63.

1

1

2

2

(1 –   )Rx
Rx

Rx

Vs

Vx

Figure 3.39 ▲ The resistive touch screen grid in the 
x-direction.

(0, 0) (px 2 1, 0)

(0, py 2 1) (px 2 1, py 2 1)

Figure 3.40 ▲ The pixel coordinates of a screen 
with px pixels in the x-direction and py pixels in the 
y-direction.
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Note that the value of x is capped at ( px - 1).
Using the model of the resistive screen grid in the y-direction shown 

in Fig. 3.41, it is easy to show that the voltage created by a touch at the 
arrow is given by

Vy = bVs.

Therefore, the y-coordinate of the pixel corresponding to the touch point is

y = (1 - b)py,

where the value of y is capped at (py - 1). (See Problem 3.72.)

SELF-CHECK: Assess your understanding of the Practical Perspective 
by solving Chapter Problems 3.72–3.75.

1

2

(1 – β)Ry

βRy

Ry
Vs

Vy

1

2

Figure 3.41 ▲ The resistive touch screen grid in the 
y-direction.

Summary

• Series resistors can be combined to obtain a single 
equivalent resistance according to the equation

Req = a
 k

 i = 1
Ri = R1 + R2 + g+  Rk.

(See page 88.)

• Parallel resistors can be combined to obtain a single 
equivalent resistance according to the equation

1
Req

= a
 k

 i = 1
 
1
Ri

=
1

R1
+

1
R2

+ g +  
1

Rk
 .

When just two resistors are in parallel, the equation for 
equivalent resistance can be simplified to give

Req =
R1R2

R1 + R2
 .

(See pages 89–90.)

• When voltage is divided between series-connected re-
sistors, as shown in the figure, the voltage across each 
resistor can be found according to the equations

v1 =
R1

R1 + R2
 vs,

v2 =
R2

R1 + R2
 vs.

(See page 92.)

R1

R2

ys

y1

y2

1

21

2 1

2

• When current is divided between parallel-connected re-
sistors, as shown in the figure, the current in each resistor 
can be found according to the equations

i1 =
R2

R1 + R2
 is.

i2 =
R1

R1 + R2
 is.

(See page 95.)

is i2i1 R1 R2

• Voltage division is a circuit analysis tool used to find the 
voltage drop across a single resistance from a collection 
of series-connected resistances when the voltage drop 
across the collection is known:

vj =
Rj

Req
 v,

where vj is the voltage drop across the resistance Rj 
and v is the voltage drop across the series-connected 
resistances whose equivalent resistance is Req. (See 
page 96.)

• Current division is a circuit analysis tool used to find the 
current through a single resistance from a collection of 
parallel-connected resistances when the current into the 
collection is known:

ij =
Req

Rj
 i,
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where ij is the current through the resistance Rj and i 
is the current into the parallel-connected resistances 
whose equivalent resistance is Req. (See page 97.)

• A voltmeter measures voltage and must be placed in 
parallel with the voltage being measured. An ideal volt-
meter has infinite internal resistance and thus does not 
alter the voltage being measured. (See page 98.)

• An ammeter measures current and must be placed in se-
ries with the current being measured. An ideal ammeter 
has zero internal resistance and thus does not alter the 
current being measured. (See page 98.)

• Digital meters and analog meters have internal resis-
tance, which influences the value of the circuit variable 
being measured. Meters based on the d’Arsonval meter 

movement deliberately include internal resistance as a 
way to limit the current in the movement’s coil. (See 
pages 99–101.)

• The Wheatstone bridge circuit is used to make pre-
cise measurements of a resistor’s value using four 
resistors, a dc voltage source, and a galvanometer. 
A Wheatstone bridge is balanced when the resistors 
obey Eq. 3.11, resulting in a galvanometer reading of 
0 A. (See pages 101–102.)

• A circuit with three resistors connected in a ∆ config-
uration (or a p configuration) can be transformed into 
an equivalent circuit in which the three resistors are Y 
connected (or T connected). The ∆-to-Y transformation 
is given by Eqs. 3.15–3.17; the Y-to-∆ transformation is 
given by Eqs. 3.18–3.20. (See pages 103–105.)

Problems

Sections 3.1–3.2

 3.1 a)  Show that the solution of the circuit in Fig. 3.11 
(see Example 3.1) satisfies Kirchhoff’s current 
law at junctions x and y.

b) Show that the solution of the circuit in Fig. 3.11 
satisfies Kirchhoff’s voltage law around every 
closed loop.

 3.2 a)   Find the power dissipated in each resistor in the 
circuit shown in Fig. 3.11.

b) Find the power delivered by the 120 V source.

c) Show that the power delivered equals the power 
dissipated.

PSPICE

MULTISIM

PSPICE

MULTISIM

 3.3 For each of the circuits shown in Fig. P3.3:

a) Identify the resistors connected in series.

b) Simplify the circuit by replacing the series- 
connected resistors with equivalent resistors.

 3.4 For each of the circuits shown in Fig. P3.4:

a) Identify the resistors connected in parallel.

b) Simplify the circuit by replacing the parallel- 
connected resistors with equivalent resistors.

7 k� 4 k�20 V

3 k�6 k�

(a)

�

�

70 V 20 mA22 �
15 �

200 �10 �
25 � 18 �

(c)

�

�
50 � 40 �

55 � 65 �60 �

(d)

200 �
100 �

600 �

30 V
1500 �1000 �

(b)

�

�

Figure P3.3
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 3.5 For each of the circuits shown in Fig. P3.3:

a) Find the equivalent resistance seen by the 
source.

b) Find the power developed by the source.

 3.6 For each of the circuits shown in Fig. P3.4:

a) Find the equivalent resistance seen by the 
source.

b) Find the power developed by the source.

1

2
40 V 20 V20 V

30 V

(a) (b)

(c) (d)

1

2
150 kV 160 kV 700 V

650 V

800 V 600 V 2 kV 6 kV

4 kV
70 V

80 kV80 V

100 kV

60 kV

80 kV

100 V 200 V140 V40 mA

300 V

240 V

12

Figure P3.4
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150 V

500 V
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360 V30 mA

90 V

120 V

160 V

200 V

(a)

18 V

10 V

8 V

144 V

16 V

12 V

20 V

6 V

15 V 14 V4 V

(c)

1

2

40 V

20 V

10 V

24 V

80 mV

10 V

80 V

20 V

30 V

15 V

45 V
60 V

(d)

1

2

Figure P3.7

 3.7 a)  In the circuits in Fig. P 3.7(a)–(d), find the equiv-
alent resistance seen by the source.

b) For each circuit find the power delivered by the 
source.

 3.8 Find the equivalent resistance Rab for each of the 
circuits in Fig. P 3.8.
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(d)

a

b

1200 V 320 V

480 V720 V

(c)
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a
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24 V 18 V
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b
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2 kV
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Figure P3.8
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b

a

b

a

b

a

b

(a)

(c)
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Figure P3.9

 3.9 Find the equivalent resistance Rab for each of the 
circuits in Fig. P3.9.

 3.10 a) Find an expression for the equivalent resistance 
of three resistors of value R in series.

b) Find an expression for the equivalent resistance 
of m resistors of value R in series.

c) Using the results of (a), design a resistive net-
work with an equivalent resistance of 4.5 kΩ 
using three resistors with the same value from 
 Appendix H.

d) Using the results of (b), design a resistive 
 network with an equivalent resistance of 6.6 kΩ 
using a minimum number of identical resistors 
from  Appendix H.

 3.11 a)   Find an expression for the equivalent resistance 
of two resistors of value R in parallel.

b) Find an expression for the equivalent resistance 
of n resistors of value R in parallel.

PSPICE
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c) Using the results of (a), design a resistive net-
work with an equivalent resistance of 5 kΩ 
using two resistors with the same value from 
Appendix H.

d) Using the results of (b), design a resistive net-
work with an equivalent resistance of 4 kΩ us-
ing a minimum number of identical resistors 
from Appendix H.

Sections 3.3

 3.12 a) Calculate the output voltage vo for the voltage- 
divider circuit shown in Fig. P3.12.

b) Calculate the net current flowing through the 
circuit.

c) Calculate the total power of this circuit in the 
absence of R1, if the existing voltage source is 
replaced by a similar source of 100 V.

DESIGN
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yo

1

2

5.2 kVR1

2 kVR2

150 V
1

2

Figure P3.12

 3.13 In the voltage-divider circuit shown in Fig. P3.13, 
find the voltage vo for R2 = 10 Ω. Also find the out-
put voltage when RL = 30 kΩ is connected across 
the terminals a and b.
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R2 RL

30 V

10 V
1

2
yo

1

2

a

b

Figure P3.13

Figure P3.14

R2 RL

R1

60 V
1

2
yo

1

2

 3.14 The no-load voltage in the voltage-divider cir-
cuit shown in Fig. P3.14 is 15 V. The smallest load 
 resistor that is ever connected to the divider is 
3.6 kΩ. When the divider is loaded, vo is not to drop 
 below 14 V.

a) Design the divider circuit to meet the specifica-
tions just mentioned. Specify the numerical val-
ues of R1 and R2.

b) Assume the power ratings of commercially avail-
able resistors are 1, 2, 3 and 4 W. What power rat-
ing would you specify?

 3.16 Find the output voltage across the 14 Ω resistor in 
the circuit shown in Fig. P3.16.PSPICE

MULTISIM

 3.15 Assume the voltage divider in Fig. P3.14 has been 
constructed from 3 W resistors. What is the smallest 
resistors from Appendix H that can be used as RL 
before one of the resistors in the divider is operating 
at its dissipation limit?

9 V 2 V 14 V8 A

7 V4 V
Figure P3.16

100 V

8 V

12 V

12 V3 A30 V  yo

1

2

io

Figure P3.17

 3.17 For the current divider circuit in Fig. P3.17 calculate

a) the current in the 8 Ω resistor,

b) the voltage across the 30 Ω resistor, and

c) the power dissipated in the 100 Ω resistor.

PSPICE
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 3.18 Specify the resistors in the current-divider circuit in 
Fig. P3.18 to meet the following design criteria:

ig = 100 mA;  vg = 25 V;  i1 = 0.6i2;

i3 = 2i2;  and  i4 = 4i1.

ig yg

1

2

i1 R1 i 2 R2 i 3 R3 i4 R4

Figure P3.18

 3.19 There is often a need to produce more than one 
voltage using a voltage divider. For example, the 
memory components of many personal computers 
require voltages of -12 V, 5 V, and +12 V, all with 
respect to a common reference terminal. Select the 
values of R1, R2, and R3 in the circuit in Fig. P3.19 to 
meet the following design requirements:

a) The total power supplied to the divider circuit 
by the 24 V source is 100 W when the divider is 
unloaded.

b) The three voltages, all measured with respect to 
the common reference terminal, are v1 = 12 V, 
v2 = 5 V, and v3 = -12 V.

24 V

Common

R1

y1

y2

y3

R2

R3

1

2

Figure P3.19
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 3.20 a) The voltage divider in Fig. P3.20(a) is loaded 
with the voltage divider shown in Fig. P3.20(b); 
that is, a is connected to a′, and b is connected 
to b′. Find vo.

b) Now assume the voltage divider in Fig. P3.20(b) is 
connected to the voltage divider in Fig. P3.20(a) 
by means of a current-controlled voltage source 
as shown in Fig. P3.20(c). Find vo.

c) What effect does adding the dependent- voltage 
source have on the operation of the voltage  
divider that is connected to the 180 V source?
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 3.21 A voltage divider like that in Fig. 3.19 is to be de-
signed so that vo = kvs at no load (RL = ∞) and 
vo = avs at full load (RL = Ro). Note that by defi-
nition a 6 k 6 1.

a) Show that

R1 =
k - a

ak
 Ro

and

R2 =
k - a

a(1 - k)
 Ro.

b) Specify the numerical values of R1 and R2 if 
k = 0.85, a = 0.80, and Ro = 34 kΩ.

c) If vs = 60 V, specify the maximum power that 
will be dissipated in R1 and R2.

d) Assume the load resistor is accidentally short cir-
cuited. How much power is dissipated in R1 and R2?

 3.22 a)   Show that the current in the kth branch of the 
circuit in Fig. P3.22(a) is equal to the source cur-
rent ig times the conductance of the kth branch 
divided by the sum of the conductances, that is,

ik =
igGk

G1 + G2 + G3 + g + Gk + g + GN
 .

DESIGN
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b) Use the result derived in (a) to calculate the 
current in the 10 Ω resistor in the circuit in 
Fig. P3.22(b).

(b)

0.5 V80 A 10 V 20 V 40 V20 V8 V

(a)

ig R1 RNR3R2 Rkik

Figure P3.22

40 kV

20 kV

30,000 i30 kV180 V
1

2

10 kV
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30 kV180 V
1

2

a

b

10 kV

i

(a)

40 kV

a9

b9

20 kV

yo

yo

1

2

(b)

Figure P3.20

Sections 3.4

 3.23 Look at the circuit in Fig. P3.3(a).

a) Find the net output voltage across the 7 kΩ and 
4 kΩ resistors, positive at the top.

b) Use the result from part (a) and find the current 
flowing through the 4 kΩ resistor.

 3.24 Look at the circuit in Fig. P3.1(d).

a) Use current division to find the current in the 
50 Ω resistor from left to right.

b) Use the result from part (a) and current division 
to find the current in the 70 Ω resistor from top 
to bottom.

 3.25 Look at the circuit in Fig. P3.7(a).

a) Use current division to find the current in the 
120 Ω resistor from top to bottom.

b) Using your result from (a), find the voltage drop 
across the 120 Ω resistor, positive at the top.

c) Starting with your result from (b), use voltage 
division to find the voltage across the 200 Ω 
 resistor, positive on the right.

d) Using your result from (c), find the current in 
the 200 Ω resistor from left to right.

e) Starting with your result from (d), use current 
division to find the current in the 90 Ω resistor 
from left to right.

 3.26 Attach a 450 mA current source between the terminals 
a–b in Fig. P3.6(a), with the current arrow pointing up.

a) Use current division to find the current in the 
36 Ω resistor from top to bottom.

b) Use the result from part (a) to find the voltage 
across the 36 Ω resistor, positive at the top.
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c) Use the result from part (b) and voltage division 
to find the voltage across the 18 Ω resistor, posi-
tive at the top.

d) Use the result from part (c) and voltage division 
to find the voltage across the 10 Ω resistor, posi-
tive at the top.

 3.27 Attach a 10 V voltage source between the terminals 
a–b in Fig. P3.9(b), with the positive terminal at the top.

a) Use voltage division to find the voltage across 
the 4 Ω resistor, positive at the top.

b) Use the result from part (a) to find the current in 
the 4 Ω resistor from left to right.

c) Use the result from part (b) and current division 
to find the current in the 16 Ω resistor from left to 
right.

d) Use the result from part (c) and current division 
to find the current in the 10 Ω resistor from top 
to bottom.

e) Use the result from part (d) to find the voltage 
across the 10 Ω resistor, positive at the top.

f) Use the result from part (e) and voltage division 
to find the voltage across the 18 Ω resistor, posi-
tive at the top.

 3.28 a) Find the voltage vx in the circuit in Fig. P3.28 
using voltage and/or current division.

b) Replace the 18 V source with a general voltage 
source equal to Vs. Assume Vs is positive at the 
upper terminal. Find vx as a function of Vs.
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1 2

2 kV

6 kV

9 kV

3 kV

18 V
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2
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Figure P3.28

2 kV

10 kV

yo1 2
18 mA

15 kV

3 kV

12 kV

4 kV

Figure P3.29

 3.31 For the circuit in Fig. P3.31, find ig and then use 
 current division to find io.

y1

1

23 V

90 V 60 V

30 V
75 V

40 V

150 V
y2

1

2

1

2

Figure P3.30

24 V
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10 V

10 V

100 V
1
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ig

io

Figure P3.31

 3.29 Find vo in the circuit in Fig. P3.29 using voltage and/
or current division.PSPICE
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 3.30 Find v1 and v2 in the circuit in Fig. P3.30 using volt-
age and/or current division.PSPICE

MULTISIM

 3.32 For the circuit in Fig. P3.32, calculate i1 and i2 using 
current division.PSPICE
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8 V

60 V250 mA 30 V 20 V
80 V

4 V

i1 i2

Figure P3.32

Sections 3.5

 3.33 A d’Arsonval ammeter is shown in Fig. P3.33.

a) Calculate the value of the shunt resistor, RA, to 
give a full-scale current reading of 5 A.

b) How much resistance is added to a circuit when 
the 5 A ammeter in part (a) is inserted to mea-
sure current?

c) Calculate the value of the shunt resistor, RA, to 
give a full-scale current reading of 100 mA.

d) How much resistance is added to a circuit when 
the 100 mA ammeter in part (c) is inserted to 
measure current?
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 3.34 A shunt resistor and a 60 mV, 1.5 mA d’Arsonval 
movement are used to build an 8 A ammeter. A 
 resistance of 30 mΩ is placed across the terminals 
of the ammeter. What is the new full-scale range of 
the ammeter?

 3.35 A d’Arsonval movement is rated at 2 mA and 200 
mV. Assume 1 W precision resistors are available to 
use as shunts. What is the largest full-scale-reading 
ammeter that can be designed using a single resis-
tor? Explain.

 3.36 a) Show for the ammeter circuit in Fig. P3.36 that 
the current in the d’Arsonval movement is always 
1>25th of the current being measured.

b) What would the fraction be if the 100 mV, 2 mA 
movement were used in a 5 A ammeter?

c) Would you expect a uniform scale on a dc 
 d’Arsonval ammeter?

DESIGN
PROBLEM

100 mV, 2 mA

(25/12) V

imeas

im

Figure P3.36

 3.37 A d’Arsonval voltmeter is shown in Fig. P3.37. Find 
the value of R

v
 for each of the following full-scale 

readings: (a) 50 V, (b) 5 V, (c) 250 mV, and (d) 25 mV.

20 mV
1 mA

Voltmeter

Ry

Figure P3.37

150 mV
3 mA

Ammeter

RA

Figure P3.33  3.38 Suppose the d’Arsonval voltmeter described in 
 Problem 3.37(b) is used to measure the voltage 
across the 45 Ω resistor in Fig. P3.38.

a) What will the voltmeter read?

b) Find the percentage of error in the voltmeter 
reading if

% error = ameasured value
true value

- 1b * 100.

15 V 45 V

io

50 mA

Figure P3.38

 3.39 The ammeter in the circuit in Fig. P3.39 has a resis-
tance of 0.1 Ω. Using the definition of the percent-
age error in a meter reading found in Problem 3.38, 
what is the percentage of error in the reading of this 
ammeter?

60 V

20 V

10 V

Ammeter

50 V
1

2

Figure P3.39

 3.40 The ammeter described in Problem 3.39 is used to 
measure the current io in the circuit in Fig. P3.38. What 
is the percentage of error in the measured value?

 3.41 The elements in the circuit in Fig. 2.24 have the follow-
ing values: R1 = 20 kΩ, R2 = 80 kΩ, RC = 0.82 kΩ, 
RE = 0.2 kΩ, VCC = 7.5 V, V0 = 0.6 V, and b = 39.

a) Calculate the value of iB in microamperes.

b) Assume that a digital multimeter, when used as a 
dc ammeter, has a resistance of 1 kΩ. If the meter 
is inserted between terminals b and 2 to measure 
the current iB, what will the meter read?

c) Using the calculated value of iB in (a) as the cor-
rect value, what is the percentage of error in the 
measurement?

 3.42 You have been told that the dc voltage of a power 
supply is about 350 V. When you go to the instru-
ment room to get a dc voltmeter to measure the 
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power supply voltage, you find that there are only 
two dc voltmeters available. One voltmeter is rated 
300 V full scale and has a sensitivity of 900 Ω >V. 
The other voltmeter is rated 150 V full scale and has 
a sensitivity of 1200 Ω >V. (Hint: you can find the 
effective resistance of a voltmeter by multiplying its 
rated full-scale voltage and its sensitivity.)

a) How can you use the two voltmeters to check the 
power supply voltage?

b) What is the maximum voltage that can be 
 measured?

c) If the power supply voltage is 320 V, what will 
each voltmeter read?

 3.43 Assume that in addition to the two voltmeters de-
scribed in Problem 3.42, an 80 kΩ precision resistor 
is also available. The 80 kΩ resistor is connected in 
series with the series-connected voltmeters. This cir-
cuit is then connected across the terminals of the 
power supply. The reading on the 300 V meter is 
288 V and the reading on the 150 V meter is 115.2 V. 
What is the voltage of the power supply?

 3.44 The voltmeter shown in Fig. P3.44(a) has a full-scale 
reading of 600 V. The meter movement is rated 100 
mV and 0.5 mA. What is the percentage of error in 
the meter reading if it is used to measure the voltage 
v in the circuit of Fig. P3.44(b)?

360 V
1

2

40 kV

140 kV yo

1

2

Figure P3.45

 3.47 The circuit model of a dc voltage source is shown 
in Fig. P3.47. The following voltage measurements 
are made at the terminals of the source: (1) With 
the terminals of the source open, the voltage is mea-
sured at 50 mV, and (2) with a 15 MΩ resistor con-
nected to the terminals, the voltage is measured at 
48.75 mV. All measurements are made with a digital 
voltmeter that has a meter resistance of 10 MΩ.

a) What is the internal voltage of the source (vs) in 
millivolts?

b) What is the internal resistance of the source (Rs) 
in kiloohms?

 3.45 The voltage-divider circuit shown in Fig. P3.45 is de-
signed so that the no-load output voltage is 7/9ths of 
the input voltage. A d’Arsonval voltmeter having a 
sensitivity of 200 Ω/V and a full-scale rating of 400 V 
is used to check the operation of the circuit.

a) What will the voltmeter read if it is placed across 
the 360 V source?

b) What will the voltmeter read if it is placed across 
the 140 kΩ resistor?

c) What will the voltmeter read if it is placed across 
the 40 kΩ resistor?

d) Will the voltmeter readings obtained in parts (b) 
and (c) add to the reading recorded in part (a)? 
Explain why or why not.

100 mV
0.5 mA Common

500 V

60 kV 280 kV10 mA

1

2

(b)(a)

Rm

y

Figure P3.44

 3.46 Assume in designing the multirange voltmeter 
shown in Fig. P3.46 that you ignore the resistance of 
the meter movement.

a) Specify the values of R1, R2, and R3.

b) For each of the three ranges, calculate the percent-
age of error that this design strategy produces.

DESIGN
PROBLEM

ys
Terminals of
the source

Rs

1

2

Figure P3.47

 3.48  Design a d’Arsonval voltmeter that will have the 
three voltage ranges shown in Fig. P3.48.

a) Specify the values of R1, R2, and R3.

b) Assume that a 700 kΩ resistor is connected 
 between the 150 V terminal and the common 

100 V

Common

50 mV
  2 mA

R1

1 V
R3

10 V
R2

Figure P3.46
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 terminal. The voltmeter is then connected to an 
unknown voltage using the common terminal and 
the 300 V terminal. The voltmeter reads 288  V. 
What is the unknown voltage?

c) What is the maximum voltage the voltmeter in 
(b) can measure?

30 V

Common

100 mV
1 mA

150 V

300 V

R3

R2

R1

Figure P3.48

 3.49 A 600 kΩ resistor is connected from the 200 V termi-
nal to the common terminal of a dual-scale voltmeter, 
as shown in Fig. P3.49(a). This modified voltmeter is 
then used to measure the voltage across the 360 kΩ 
resistor in the circuit in Fig. P3.49(b).

a) What is the reading on the 500 V scale of the meter?

b)  What is the percentage of error in the measured 
voltage?

300 kV

500 V

200 V

199.95 kV

600 kV

Common

50 mV
1 mA

40 kV

360 kV

500 V

Common

Modi�ed
voltmeter

600 V

(a)

(b)

1

2

Figure P3.49

Section 3.6

 3.50 Assume the ideal voltage source in Fig. 3.28 is 
 replaced by an ideal current source. Show that 
Eq. 3.11 is still valid.

 3.51 The bridge circuit shown in Fig. 3.28 is energized 
from a 21 V dc source. The bridge is balanced when 
R1 = 800 Ω, R2 = 1200 Ω, and R3 = 600 Ω.

a) What is the value of Rx?

b) How much current (in milliamperes) does the dc 
source supply?

c) Which resistor in the circuit absorbs the most 
power? How much power does it absorb?

d) Which resistor absorbs the least power? How 
much power does it absorb?

 3.52 Find the power dissipated in the 18 Ω resistor in the 
circuit in Fig. P3.52.
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 3.53 Find the value of the unknown resistor Rx in the 
bridge circuit shown in Fig. P3.53 if the voltage drop 
across the detector is negligible.

 3.54 In the Wheatstone bridge circuit shown in Fig. 3.28, 
the ratio R2>R1 can be set to the following values: 
0.001, 0.01, 0.1, 1, 10, 100, and 1000. The resistor R3 
can be varied from 1 to 11,110 Ω, in increments of 
1 Ω. An unknown resistor is known to lie between 
4 and 5 Ω. What should be the setting of the R2>R1 
ratio so that the unknown resistor can be measured 
to four significant figures?

Section 3.7

 3.55 Find the current and power supplied by the 100 V 
source in the circuit for Example 3.11 (Fig. 3.35) 
by replacing the lower ∆ (50, 75, and 80 Ω) with its 
equivalent Y.
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10 V 30 V

18 V6 V

1

2
300 V

Figure P3.52
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 3.56 Find the current and power supplied by the 100 V 
source in the circuit for Example 3.11 (Fig. 3.35) by 
replacing the Y on the left (50, 80, and 200 Ω) with 
its equivalent ∆.

 3.57 Find the current and power supplied by the 100 V 
source in the circuit for Example 3.11 (Fig. 3.35) by 
replacing the Y on the right (50, 70, and 250 Ω) with 
its equivalent ∆.

 3.63 For the circuit shown in Fig. P3.63, find (a) i1, (b) v,  
(c) i2, and (d) the power supplied by the voltage 
source.
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v

1

2

120 V24 V

5 V

14 V 20 V
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43 V

i1

i2
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1

2

Figure P3.63

 3.62 Find io and the power dissipated in the 280 Ω resis-
tor in the circuit in Fig. P3.62.

Figure P3.62

30 V 20 V

10 V 10 V

10 V280 V300 V
1

2 io
60 V75 V

 3.61 Use a Y-to-∆ transformation to find (a) io; (b) i1;  
(c) i2; and (d) the power delivered by the ideal cur-
rent source in the circuit in Fig. P3.61.
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320 V

20 V 50 V

100 V1 A i2 600 Vio

i1

240 V

Figure P3.61

 3.58 a)    Find the equivalent resistance Rab in the circuit 
in Fig. P3.58 by using a Y-to-∆ transformation 
involving resistors R2, R3, and R5.

b) Repeat (a) using a ∆-to-Y transformation in-
volving resistors R3, R4, and R5.

c) Give two additional ∆-to-Y or Y-to-∆ transfor-
mations that could be used to find Rab.

PSPICE

MULTISIM

R4
R5

13 V

20 V 30 V

a

b
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R3
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R1 R2
50 V
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Figure P3.58

 3.60 a) Find the resistance seen by the ideal voltage 
source in the circuit in Fig. P3.60.

b) If vab equals 200 V, how much power is 
 dissipated in the 31 Ω resistor?

Figure P3.60
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 3.64 Show that the expressions for Y conductances as 
functions of the three ∆ conductances are

        Ga =
G1G2 + G2G3 + G3G1

G1
 ,

        Gb =
G1G2 + G2G3 + G3G1

G2
 ,

        Gc =
G1G2 + G2G3 + G3G1

G3
 ,

  where

 Ga =
1

Ra
 , G1 =

1
R1

 , etc.

20 V

2 V 12 V

30 V 70 V30 V

1

2

1

2

1

2
y1 y2

Figure P3.59

 3.59 Use a ∆-to-Y transformation to find the voltages v1 
and v2 in the circuit in Fig. P3.59.PSPICE

MULTISIM
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 3.65 Derive Eqs. 3.15–3.20 from Eqs. 3.12–3.14. The fol-
lowing two hints should help you get started in the 
right direction:

1) To find R1 as a function of Ra, Rb, and Rc, first 
subtract Eq. 3.13 from Eq. 3.14 and then add this 
result to Eq. 3.12. Use similar manipulations to 
find R2 and R3 as functions of Ra, Rb, and Rc.

2) To find Rb as a function of R1, R2, and R3, take 
advantage of the derivations obtained by hint 
(1), namely, Eqs. 3.15–3.17. Note that these equa-
tions can be divided to obtain

R2

R3
=

Rc

Rb
, or Rc =

R2

R3
 Rb,

and

R1

R2
=

Rb

Ra
, or Ra =

R2

R1
 Rb.

Now use these ratios in Eq. 3.14 to eliminate Ra 
and Rc. Use similar manipulations to find Ra and 
Rc as functions of R1, R2, and R3.

Sections 3.1–3.7

 3.66 Resistor networks are sometimes used as  volume- 
control circuits. In this application, they are referred 
to as resistance attenuators or pads. A typical fixed- 
attenuator pad is shown in Fig. P3.66. In designing an 
attenuation pad, the circuit designer will select the 
values of R1 and R2 so that the ratio of vo>vi and the 
resistance seen by the input voltage source Rab both 
have a specified value.

a) Show that if Rab = RL, then

RL
2 = 4R1(R1 + R2),

vo

vi
=

R2

2R1 + R2 + RL
 .

b) Select the values of R1 and R2 so that 
Rab = RL = 300 Ω and vo>vi = 0.5.

c) Choose values from Appendix H that are closest 
to R1 and R2 from part (b). Calculate the percent 
error in the resulting values for Rab and v0>v1 if 
these new resistor values are used.

DESIGN
PROBLEM

R1

Attenuator

R1 R1

R1

R2 RL

a

b

yi

1

2

c

d

yo

1

2

Figure P3.66

 3.67 a)    The fixed-attenuator pad shown in Fig. P3.67 is 
called a bridged tee. Use a Y-to-∆ transforma-
tion to show that Rab = RL if R = RL.

b) Show that when R = RL, the voltage ratio vo>vi 
equals 0.50.

DESIGN
PROBLEM

Fixed-attenuator pad

R

R

R

RLR

a

b

yi

1

2

c

d

yo

1

2

Figure P3.67

 3.68 The design equations for the bridged-tee attenuator 
circuit in Fig. P3.68 are

R2 =
2RRL

2

3R2 - RL
2 ,

vo

vi
=

3R - RL

3R + RL
,

when R2 has the value just given.

a) Design a fixed attenuator so that vi = 3.5vo 
when RL = 300 Ω.

b) Assume the voltage applied to the input of the 
pad designed in (a) is 42 V. Which resistor in the 
pad dissipates the most power?

c) How much power is dissipated in the resistor in 
part (b)?

d) Which resistor in the pad dissipates the least 
power?

e) How much power is dissipated in the resistor in 
part (d)?

PSPICE

MULTISIM
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Figure P3.68
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 3.69 a)   For the circuit shown in Fig. P3.69 the bridge is 
balanced when ∆R = 0. Show that if ∆R V Ro 
the bridge output voltage is approximately

vo ≈
- ∆RR4

(Ro + R4)
2 vin

b) Given R2 = 1 kΩ, R3 = 500 Ω, R4 = 5 kΩ, and 
vin = 6 V, what is the approximate bridge out-
put voltage if ∆R is 3% of Ro?

c) Find the actual value of vo in part (b).

PSPICE

MULTISIM

R4 R3

Ro 1 DR R2

yin
1

2
1 2yo

Figure P3.69

 3.70 a)  If percent error is defined as

% error = c approximate value

true value
- 1 d * 100,

show that the percent error in the approxima-
tion of vo in Problem 3.69 is

% error =
-(∆R)R3

(R2 + R3)R4
 * 100.

b) Calculate the percent error in vo, using the val-
ues in Problem 3.69(b).

 3.71 Assume the error in vo in the bridge circuit in  
Fig. P3.69 is not to exceed 0.5%. What is the largest 
percent change in Ro that can be tolerated?

 3.72 a)   Using Fig. 3.41 derive the expression for the 
voltage Vy.

b) Assuming that there are py pixels in the y- direction, 
derive the expression for the y-coordinate of the 
touch point, using the result from part (a).

 3.73 A resistive touch screen has 5 V applied to the grid 
in the x-direction and in the y-direction. The screen 
has 480 pixels in the x-direction and 800 pixels in 
the y-direction. When the screen is touched, the 
voltage in the x-grid is 1 V and the voltage in the 
y-grid is 3.75 V.

a) Calculate the values of a and b.

b) Calculate the x- and y-coordinates of the pixel at 
the point where the screen was touched.

 3.74 A resistive touch screen has 640 pixels in the 
x-direction and 1024 pixels in the y-direction. 
The resistive grid has 8 V applied in both the 
x- and y-directions. The pixel coordinates at the 
touch point are (480, 192). Calculate the voltages 
Vx and Vy.

 3.75 Suppose the resistive touch screen described in 
Problem 3.74 is simultaneously touched at two 
points, one with coordinates (480, 192) and the other 
with coordinates (240, 384).

a) Calculate the voltage measured in the x- and 
y-grids.

b) Which touch point has your calculation in (a) 
identified?

DESIGN
PROBLEM
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4
CHAPTER 

Techniques of Circuit 
Analysis
This chapter introduces two powerful circuit analysis 
 techniques: the node-voltage method and the mesh-current 

method. The power of these methods comes from their ability to 
describe complex circuits using a minimum number of simulta-
neous equations. The alternative—applying Kirchhoff’s laws and 
Ohm’s law—becomes cumbersome for complex circuits.

We also introduce new techniques for simplifying  circuits: 
source transformations and Thévenin and Norton equiva-

lent  circuits. Adding these skills to your existing knowledge of 
 series-parallel reductions and ∆-to-Y transformations greatly 
 expands your ability to simplify and solve complex circuits.

Finally, we explore the concepts of maximum power  transfer 
and superposition. You will learn to use Thévenin equivalent 
circuits to establish the conditions needed to ensure maximum 
power is delivered to a resistive load. Superposition helps us ana-
lyze circuits that have more than one independent source.

   4.1 Terminology p. 122

  4.2  Introduction to the Node-Voltage 
 Method p. 124

  4.3  The Node-Voltage Method and 
 Dependent Sources p. 126

  4.4  The Node-Voltage Method: Some 
 Special Cases p. 128

  4.5  Introduction to the Mesh-Current 
 Method p. 132

  4.6  The Mesh-Current Method and 
 Dependent Sources p. 135

  4.7  The Mesh-Current Method: Some 
 Special Cases p. 136

  4.8  The Node-Voltage Method Versus the 
Mesh-Current Method p. 140

  4.9  Source Transformations p. 143

4.10 Thévenin and Norton Equivalents p. 146

4.11  More on Deriving the Thévenin 
 Equivalent p. 151

4.12 Maximum Power Transfer p. 154

4.13 Superposition p. 157

1 Understand and be able to use the 
node-voltage method to solve a circuit.

2 Understand and be able to use the 
mesh-current method to solve a circuit.

3 Be able to decide whether the node- voltage 
method or the mesh-current method is the 
preferred approach to solving a particular 
circuit.

4 Understand source transformation and be 
able to use it to solve a circuit.

5 Understand the concept of the Thévenin 
and Norton equivalent circuits and be 
able to construct a Thévenin or Norton 
 equivalent for a circuit.

6 Know the condition for maximum power 
transfer to a resistive load and be able to 
calculate the value of the load resistor that 
satisfies this condition.

CHAPTER OBJECTIVES



Practical Perspective
Circuits with Realistic Resistors
In the last chapter, we examined the effect of imprecise 
resistor values on the performance of a voltage divider. 
Resistors are manufactured for only a small number of 
discrete values, and any given resistor from a batch of 
resistors will vary from its stated value within some toler-
ance. Resistors with a tolerance of 1% are more expen-
sive than resistors with a tolerance of 10%. If we know 
that a particular resistor must be very close to its stated 

value for the circuit to function correctly, we can then de-
cide to spend the extra money necessary to achieve a 
tighter tolerance on that resistor’s value.

Therefore, we want to predict the effect of varying the 
value of each resistor in a circuit on the output of that 
circuit, a technique known as sensitivity analysis. Once 
we have presented additional circuit analysis methods, 
the topic of sensitivity analysis will be examined.

HL Studios/Pearson Education Ltd
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4.1 Terminology
Before discussing the node-voltage and mesh-current methods of cir-
cuit analysis, we must define a few basic terms. So far, all the circuits pre-
sented have been planar circuits—that is, those circuits that can be drawn 
on a plane with no crossing branches. A circuit that is drawn with cross-
ing branches still is considered planar if it can be redrawn with no crossing 
branches. For example, the circuit shown in Fig. 4.1(a) can be redrawn as 
Fig. 4.1(b); the circuits are equivalent because all the node connections have 
been maintained. Therefore, Fig. 4.1(a) is a planar circuit because it can be 
redrawn as one. Figure 4.2 shows a nonplanar circuit—it cannot be redrawn 
in such a way that all the node connections are maintained and no branches 
overlap. Identifying a circuit as planar or nonplanar is important, because

• the node-voltage method is applicable to both planar and nonplanar 
circuits;

• the mesh-current method is limited to planar circuits.

Describing a Circuit—The Vocabulary
When ideal basic circuit elements (Section 1.5) are interconnected to form 
a circuit, the resulting interconnection is described in terms of nodes, 
paths, loops, branches, and meshes. Two of these terms, nodes and loops, 
were defined in Section 2.4. Now we’ll define the rest of these terms. For 
your convenience, all of these definitions are presented in Table 4.1. The 
table also includes examples of each definition taken from the circuit in 
Fig. 4.3, which are developed in Example 4.1.

ys

R5

R6 R3
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(a)
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2 R8
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Figure 4.1 ▲ (a) A planar circuit. (b) The same 
 circuit redrawn to verify that it is planar.
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Figure 4.2 ▲ A nonplanar circuit.
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Figure 4.3 ▲ A circuit illustrating nodes, branches, meshes, 
paths, and loops.

EXAMPLE 4.1 Identifying Node, Branch, Mesh, and Loop in a Circuit

For the circuit in Fig. 4.3, identify

a) all nodes.

b) all essential nodes.

c) all branches.

d) all essential branches.

e) all meshes.

f) two paths that are not loops or essential branches.

g) two loops that are not meshes.

Solution

a) The nodes are a, b, c, d, e, f, and g.

b) The essential nodes are b, c, e, and g.

c) The branches are v1, v2, R1, R2, R3, R4, R5, R6, 
R7, and I.

d) The essential branches are v1 - R1, R2 - R3, 
v2 - R4, R5, R6, R7, and I.

e) The meshes are v1 - R1 - R5 - R3 - R2, 
v2 - R2 - R3 - R6 - R4, R5 - R7 - R6, and 
R7 - I.

f) R1 - R5 - R6 is a path, but it is not a loop (be-
cause it does not have the same starting and end-
ing nodes), nor is it an essential branch (because 
it does not connect two essential nodes). v2 - R2 
is also a path but is neither a loop nor an essential 
branch, for the same reasons.

g) v1 - R1 - R5 - R6 - R4 - v2 is a loop but is 
not a mesh because there are two loops within it. 
I - R5 - R6 is also a loop but not a mesh.

SELF-CHECK: Assess your understanding of this material by trying Chapter Problem 4.1.
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1Applying KCL to the last unused node (the nth node) does not generate an independent 
equation. See Problem 4.4.

EXAMPLE 4.2  Using Essential Nodes and Essential Branches to Write 
Simultaneous Equations

The circuit in Fig. 4.4 has six essential branches, 
denoted i1 - i6, where the current is unknown. 
Use the systematic approach to write the six 
equations needed to solve for the six unknown 
currents.

Solution
The essential nodes in the circuit are labeled b, c, e, 
and g, so ne = 4. From the problem statement we 
know that the number of essential branches where 

TABLE 4.1 Terms for Describing Circuits

Name Definition Example from Fig. 4.3

node A point where two or more circuit elements join a

essential node A node where three or more circuit elements join b

path A trace of adjoining basic elements with no elements  
included more than once v1 - R1 - R5 - R6

branch A path that connects two nodes R1

essential branch A path that connects two essential nodes without  
passing through an essential node v1 - R1

loop A path whose last node is the same as the starting node v1 - R1 - R5 - R6 - R4 - v2

mesh A loop that does not enclose any other loops v1 - R1 - R5 - R3 - R2

planar circuit A circuit that can be drawn on a plane with no  
crossing branches

Fig. 4.3 is a planar circuit.
Fig. 4.2 is a nonplanar circuit.

Simultaneous Equations—How Many?
Recall that we need b independent equations to solve a circuit with b 
unknown currents. In Fig. 4.3, for example, the circuit has nine branches 
with unknown currents, so b = 9; we need nine independent equations to 
solve for the unknown currents. Some of the equations can be written by 
applying Kirchhoff’s current law (KCL) to a set of the circuit’s nodes. In 
fact, if the circuit has n nodes, we can derive n - 1 independent equations 
by applying Kirchhoff’s current law to any set of n - 1 nodes.1 To obtain 
the rest of the needed b - (n - 1) equations, we apply Kirchhoff’s volt-
age law (KVL) to circuit loops or meshes.

To reduce the number of independent equations needed, we can use 
essential nodes and essential branches instead of nodes and branches. This is 
because the number of essential nodes in a circuit is less than or equal to the 
number of nodes, and the number of essential branches is less than or equal 
to the number of branches. Thus, our systematic method for writing the nec-
essary equations to solve for the circuit’s unknown currents is as follows:

• Count the number of essential nodes, ne.
• Count the number of essential branches, be, where the current is 

 unknown.
• Write ne - 1 equations by applying KCL to any set of ne - 1 nodes.
• Write be - (ne - 1) equations by applying KVL around a set of 

be - (ne - 1) loops or meshes. 

Remember that the voltage for each component in every loop or mesh 
must be known or must be  described in terms of the component’s current 
using Ohm’s law.

Let’s illustrate our systematic approach by applying it to the circuit 
from Example 4.1, as seen in Example 4.2.
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4.2 Introduction to the Node-Voltage 
Method

The node-voltage method generates independent simultaneous equations 
by applying Kirchoff’s current law at the essential nodes of the circuit. 
Solving the simultaneous equations yields the voltage drops between all 
but one of the essential nodes and a reference essential node. You can 
use these voltages to calculate voltages and currents for every component 
in the circuit, thereby solving the circuit. We illustrate the step-by-step 
 procedure using the circuit in Fig. 4.5.

Step 1 is to make a neat layout of the circuit so that no branches cross 
and to mark the essential nodes on the circuit diagram, as in Fig. 4.6. This 
circuit has three essential nodes (ne = 3); therefore, we need two (ne - 1) 
KCL equations to describe the circuit.

Step 2 is to select one of the three essential nodes as a reference 
node. Although in theory the choice is arbitrary, there is often an obvious 
and practical choice. Choosing the reference node becomes easier with 
practice. For example, the node with the most branches is usually a good 
choice, so we select the lower node in Fig. 4.5 as the reference node. The 
reference node is identified by the symbol ▼, as in Fig. 4.6. Complete this 

the current is unknown is be = 6. Note that there are 
seven essential branches in the circuit, but the cur-
rent in the essential branch containing the current 
source is known. We need to write six independent 
equations because there are six unknown currents.

We derive three of the six independent equa-
tions by applying Kirchhoff’s current law to any 
three of the four essential nodes. We use the nodes 
b, c, and e to get

 - i1 + i2 + i6 - I = 0,

 i1 - i3 - i5 = 0,

 i3 + i4 - i2 = 0.

We derive the remaining three equations by 
 applying Kirchhoff’s voltage law around three 
meshes. Remember that the voltage across every 
component in each mesh must be known or must 
be expressed as the product of the component’s re-
sistance and its current using Ohm’s law. Because 
the circuit has four meshes, we need to dismiss one 
mesh. We eliminate the R7 - I mesh because we 
don’t know the voltage across I.2 Using the other 
three meshes gives

 R1i1 + R5i2 + i3(R2 + R3) - v1 = 0,

 - i3(R2 + R3) + i4R6 + i5R4 - v2 = 0,

 - i2R5 + i6R7 - i4R6 = 0.

Rearranging the six equations to facilitate their 
solution yields the set

 - i1 + i2 + 0i3 + 0i4 + 0i5 + i6 = I,

 i1 + 0i2 - i3 + 0i4 - i5 + 0i6 = 0,

 0i1 - i2 + i3 + i4 + 0i5 + 0i6 = 0,

 R1i1 + R5i2 + (R2 + R3)i3 + 0i4 + 0i5 + 0i6 = v1,

 0i1 + 0i2 - (R2 + R3)i3 + R6i4 + R4i5 + 0i6 = v2,

 0i1 - R5i2 + 0i3 - R6i4 + 0i5 + R7i6 = 0.
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d
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Figure 4.4 ▲ The circuit shown in Fig. 4.3 with six unknown 
branch currents defined.

SELF-CHECK: Assess your understanding of this material by trying Chapter Problems 4.2, 4.3, and 4.5.

2 V1 V

5 V10 V 10 V 2 A
1

2

Figure 4.5 ▲ A circuit used to illustrate the 
node-voltage method of circuit analysis.

2We say more about this decision in Section 4.7. 
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Figure 4.6 ▲ The circuit shown in Fig. 4.5 with a 
reference node and the node voltages.
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step by labeling the remaining essential node voltages on the circuit di-
agram. A node voltage is defined as the voltage rise from the reference 
node to a nonreference essential node. For this circuit, we must define two 
node voltages, which are denoted v1 and v2 in Fig. 4.6.

In Step 3 we generate the KCL equations. To do this, write the cur-
rent leaving each branch connected to a nonreference node as a function 
of the node voltages and sum the currents to zero in accordance with 
Kirchhoff’s current law. Let’s look at node 1. Ohm’s law tells us that the 
current leaving node 1 through the 1 Ω resistor equals the voltage across 
the resistor (v1 – 10) divided by its resistance (1 Ω). That is, the current 
equals (v1 - 10)>1. Figure 4.7 depicts these observations. Repeating this 
reasoning, the current leaving node 1 through the 5 Ω resistor is v1>5, 
and the current leaving node 1 through the 2 Ω resistor is (v1 - v2)>2. 
Because the sum of the three currents leaving node 1 must equal zero, we 
can write the KCL equation at node 1 as

 
v1 - 10

1
+

v1

5
+

v1 - v2

2
= 0. (4.1)

Repeating the process for node 2 gives

 
v2 - v1

2
+

v2

10
- 2 = 0. (4.2)

Note that the first term in Eq. 4.2 is the current leaving node 2 through 
the 2 Ω resistor, the second term is the current leaving node 2 through the 
10 Ω resistor, and the third term is the current leaving node 2 through the 
current source.

In Step 4, solve the simultaneous equations (see Appendix A). 
Equations 4.1 and 4.2 are the two simultaneous equations that describe 
the circuit in terms of the node voltages v1 and v2. Solving for v1 and v2 
yields

v1 =
100
11

= 9.09 V,

v2 =
120
11

= 10.91 V.

Step 5 uses the node voltages to solve for the remaining unknowns in 
the circuit. Once the node voltages are known, all branch currents can be 
calculated. Once these are known, the component voltages and powers 
can be calculated.

A condensed version of the node-voltage method is shown in 
Analysis Method 4.1. To practice the node-voltage method, work through 
Example 4.3.

10 V

i
1 V

iR2 1 1

2

y1
1

2

Figure 4.7 ▲ Computation of the branch current i.

NODE-VOLTAGE METHOD

Analysis Method 4.1 The basic version 
of the node-voltage method.

1. Identify each essential node.
2. Pick and label a reference node; then 
label the node voltages at the remaining 
essential nodes.
3. Write a KCL equation for every 
 nonreference essential node.
4. Solve the equations to find the node- 
voltage values.
5. Solve the circuit using node voltages 
from Step 4 to find component currents, 
voltages, and power values.

40 V10 V

5 V

50 V
ia

icib 3 A
1

2

Figure 4.8 ▲ The circuit for Example 4.3.

EXAMPLE 4.3 Using the Node-Voltage Method

a) Use the node-voltage method of circuit analysis 
to find the branch currents ia, ib, and ic in the cir-
cuit shown in Fig. 4.8.

b) Find the power associated with each source, and 
state whether the source is delivering or absorb-
ing power.
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Solution

a) We begin by noting that the circuit has two es-
sential nodes; thus, we need to write a single KCL 
equation. Step 1: Identify the two essential nodes. 
Step 2: Select the lower node as the reference 
node and define the unknown node voltage as v1. 
Figure 4.9 illustrates these decisions. Step 3: Write 
a KCL equation at the nonreference essential 
node by summing the currents leaving node 1:

v1 - 50
5

+
v1

10
+

v1

40
- 3 = 0.

Step 4: Solve the equation for v1, giving

v1 = 40 V.

Step 5: Use the node voltage v1 and Ohm’s law to 
find the requested branch currents:

ia =
50 - v1

5
=

50 - 40
5

= 2 A,

ib =
v1

10
=

40
10

= 4 A,

ic =
v1

40
=

40
40

= 1 A.

b) The power associated with the 50 V source is

p50V = -50ia = -100 W (delivering).

The power associated with the 3 A source is

p3A = -3v1 = -3(40) = -120 W (delivering).

We check these calculations by noting that 
the total delivered power is 220 W. The to-
tal power absorbed by the three resistors is 
4(5) + 16(10) + 1(40) or 220 W, which equals the 
total delivered power.

40 V10 V

5 V 1

50 V
1

2
3 Ay1

1

2

Figure 4.9 ▲ The circuit shown in Fig. 4.8 with a reference 
node and the unknown node voltage v1.

Objective 1—Understand and be able to use the node-voltage method

 4.1 a)  For the circuit shown, use the node-voltage 
method to find v1, v2, and i1.

b) How much power is delivered to the circuit 
by the 15 A source?

c) Repeat (b) for the 5 A source.

15 V 2 V60 V

5 V

15 A 5 Ay1

1

2

y2

1

2

i1

Answer: (a) 60 V, 10 V, 10 A;
(b) 900 W;
(c) -50 W.

 4.2 Use the node-voltage method to find v in the 
circuit shown.

12 V1 V

2 V 4 V6 V

30 V4.5 A y

1

2

1

2

Answer: 15 V.

ASSESSMENT PROBLEMS

SELF-CHECK:  Also try Chapter Problems 4.6, 4.10, and 4.12.

4.3 The Node-Voltage Method  
and Dependent Sources

If the circuit contains dependent sources, the KCL equations must be 
supplemented with the constraint equations imposed by the dependent 
sources. We will modify Step 3 in the node-voltage method to accommo-
date dependent sources. Example 4.4 illustrates the application of the 
node-voltage method to a circuit containing a dependent source.
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EXAMPLE 4.4 Using the Node-Voltage Method with Dependent Sources

Use the node-voltage method to find the power dis-
sipated in the 5 Ω resistor in the circuit shown in 
Fig. 4.10.

As written, these two node-voltage equations con-
tain three unknowns, namely, v1, v2, and if. We need 
a third equation, which comes from the constraint 
imposed by the dependent source. This equation 
expresses the controlling current of the dependent 
source, if, in terms of the node voltages, or

if =
v1 - v2

5
 .

As you can see, we need to modify Step 3 in the 
node-voltage procedure to remind us to write a 
constraint equation whenever a dependent source 
is present.

Step 3: Write a KCL equation at each nonreference 
essential node. If the circuit contains dependent 
sources, write a dependent source constraint equa-
tion that defines the controlling voltage or current of 
the dependent source in terms of the node voltages.

The condensed form for Step 3 is shown in 
Analysis Method 4.2.

Step 4: Solve for v1, v2, and if, giving

v1 = 16 V, v2 = 10 V, and if = 1.2 A.

Step 5: Use the node voltage values to find the cur-
rent in the 5 Ω resistor and the power dissipated in 
that resistor:

 if =
v1 - v2

5
=

16 - 10
5

= 1.2 A,

 p5Ω = 5if
2 = 5(1.2)2 = 7.2 W.

A good exercise to build your problem-solving 
intuition is to reconsider this example, using node 2 
as the reference node. Does it make the analysis 
easier or harder?

NODE-VOLTAGE METHOD

Analysis Method 4.2 Modified Step 3 for 
the node-voltage method.

3. Write a KCL equation for every nonref-
erence essential node.

• If there are dependent sources, write 
a constraint equation for each one.

1

2
20 V

2 V 5 V 2 V

10 V
if

20 V 8 if
1

2

Figure 4.10 ▲ The circuit for Example 4.4.

1

2
20 V

2 V 5 V 2 V

10 V
if

20 V 8 if
1

2

1 2

y1

1

2

y2

1

2

Figure 4.11 ▲ The circuit shown in Fig. 4.10, with a reference 
node and the node voltages.

Solution
Step 1: Identify the circuit’s three essential nodes. 
We will need two KCL equations to describe the 
circuit. 

Step 2: Since four branches terminate on the lower 
node, we select it as the reference node and label 
the node voltages at the remaining essential nodes. 
The results of the first two steps are shown in 
Fig. 4.11.

Step 3: Generate the simultaneous equations by 
applying KCL at the nonreference essential nodes. 
Summing the currents leaving node 1 gives the 
equation

v1 - 20
2

+
v1

20
+

v1 - v2

5
= 0.

Summing the currents leaving node 2 yields

v2 - v1

5
+

v2

10
+

v2 - 8if
2

= 0.
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4.4 The Node-Voltage Method:  
Some Special Cases

Let’s explore the special case in which a voltage source is the only ele-
ment between two essential nodes. The five-step node-voltage method 
still  applies as long as we modify Step 2.

As an example, let’s look at the circuit in Fig. 4.12. There are three 
essential nodes in this circuit, which means two simultaneous equations 
are needed. Apply Steps 1 and 2 to identify the essential nodes, choose 
a reference node, and label the remaining nodes. Notice that the 100 V 
source constrains the voltage between node 1 and the reference node 
to 100 V. We now modify Step 2 in order to take advantage of this 
simplification.

Step 2: Pick and label a reference node, then label the node voltages at the 
remaining essential nodes. If a voltage source is the only element between 
an essential node and the reference node, replace the node voltage label 
with the value of the voltage source.

Thus, we can replace the voltage v1 in the circuit with its value, 100 V, 
as shown in Fig. 4.13.

Now Step 3 requires only a single KCL equation at node 2:

 
v2 - 100

10
+

v2

50
- 5 = 0. (4.3)

In Step 4, solve Eq. 4.3 for v2:

v2 = 125 V.

Knowing v2, we can calculate the current in every branch. Use Step 5 to 
verify that the current into node 1 in the branch containing the indepen-
dent voltage source is 1.5 A.

As another example, consider the circuit shown in Fig. 4.14, which has 
four essential nodes and requires three simultaneous equations. However, 
two essential nodes are connected by an independent voltage source, and 
two other essential nodes are connected by a current-controlled dependent 

Objective 1—Understand and be able to use the node-voltage method

 4.3 a) Use the node-voltage method to find the 
power associated with each source in the 
circuit shown.

b) State whether the source is delivering power 
to the circuit or extracting power from the 
circuit.

Answer: (a) p50V = -150 W, p3i1 = -144 W, 
p5A = -80 W;

(b) all sources are delivering power to the 
circuit.

ASSESSMENT PROBLEM

1

2
50 V

6 V 2 V

3 i1

4 V
i1

8 V 5 A

SELF-CHECK: Also try Chapter Problems 4.17 and 4.19.

50 V25 V

10 V1

100 V
1

2
5 Ay1

1

2

2

y2

1

2

Figure 4.12 ▲ A circuit with a known node voltage.

50 V25 V

10 V1

100 V 100 V
1

2
5 A

1

2

2

y2

1

2

Figure 4.13 ▲ The circuit in Fig. 4.12 with the node 
voltage v1 replaced with its value, 100 V.

50 V 100 V40 V 4 A50 V
1

2

5 V

if

2 1

10if

Figure 4.14 ▲ A circuit with a dependent voltage 
source connected between nodes.
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voltage source. Making simple modifications to the node-voltage method 
allows us to take advantage of these observations.

There are several possibilities for the reference node. The nodes 
on each side of the dependent voltage source look attractive because, if 
chosen, one of the node voltages would be either +10if (left node is the 
reference) or -10if (right node is the reference). The lower node looks 
even better because one node voltage is immediately known (50 V) and 
five branches terminate there. We therefore opt for the lower node as the 
reference.

Figure 4.15 shows the redrawn circuit, after Steps 1 and 2. Notice that 
we introduced the current i because we cannot express the current in the 
dependent voltage source branch as a function of the node voltages v2 and 
v3. We write a KCL equation at node 2 to give

 
v2 - 50

5
+

v2

50
+ i = 0, (4.4)

and at node 3 to give

 
v3

100
- i - 4 = 0. (4.5)

We eliminate i simply by adding Eqs. 4.4 and 4.5 to get

 
v2 - 50

5
+

v2

50
+

v3

100
- 4 = 0. (4.6)

We will continue the steps of the node-voltage method after we introduce 
a new concept, the supernode.

The Concept of a Supernode
When a voltage source is between two essential nodes, we can combine 
those nodes and the source to form a supernode. Let’s apply the super-
node concept to our circuit from Fig. 4.15. Figure 4.16 shows the circuit 
redrawn with a supernode created by combining nodes 2 and 3. We can 
remember to look for supernodes by modifying Step 2 one final time:

Step 2: Pick and label a reference node, then label the node voltages at the 
remaining essential nodes. If a voltage source is the only element between 
an essential node and the reference node, replace the node voltage label 
with the value of the voltage source. If a voltage source is the only element 
between two nonreference essential nodes, combine the two essential 
nodes and the voltage source into a single supernode.

Step 3 also needs to be modified. Obviously, Kirchhoff’s current law 
must hold for supernodes, so we can write a single KCL equation for the 
supernode. The supernode also constrains the difference between the 
node voltages used to create the supernode to the value of the voltage 
source within the supernode. We therefore need to write a supernode 
constraint equation. Thus, we arrive at the final version of Step 3.

Step 3: Write a KCL equation at each supernode, then write a KCL equa-
tion at each remaining nonreference essential node where the voltage is 
unknown. If there are any dependent sources, write a dependent source 
constraint equation for each one, and if there are any supernodes, write a 
supernode constraint equation for each one.

The final version of the node-voltage method can be found in the end-
of-chapter Summary; a condensed version is given in Analysis Method 4.3.

50 V 100 V40 V

5 V1 2 3

4 A50 V 50 V

1

2

y2

1

2

y3

1

2

1

2

if

2 1

10if

i

Figure 4.15. ▲ The circuit shown in Fig. 4.14 with 
the  selected node voltages defined.

50 V 100 V40 V

5 V1 2 3

4 A50 V 50 V y2

1

2

1

2

y3

1

2

1

2

if

2 1

10if

Figure 4.16 ▲ Combining nodes 2 and 3 to form a 
supernode.
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We can now use Step 3 to create the equations for the circuit in  
Fig. 4.16. First, write the KCL equation for the supernode. Starting with 
the 5 Ω branch and moving counterclockwise around the supernode, we 
generate the equation

 
v2 - 50

5
+

v2

50
+

v3

100
- 4 = 0, (4.7)

which is identical to Eq. 4.6. Creating a supernode at nodes 2 and 3 has 
made writing this equation much easier. Next, write the supernode con-
straint equation by setting the value of the voltage source in the super-
node to the difference between the two node voltages in the supernode:

 v3 - v2 = 10if. (4.8)

Finally, express the current controlling the dependent voltage source as a 
function of the node voltages:

 if =
v2 - 50

5
 . (4.9)

Use Step 5 to solve Eqs. 4.7, 4.8, and 4.9 for the three unknowns v2, v3, 
and if to give

v2 = 60 V, v3 = 80 V,  and  if = 2 A.

Let’s use the node-voltage method to analyze the amplifier circuit first 
introduced in Section 2.5 and shown again in Fig. 4.17. When we analyzed 
this circuit using Ohm’s law, KVL, and KCL in Section 2.5, we faced the task 
of writing and solving six simultaneous equations. Work through Example 
4.5 to see how the node-voltage method can simplify the circuit analysis.

NODE-VOLTAGE METHOD

Analysis Method 4.3 Complete form of the node-voltage method.

1. Identify each essential node.
2. Pick and label a reference node; then label the node 
voltage at the remaining essential nodes.

• If a voltage source is the only element between 
an essential node and the reference node, replace 
the node voltage label with the value of the volt-
age source.

• If a voltage source is the only element between 
two nonreference essential nodes, combine the 
nodes and the source into a single supernode.

3. Write a KCL equation for each supernode and every 
remaining nonreference essential node where the voltage 
is unknown.

• If there are dependent sources, write a constraint 
equation for each one.

• If there are supernodes, write a constraint equation 
for each one.

4. Solve the equations to find the node voltage values 
and any other unknowns.
5. Solve the circuit using the values from Step 4 to find 
component currents, voltages, and power values.

VCC

R2

R1

RE

biB

RC

1

2

a

b c

d

V0

1 2

iB

Figure 4.17 ▲ The transistor amplifier circuit 
shown in Fig 2.24.

EXAMPLE 4.5 Node-Voltage Analysis of the Amplifier Circuit

Use the node-voltage method to find iB in the 
 amplifier circuit shown in Fig. 4.17.

Solution
Step 1: We identify the four essential nodes, which 
are labeled a, b, c, and d. Step 2: Choose node d 
as the reference node. Then label the voltages at 
the remaining three essential nodes. Step 3: Before 

writing equations, we notice two special cases. The 
voltage source VCC in the branch connecting node 
a and the reference node constrains the voltage be-
tween those nodes, so va = VCC, and the voltage 
source V0 in the branch between nodes b and c con-
strains the voltage between those nodes and creates 
a supernode. The results of Steps 1 and 2 and the 
modifications prompted by the special cases are de-
picted in Fig. 4.18.
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R1

RC

R2 RE

1

2

yb
iB

1

1

2 2

yc

VCC

biB
VCC

V0

1

2

b c

d

a

1 2

Figure 4.18 ▲ The circuit shown in Fig. 4.17, with voltages 
and the supernode identified.

Continuing Step 3, write the supernode KCL 
equation to give

 
vb

R2
+

vb - VCC

R1
+

vc

RE
- biB = 0. (4.10)

Now write the dependent source constraint equa-
tion, which defines the controlling current iB in 
terms of the node voltages. Since iB is the current 
in a voltage source, we cannot use Ohm’s law, so in-
stead, write a KCL equation at node c:

 iB =
vc

RE
- biB. (4.11)

The last part of Step 3 is the supernode constraint 
equation

 vb - vc = V0. (4.12)

Step 3 gave us three equations with three unknowns. 
To solve these equations, we use back-substitution 
to eliminate the variables vb and vc. Begin by rear-
ranging Eq. 4.11 to give

 iB =
vc

RE(1 + b)
 . (4.13)

Next, solve Eq. 4.12 for vc to give

 vc = vb - V0. (4.14)

Substituting Eqs. 4.13 and 4.14 into Eq. 4.10 and 
 rearranging yields

 vb c 1
R1

+
1

R2
+

1
(1 + b)RE

 d =
VCC

R1
+

V0

(1 + b)RE
 . 

 
 (4.15)

Solving Eq. 4.15 for vb yields

 vb =
VCCR2(1 + b)RE + V0R1R2

R1R2 + (1 + b)RE(R1 + R2)
 . (4.16)

You should verify that, when Eq. 4.16 is combined 
with Eqs. 4.13 and 4.14, the solution for iB is

 iB =
(VCCR2)>(R1 + R2) - V0

(R1R2)>(R1 + R2) + (1 + b)RE
 , (4.17)

which is identical to Eq. 2.21. (See Problem 4.31.) 
Using the node-voltage method to analyze this 
 circuit reduces the problem from manipulating six 
simultaneous equations (see Problem 2.38) to ma-
nipulating three simultaneous equations.

Objective 1—Understand and be able to use the node-voltage method

 4.4 Use the node-voltage method to find vo in the 
circuit shown.

1

2

30 V

10 V 20 V

40 V 20iD10 V yo

1

2

iD
2
1

Answer: 24 V.

 4.5 Use the node-voltage method to find v in the 
circuit shown.

10 V 2.5 V 12 V7.5 V

2.5 V 1 V

4.8 A y

1

2

1

2

2 1

ix

ix

Answer: 8 V.

ASSESSMENT PROBLEMS
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4.5 Introduction to the Mesh-Current 
Method

Before we learn about the mesh-current method for solving circuits, let’s 
summarize the node-voltage method. The node-voltage method pre-
sented in Sections 4.2–4.4 is used to solve a circuit by writing simultaneous 
KCL equations at essential nodes. If a dependent source is present, a de-
pendent source constraint equation is required. Special cases exist when a 
voltage source is the only component in a branch connecting two essential 
nodes. If one of the essential nodes is the reference node, the node voltage 
at the other node is the value of the voltage source and no KCL equation 
is required at that node. If neither of the essential nodes is the reference 
node, the two nodes and the voltage source are combined into a super-
node. A KCL equation is written for the supernode as well as a supernode 
constraint equation. The simultaneous equations are solved to find the 
node voltages, and the node voltages can be used to find the voltage, cur-
rent, and power for every circuit component.

We now turn to the mesh-current method, presented in Sections 4.5–4.7.  
The mesh-current method is used to solve a circuit by writing simulta-
neous KVL equations for the circuit’s meshes. If a dependent source is 
present, a dependent source constraint equation is required. Special cases 
exist when a current source is a component of a mesh. If a current source 
is a component in only one mesh, the mesh current must have the same 
value as the current source and no KVL equation is needed for that mesh. 
If a current source is shared by two adjacent meshes, the two meshes are 
combined to form a supermesh. A KVL equation is written for the super-
mesh as well as a supermesh constraint equation. The simultaneous equa-
tions are solved to find the mesh currents, and the mesh currents can be 
used to find the voltage, current, and power for every circuit component.

Did you notice the symmetries in the descriptions of the node-voltage 
method and the mesh-current method? In engineering, this symmetry is 
called duality, and we will encounter it throughout this text. In comparing the 
two circuit analysis techniques, we see that essential nodes and meshes are 
duals, KVL and KCL are duals, voltages and currents are duals, supernodes 
and supermeshes are duals, and so on. Recognizing the existence of duality 
can help you master the techniques for circuit analysis presented in this book.

Applying the Mesh-Current Method
Recall from the terms defined in Table 4.1 that a mesh is a loop that does 
not contain any other loops. You should review the definitions of loop 
and path in Table 4.1, too. A mesh current is the current that exists on the 
perimeter of a mesh. We represent a mesh current on a circuit diagram 

 4.6 Use the node-voltage method to find v1 in the 
circuit shown.

1

2

6if

2 V 3 V

24 V 3 V60 V y1

1

2

2 1

if

SELF-CHECK: Also try Chapter Problems 4.22, 4.27, and 4.28.

Answer: 48 V.
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using a curved arrow that follows the mesh perimeter, where the arrow-
head indicates the current’s direction.

Just like the node-voltage method, the mesh-current method is a 
step-by-step procedure. Let’s use the mesh-current method for the circuit 
shown in Fig. 4.19 to solve for the currents i1, i2, and i3. Because the circuit 
has two meshes, we expect to write two simultaneous equations.

In Step 1, we identify the meshes using a directed curved arrow that 
follows the perimeter of the mesh.

Step 2 labels the mesh currents using the labels ia and ib. The results 
of Steps 1 and 2 are shown in Fig. 4.20. We can see from this figure that 
the branch current i1 equals the mesh current ia and that the branch 
current i2 equals the mesh current ib. Note that to avoid confusion we 
use different names for the branch currents and the mesh currents in 
this circuit.

In Step 3, we write the KVL equation for each mesh. Let’s start with 
the mesh whose mesh current is ia. Pick a starting point anywhere on the 
perimeter of the mesh and sum the voltage drops for each component in 
the mesh in the direction of the mesh current until you return to the start-
ing point. Start below the 100 V source and travel in the clockwise direc-
tion of the mesh current. The first voltage is due to the 100 V source and 
has the value –100. The next voltage is across the 4 Ω resistor, whose cur-
rent is ia, so from Ohm’s law the voltage is 4ia. The next voltage is across 
the 10 Ω resistor, whose current is (ia – ib), so from Ohm’s law the voltage 
is 10(ia – ib). We are back to the starting point, so KVL tells us that the 
sum of these three voltages is zero:

-100 + 4ia + 10(ia - ib) = 0.

Repeat this process to get the KVL equation for the ib mesh. Remember 
that you can start anywhere on the perimeter of this mesh, so let’s start at 
the left of the 5 Ω resistor. Again we determine the voltage drops for each 
component in the direction of the ib mesh. The voltage drop for the 5 Ω 
resistor is 5ib, the voltage drop for the 40 V source is 40, and the voltage 
drop for the 10 Ω resistor is 10(ib – ia). We have returned to the starting 
point, so KVL tells us that the sum of these three voltages is zero:

5ib + 40 + 10(ib - ia) = 0.

In Step 4, we solve these simultaneous mesh current equations (see 
Appendix A) to find that the mesh current values are

ia = 10 A

and

ib = 4 A.

Step 5 uses the mesh currents to solve for the currents, voltages, and 
power for all components in the circuit. Let’s calculate the three branch 
currents to illustrate:

 i1 = ia = 10 A,

 i2 = ib = 4 A,

 i3 = ia - ib = 6 A.

The ability to calculate the branch currents using the mesh currents is cru-
cial to the mesh-current method of circuit analysis. Once you know the 
mesh currents, you also know the branch currents. And once you know 
the branch currents, you can compute any voltages or powers of  interest. 
A condensed version of the mesh-current method is given in Analysis 
Method 4.4.

i3
1

2

1

2

i1 i2

4 V 5 V

10 V100 V 40 V

Figure 4.19 ▲ A circuit used to illustrate devel-
opment of the mesh-current method of circuit 
analysis.

1
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1

2
ia

ib

4 V

10 V

5 V

100 V 40 V

i1 i3 i2

Figure 4.20 ▲ Mesh currents ia and ib.

MESH-CURRENT METHOD

Analysis Method 4.4 The basic version 
of the mesh-current method.

1. Identify the meshes with curved 
 directed arrows that follow the perimeter  
of each mesh.
2. Label the mesh currents for each 
mesh.
3. Write the KVL equations for each 
mesh.
4. Solve the KVL equations to find the 
mesh current values.
5. Solve the circuit using mesh currents 
from Step 4 to find component currents, 
voltages, and power values.
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Example 4.6 illustrates how the mesh-current method is used to find 
source powers and a branch voltage.

EXAMPLE 4.6 Using the Mesh-Current Method

a) Use the mesh-current method to determine the 
power associated with each voltage source in the 
circuit shown in Fig. 4.21.

b) Calculate the voltage vo across the 8 Ω resistor.

Solution
a) Step 1: We identify the three meshes in the circuit 

and draw the mesh currents as directed curved 
arrows following the perimeter of each mesh. It 
is best to define all mesh currents in the same di-
rection.

Step 2: Label the mesh currents; the results of the 
first two steps are depicted in Fig. 4.22.

Step 3: We use KVL to generate an equation for 
each mesh by summing the voltages in the direc-
tion of the mesh current. In the ia mesh, start just 

below the 40 V source and sum the voltages in 
the clockwise direction to give

-40 + 2ia + 8(ia - ib) = 0.

In the ib mesh, start below the 8 Ω resistor and 
sum the voltages in the clockwise direction to give

8(ib - ia) + 6ib + 6(ib - ic) = 0.

In the ic mesh, start below the 6 Ω resistor and 
sum the voltages in the clockwise direction to give

6(ic - ib) + 4ic + 20 = 0.

Step 4: Solve the three simultaneous mesh cur-
rent equations from Step 3 to give

 ia = 5.6 A,

 ib = 2.0 A,

 ic = -0.80 A.

Step 5: Use the mesh currents to find the power 
for each source. The mesh current ia equals the 
branch current in the 40 V source, so the power 
associated with this source is

p40V = -40ia = -224 W.

The minus sign means that this source is deliver-
ing power to the network. The current in the 20 V 
source equals the mesh current ic; therefore

p20V = 20ic = -16 W.

The 20 V source also is delivering power to the 
network.

b) The branch current in the 8 Ω resistor in the di-
rection of the voltage drop vo is ia - ib. Therefore

vo = 8(ia - ib) = 8(3.6) = 28.8 V.

1

2

1

2
40 V

2 V 6 V 4 V

6 V8 V 20 Vyo

1

2

Figure 4.21 ▲ The circuit for Example 4.6.

1
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1
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40 V

2 V 6 V 4 V

6 V8 V 20 V
ia icib

Figure 4.22 ▲ The three mesh currents used to analyze the 
circuit shown in Fig. 4.21.

Objective 2—Understand and be able to use the mesh-current method

 4.7 Use the mesh-current method to find (a) the 
power delivered by the 80 V source to the cir-
cuit shown and (b) the power dissipated in the 
8 Ω resistor.

Answer: (a) 400 W;
(b) 50 W.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 4.36 and 4.37.

30 V

5 V 90 V

26 V 8 V80 V
1
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4.6 The Mesh-Current Method  
and Dependent Sources

If the circuit contains dependent sources, we must modify the equation- 
writing step in the mesh-current analysis method, just as we did in the 
node-voltage analysis method.

Step 3: Write the KVL equation for each mesh; if the circuit contains 
a dependent source, write a dependent source constraint equation that 
defines the controlling variable for the dependent source in terms of the 
mesh currents.

The condensed form for Step 3 is shown in Analysis Method 4.5. 
Example 4.7 applies the mesh-current method to a circuit with a depen-
dent source.

MESH-CURRENT METHOD

Analysis Method 4.5 Modified Step 3 for 
the mesh-current method.

3. Write the KVL equations for each mesh.
• If there are dependent sources, write 

a dependent source constraint equa-
tion for each.

1 V

5 V 4 V

1

2
15if50 V

1

2
20 Vif

Figure 4.23 ▲ The circuit for Example 4.7.

1 V

5 V 4 V

1

2
15if50 V

1

2
20 Vif

i2

i1 i3

Figure 4.24 ▲ The circuit shown in Fig. 4.23 with the three 
mesh currents.

EXAMPLE 4.7 Using the Mesh-Current Method with Dependent Sources

Use the mesh-current method to find the power 
dissipated in the 4 Ω resistor in the circuit shown 
in Fig. 4.23.

Solution
Step 1: Begin by drawing the mesh currents in each 
of the three meshes.

Step 2: Label each mesh current. The resulting cir-
cuit is shown in Fig. 4.24.

Step 3: Write a KVL equation for each mesh by 
picking a starting point anywhere in the mesh 
and summing the voltages around the mesh in the 

 direction of the mesh current. When you return to 
the starting point, set the sum equal to zero. The 
three mesh-current equations are

 5(i1 - i2) + 20(i1 - i3) - 50 = 0,

 5(i2 - i1) + 1i2 + 4(i2 - i3) = 0,

 20(i3 - i1) + 4(i3 - i2) + 15if = 0.

To complete Step 3, express the branch current con-
trolling the dependent voltage source in terms of 
the mesh currents as

if = i1 - i3.

Step 4: Solve the four equations generated in Step 3 
to find the four unknown currents:

i1 = 29.6 A, i2 = 26 A, i3 = 28 A, if = 1.6 A.

Step 5: Use the mesh currents to find the power for 
the 4  Ω resistor. The current in the 4 Ω resistor ori-
ented from left to right is i3 - i2, or 2 A. Therefore, 
the power dissipated is

p4Ω = (i3 - i2)
2(4) = (2)2(4) = 16 W.

What if you had not been told to use the mesh- 
current method? Would you have chosen the 
node-voltage method? It reduces the problem to 
finding one unknown node voltage because of the 
presence of two voltage sources between essential 
nodes. We say more about making such choices in 
Section 4.8.
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4.7 The Mesh-Current Method: Some 
Special Cases

Recall that voltage sources present special cases when using the node- voltage 
method (Section 4.4). So, it is no surprise that current sources present spe-
cial cases when using the mesh-current method. There are two  special cases, 
one that occurs when a current source is in a single mesh, and the other that 
occurs when a current source is shared by two adjacent meshes.

When a current source is in a single mesh, the value of the mesh cur-
rent is known, since it must equal the current of the source. Therefore, we 
label the mesh current with its value, and we do not need to write a KVL 
equation for that mesh. This leads to the following modification in Step 2 
of the mesh-current method.

Step 2: Label the mesh current for each mesh; if there is a current source in 
a single mesh, label the mesh current with the value of the current source.

This special case is illustrated in Example 4.8.

Objective 2—Understand and be able to use the mesh-current method

 4.8 a)  Determine the number of mesh-current 
equations needed to solve the circuit shown.

b) Use the mesh-current method to find how 
much power is being delivered by the depen-
dent voltage source.

14 V

2 V

1 V25 V
1

2

5 V

10 V
1

2

23 yf
2 1

3 V

1 2yf

Answer: (a) 3;
(b) 36 W.

 4.9 Use the mesh-current method to find vo in the 
circuit shown.

2 V

6 V 8 V

1

2
5ifif25 V

1

2
8 Vyo

1

2

Answer: 16V.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 4.39 and 4.41.

EXAMPLE 4.8 A Special Case in the Mesh-Current Method

Use the mesh-current method to find branch cur-
rents ia, ib, and ic in the circuit for Example 4.3, re-
peated here as Fig. 4.25.

5 V

10 V50 V 40 V 3 A
1

2

ia
ib ic

Figure 4.25 ▲ The circuit for Example 4.8.

Solution
Step 1: Use directed arrows that traverse the mesh 
perimeters to identify the three mesh currents.

Step 2: Label the mesh currents as i1, i2, and i3. The 
modification in Step 2 reminds us to look for cur-
rent sources, and the i3 mesh has a current source 
that is not shared by any other mesh. Therefore, 
the i3 mesh current equals the current supplied by 
the source. Note that i3 and the current source are 
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in  opposite directions, so the current in this mesh 
should be labeled -3 A. The results of Steps 1 and 2 
are shown in Fig. 4.26.

Step 3: Write the KVL equations for the meshes 
whose mesh currents are unknown, which in this 
 example are the i1 and i2 meshes. Remember to pick 
a starting point anywhere along the mesh, sum the 
voltages in the direction of the mesh current, and 
set the sum equal to zero when you return to the 

 starting point. The resulting simultaneous mesh cur-
rent equations are

-50 + 5i1 + 10(i1 - i2) = 0 and

10(i2 - i1) + 40(i2 - (-3)) = 0.

Step 4: Solving the simultaneous mesh current 
equations gives

i1 = 2 A  and i2 = -2 A.

Step 5: Finally, we use the mesh currents to calculate 
the branch currents in the circuit, ia, ib, and ic.

 ia = i1 = 2 A,

 ib = i1 - i2 = 4 A,

 ic = i2 + 3 = 1 A.

These are the same branch current values as those 
calculated in Example 4.3. Which of the two cir-
cuit analysis methods is better when calculating 
the branch currents? Which method is better when 
calculating the power associated with the sources?

5 V

10 V50 V –3 A40 V 3 A
1

2

ia
ib ic

i1 i2

Figure 4.26 ▲ The circuit shown in Fig. 4.25 with the mesh 
currents identified and labeled.

Now we turn our attention to the other special case, created by a 
current source that is shared between two adjacent meshes. The circuit 
shown in Fig. 4.27 depicts this situation. Applying Steps 1 and 2, we define 
the mesh currents ia, ib, and ic, as well as the voltage across the 5 A current 
source. In Step 3, we write the KVL equations for each mesh; let’s start 
with mesh a and pick the starting point just below the 100 V source. The 
first two voltages we encounter when we traverse the mesh in the direc-
tion of the mesh current are -100 V and 3(ia – ib). But when we get to the 
current source, we must label the voltage drop across it as v and use this 
variable in the equation. Thus, for mesh a:

 -100 + 3(ia - ib) + v + 6ia = 0. (4.18)

The same situation arises in mesh c, to give

 50 + 4ic - v + 2(ic - ib) = 0. (4.19)

We now add Eqs. 4.18 and 4.19 to eliminate v; when simplified, the result is

 -50 + 9ia - 5ib + 6ic = 0. (4.20)

We will complete Steps 4 and 5 in the mesh-current method after intro-
ducing a new concept, the supermesh.

The Concept of a Supermesh
When a current source is shared between two meshes, we can combine 
these meshes to form a supermesh, which traverses the perimeters of the 
two meshes and avoids the branch containing the shared current source. 
Figure 4.28 illustrates the supermesh concept. Using a modified Step 3, 
we write a KVL equation around the supermesh (denoted by the dashed 
line), using the original mesh currents to give

-100 + 3(ia - ib) + 2(ic - ib) + 50 + 4ic + 6ia = 0,

10 V

3 V

6 V

2 V

4 V

icia
50 V

1

2
100 V

1

2
5 Ay

1

2

ib

Figure 4.27 ▲ A circuit illustrating mesh analysis 
when a branch contains an independent current 
source.

10 V

3 V

6 V

2 V

4 V

Supermesh

50 V
1

2
100 V

1

2
icia

ib

5 A

Figure 4.28 ▲ The circuit shown in Fig. 4.27, 
 illustrating the concept of a supermesh.



138 Techniques of Circuit Analysis

which simplifies to

 -50 + 9ia - 5ib + 6ic = 0. (4.21)

Note that Eqs. 4.20 and 4.21 are identical. Thus, the supermesh has elim-
inated the need for introducing the unknown voltage across the current 
source.

The KVL equation for the b mesh is

 10ib + 2(ib - ic) + 3(ib - ia) = 0. (4.22)

We have two simultaneous equations, Eqs. 4.21 and 4.22, but three 
unknowns. Remember that the presence of a supernode in the node- 
voltage method requires a KCL equation at the supernode and a super-
node constraint equation that defines the difference between the node 
voltages in the supernode as the value of the voltage source in the super-
node. In a like manner, the presence of a supermesh in the mesh-current 
method requires a KVL equation around the supermesh and a supermesh 
constraint equation that defines the difference between the mesh currents 
in the supermesh as the value of the shared current source. From Fig. 4.28, 
the supermesh constraint equation is

 ic - ia = 5. (4.23)

The final version of Steps 2 and 3 in the mesh-current method reminds us 
how to handle current sources in our circuits:

• Step 2: Label the mesh current for each mesh; if there is a current 
source in a single mesh, label the mesh current with the value of the 
source. If there is a current source shared between two meshes, create 
a supermesh by combining the two meshes and mentally erasing the 
current source.

• Step 3: Write a KVL equation around each supermesh and each sin-
gle mesh where the mesh current is unknown. If there is a dependent 
source, write a constraint equation defining the controlling quantity 
for the dependent source in terms of the mesh currents. If there is a 
supermesh, write a supermesh constraint equation that defines the 
difference between the two mesh currents in the supermesh as the 
value of the shared current source.

The final version of the mesh-current method can be found in the end-of-
chapter Summary; a condensed version is given in Analysis Method 4.6.

MESH-CURRENT METHOD

Analysis Method 4.6 Complete form of the mesh-current method.

1. Identify the meshes with curved directed arrows that follow the perimeter of each mesh.
2. Label the mesh currents for each mesh.

• If a current source is in a single mesh, label the mesh current with the value of the current source.
• If a current source is shared between two meshes, combine the meshes to create a supermesh and  

ment ally erase the current source.
3. Write the KVL equations for each supermesh and each single mesh where the current is unknown.

• If there are dependent sources, write a dependent source constraint equation for each.
• If there are supermeshes, write a supermesh constraint equation for each.

4. Solve the KVL equations and any constraint equations to find the mesh-current values and other unknowns.
5. Solve the circuit using mesh currents from Step 4 to find component currents, voltages, and power values.
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Use Step 4 to solve Eqs. 4.21–4.23 and confirm that the solutions for the 
three mesh currents are

ia = 1.75 A, ib = 1.25 A, and ic = 6.75 A.

Work through Example 4.9 to see how the mesh-current method can be 
used to solve the amplifier circuit from Example 4.5.

EXAMPLE 4.9 Mesh-Current Analysis of the Amplifier Circuit

Use the mesh-current method to find iB for the 
 amplifier circuit in Fig. 4.29.

R1

Rc

RER2

biB
VCC

1

2V0

1 2

iB

Figure 4.29 ▲ The circuit shown in Fig 2.24.

Solution
Step 1: Use directed arrows that traverse the mesh 
perimeters to identify the three mesh currents.

Step 2: Label the mesh currents as ia, ib, and ic. Then 
recognize the current source that is shared between 
the ia and ic meshes. Combine these meshes, bypass-
ing the branch with the shared current source, to 
create a supermesh. The result of the first two steps 
is the circuit shown in Fig. 4.30.

Step 3: Using KVL, sum the voltages around the su-
permesh in terms of the mesh currents ia,ib, and ic 
to obtain

 R1ia + vCC + RE(ic - ib) - V0 = 0. (4.24)

The KVL equation for mesh b is

 R2ib + V0 + RE(ib - ic) = 0. (4.25)

The constraint imposed by the dependent current 
source is

 iB = ib - ia. (4.26)

The supermesh constraint equation is

 biB = ia - ic. (4.27)

Step 4: Use back-substitution to solve Eqs. 4.24–4.27. 
Start by combining Eqs. 4.26 and 4.27 to eliminate 
iB and solve for ic to give

 ic = (1 + b)ia - bib. (4.28)

We now use Eq. 4.28 to eliminate ic from Eqs. 4.24 
and 4.25:

 [R1 + (1 + b)RE]ia - (1 + b)REib = V0 - VCC,
 (4.29)

 -(1 + b)REia + [R2 + (1 + b)RE]ib = -V0.
 (4.30)

You should verify that the solution of Eqs. 4.29 and 
4.30 for ia and ib gives

 ia =
V0R2 - VCCR2 - VCC(1 + b)RE

R1R2 + (1 + b)RE(R1 + R2)
, (4.31)

 ib =
-V0R1 - (1 + b)REVCC

R1R2 + (1 + b)RE(R1 + R2)
 . (4.32)

Step 5: Use the two mesh currents from Eqs. 4.31 
and 4.32, together with the definition for iB in  
Eq. 4.26, to find iB. You should verify that the result 
is the same as that given by Eq. 2.21.

R1

Rc

R2 RE

VCC
1

2
ic

ia

ib

V0
1 2

iB

biB

Figure 4.30 ▲ The circuit shown in Fig. 4.29, depicting 
the supermesh created by the presence of the dependent 
 current source.
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4.8 The Node-Voltage Method Versus 
the Mesh-Current Method

It is natural to ask, “When is the node-voltage method preferred to the 
mesh-current method and vice versa?” As you might suspect, there is no 
clear-cut answer. Asking a number of questions, however, may help you 
identify the more efficient method before plunging into the solution process:

• Does one of the methods result in fewer simultaneous equations to 
solve?

• Is there a branch between two essential nodes that contains only a 
voltage source? If so, making one of the essential nodes the refer-
ence node and using the node-voltage method reduces the number of 
equations to be solved.

• Is there a mesh containing a current source that is not shared with an 
adjacent mesh? If so, using the mesh-current method allows you to 
reduce the number of equations to be solved.

• Will solving some portion of the circuit give the requested solution? 
If so, which method is most efficient for solving just the pertinent por-
tion of the circuit?

Perhaps the most important observation is that, for any situation, some 
time spent thinking about the problem in relation to the various analytical 

Objective 2—Understand and be able to use the mesh-current method

 4.10 Use the mesh-current method to find the power 
dissipated in the 2 Ω resistor in the circuit shown.

3 V

6 V

8 V

4 V

1

2
30 V 5 V2 V 16 A

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 4.45, 4.46, 4.50, and 4.52.

Answer: 72 W.

2 V 1 V

10 A

75 V
1

2
5 Vyf

1

2

2yf
5

ia

Answer: 15 A.

 4.12 Use the mesh-current method to find the 
power dissipated in the 1 Ω resistor in the 
circuit shown.

2 V

2 V

1 V

2 V 6 V
2

1
10 V

1

2

2 A

Answer: 36 W.

 4.11 Use the mesh-current method to find the 
mesh current ia in the circuit shown.
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approaches available is time well spent. Examples 4.10 and 4.11 illus-
trate the process of deciding between the node-voltage and mesh-current 
methods.

EXAMPLE 4.10  Understanding the Node-Voltage Method Versus  
Mesh-Current Method

Find the power dissipated in the 300 Ω resistor in 
the circuit shown in Fig. 4.31.

100 V150 V 250 V 500 V

iD

50iD
200 V 400 V

1

2
256 V

1

2
128 V

2

1

300 V

Figure 4.31 ▲ The circuit for Example 4.10.

Solution
To find the power dissipated in the 300 Ω resistor, 
we need to find either the current in the resistor 
or the voltage across it. The mesh-current method 
yields the current in the resistor; this approach re-
quires solving five mesh equations, as depicted in 
Fig. 4.32, and a dependent source constraint equa-
tion, for a total of six simultaneous equations.

ia ic id ie

100 V150 V 250 V 500 V

iD

200 V 400 V
1

2
256 V

1

2
50 iD 128 V

2

1

300 V

ib

Figure 4.32 ▲ The circuit shown in Fig. 4.31, with the five 
mesh currents.

Let’s now consider using the node-voltage 
method. The circuit has four essential nodes, and 
therefore only three node-voltage equations are re-
quired to describe the circuit. The dependent voltage 
source between two essential nodes forms a super-
node, requiring a KCL equation and a supernode 
constraint equation. We have to sum the currents at 
the remaining essential node, and we need to write 
the dependent source constraint equation, for a total 
of four simultaneous equations. Thus, the node- 
voltage method is the more attractive approach.

Step 1: We begin by identifying the four essential 
nodes in the circuit of Fig. 4.31. The three black dots 
at the bottom of the circuit identify a single essen-
tial node, and the three black dots in the middle of 
the circuit are the three remaining essential nodes.

Step 2: Select a reference node. Two essential 
nodes in the circuit in Fig. 4.31 merit consider-
ation. The first is the reference node in Fig. 4.33, 
where we also defined the three node voltages 
v1, v2, and v3, and indicated that nodes 1 and 3 
form a supernode because they are connected by 
a dependent voltage source. If the reference node 
in Fig. 4.33 is selected, one of the unknown node 
voltages is the voltage across the 300 Ω resistor, 
namely, v2 in Fig. 4.33. Once we know this voltage, 
we calculate the power in the 300 Ω resistor by 
using the expression

p300Ω = v2
2>300.

100 V150 V 250 V 500 V

iD

y1 y2

y3

50 iD
200 V 400 V

1

2
256 V

1

2
128 V

2

1

300 V

1

3

2

Figure 4.33 ▲ The circuit shown in Fig. 4.31, with a 
 reference node.

The second node worth considering as the ref-
erence node is the bottom node in the circuit, as 
shown in Fig. 4.34. If this reference node is chosen, 
one of the unknown node voltages is eliminated 
because vb = 50i∆. We would need to write two 
KCL equations and a dependent source constraint 
equation, and solve these three simultaneous equa-
tions. However, to find either the current in the 
300 Ω resistor or the voltage across it requires an 
additional calculation once we know the node volt-
ages va and vc.

b

yb

a

ya

c

yc100 V150 V 250 V 500 V

iD

50 iD200 V 400 V
1

2
256 V

1

2
128 V

2

1

300 V

Figure 4.34 ▲ The circuit shown in Fig. 4.31 with an 
 alternative reference node.
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Step 3: We compare these two possible reference 
nodes by generating two sets of KCL equations and 
constraint equations. The first set pertains to the cir-
cuit shown in Fig. 4.33, and the second set is based 
on the circuit shown in Fig. 4.34.

• Set 1 (Fig. 4.33)
At the supernode,

v1

100
+

v1 - v2

250
+

v3

200
+

v3 - v2

400
+

v3 - (v2 + 128)

500

+
v3 + 256

150
= 0.

At v2,

v2

300
+

v2 - v1

250
+

v2 - v3

400
+

v2 + 128 - v3

500
= 0.

The dependent source constraint equation is

i∆ =
v2

300
 .

The supernode constraint equation is

v1 - v3 = 50i∆.

• Set 2 (Fig. 4.34); remember that vb = 50i∆.
At va,

va

200
+

va - 256
150

+
va - 50i∆

100
+

va - vc

300
= 0.

At vc,

vc

400
+

vc + 128
500

+
vc - 50i∆

250
+

vc - va

300
= 0.

The dependent source constraint equation is

i∆ =
vc - va

300
 .

Step 4: Solve each set of equations.

Step 5: Verify that both solutions lead to a power cal-
culation of 16.57 W dissipated in the 300 Ω resistor.

EXAMPLE 4.11 Comparing the Node-Voltage and Mesh-Current Methods

Find the voltage vo in the circuit shown in Fig. 4.35.

4 V

6 V

1

2
193 V

1

2
0.8 yu0.5 A0.4 yDyo

2

1

2.5 V

7.5 V

yu1 2

8 V

2 V

yD1 2

Figure 4.35 ▲ The circuit for Example 4.11.

Solution
We first consider using the mesh-current method.

Step 1: Identify the three mesh currents in the circuit 
using directed arrows that follow the mesh perimeters.

Step 2: Label the three mesh currents. Because there 
are two currents sources, each shared by two meshes, 
we can combine all three meshes into a single super-
mesh that traverses the perimeter of the entire circuit 
and avoids the two branches with current sources. The 
result of these two steps is shown in Fig. 4.36.

Step 3: Write the KCL equation for the supermesh:

-193 + 4ia + 2.5ib + 2ic + 0.8vu + 8ic + 7.5ib

+ 6ia = 0.

The supermesh constraint equations are

ib - ia = 0.4v∆  and ic - ib = 0.5,

and the two dependent source constraint equations are

v∆ = 2ic  and vu = -7.5ib.

Step 4: We must solve the five simultaneous equa-
tions generated in Step 3.

Step 5: We need one additional equation to find vo 
from the mesh current ia:

vo = 193 - 10ia.

Now let’s consider using the node-voltage method.

Step 1: There are four essential nodes in the cir-
cuit of Fig. 4.35, identified by the four black dots 
in the figure.

Step 2: We can make the unknown voltage vo one 
of the three node voltages by choosing the bottom 
left node as the reference node. After labeling the 
remaining two node voltages, we have the circuit in 
Fig. 4.37.

ia ib ic

4 V

6 V

1

2
193 V

1

2
0.8 yu

0.5 A
0.4 yDyo

2

1

2.5 V

7.5 V

yu1 2

8 V

2 V

yD1 2

Figure 4.36 ▲ The circuit shown in Fig. 4.35 with the three mesh 
currents.
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vb

7.5
+ 0.5 +

vb + 0.8vu - va

10
= 0.

The dependent source constraint equations are

vu = -vb and v∆ = 2 c va - (vb + 0.8vu)

10
 d .

Step 4: Once we solve these five simultaneous equa-
tions, we have the value of vo without writing an ad-
ditional equation, so Step 5 is not needed.

Based on the comparison of the two methods, the 
node-voltage method involves a bit less work. 
You should verify that both approaches give 
vo = 173 V.

Step 3: The KCL equations are

 
vo - 193

10
- 0.4v∆ +

vo - va

2.5
= 0,

 
va - vo

2.5
- 0.5 +

va - (vb + 0.8vu)

10
= 0,

4 V

6 V

1

2
193 V 0.5 A

1

2
0.8 yu

1

2
0.4 yDyo

2

1

2.5 V

7.5 V

yu1 2

8 V

2 V

yD1 2

yb

ya

Figure 4.37 ▲ The circuit shown in Fig. 4.35 with 
node voltages.

Objective 3—Deciding between the node-voltage and mesh-current methods

 4.13 Find the power delivered by the 2 A current 
source in the circuit shown.

15 V 10 V

20 V
1

2
25 V

1

2
2 A

Answer: 70 W.

 4.14 Find the power delivered by the 4 A current 
source in the circuit shown.

3 V

5 V2 V

4 V

ix

4 A

6 V
1

2
128 V 30 ix

1

2

Answer: 40 W.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 4.54 and 4.56.

4.9 Source Transformations
We are always interested in methods that simplify circuits. Series-parallel 
reductions and ∆-to-Y transformations are already on our list of simpli-
fying techniques. We now expand the list with source transformations. A 
source transformation allows a voltage source in series with a resistor to 
be replaced by a current source in parallel with the same resistor or vice 
versa. Figure 4.38 shows a source transformation. The double-headed 
arrow emphasizes that a source transformation is bilateral; that is, we can 
start with either configuration and derive the other.

We need to find the relationship between vs and is that guarantees 
the two configurations in Fig. 4.38 are equivalent with respect to nodes a 
and b. Equivalence is achieved if any resistor RL has the same current and 
thus the same voltage drop, whether connected between nodes a and b in 
Fig. 4.38(a) or Fig. 4.38(b).
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Suppose RL is connected between nodes a and b in Fig. 4.38(a). Using 
Ohm’s law, we find that the current in RL is

 iL =
vs

R + RL
 . (4.33)

Now suppose the same resistor RL is connected between nodes a and b in 
Fig. 4.38(b). Using current division, we see that the current in RL is

 iL =
R

R + RL
 is. (4.34)

If the two circuits in Fig. 4.38 are equivalent, these resistor currents must 
be the same. Equating the right-hand sides of Eqs. 4.33 and 4.34 and sim-
plifying gives the condition of equivalence:

 is =
vs

R
 . (4.35)

When Eq. 4.35 is satisfied for the circuits in Fig. 4.38, the current in 
RL connected between nodes a and b is the same for both circuits for all 
values of RL. If the current in RL is the same for both circuits, then the 
voltage drop across RL is the same for both circuits, and the circuits are 
equivalent at nodes a and b. If the polarity of vs is reversed, the orienta-
tion of is must be reversed to maintain equivalence.

Example 4.12 uses source transformations to simplify a circuit- analysis 
problem.

1

2

R

ys

a

b
(a)

is

a

b
(b)

R

Figure 4.38 ▲ Source transformations.

EXAMPLE 4.12 Using Source Transformations to Solve a Circuit

Find the power associated with the 6 V source for 
the circuit shown in Fig. 4.39 and state whether the 
6 V source is absorbing or delivering the power.

Solution
If we study the circuit shown in Fig. 4.39, we see 
ways to simplify the circuit by using source trans-
formations. But we must simplify the circuit in a 
way that preserves the branch containing the 6 V 
source. Therefore, begin on the right side of the cir-
cuit with the branch containing the 40 V source. We 
can transform the 40 V source in series with the 5 Ω 
resistor into an 8 A current source in parallel with a 
5 Ω resistor, as shown in Fig. 4.40(a).

Next, replace the parallel combination of the 
20 Ω and 5 Ω resistors with a 4 Ω resistor. This 4 Ω 
resistor is in parallel with the 8 A source and there-
fore can be replaced with a 32 V source in series 
with a 4 Ω resistor, as shown in Fig. 4.40(b). The 
32 V source is in series with 20 Ω of resistance and, 
hence, can be replaced by a current source of 1.6 A 
in parallel with 20 Ω, as shown in Fig. 4.40(c). The 
20 Ω and 30 Ω parallel resistors can be reduced to 
a single 12 Ω resistor. The parallel combination of 
the 1.6 A current source and the 12 Ω resistor trans-
forms into a voltage source of 19.2 V in series with 
12 Ω. Figure 4.40(d) shows the result of this last 
transformation. The current in the direction of the 
voltage drop across the 6 V source is (19.2 - 6)>16, 
or 0.825 A. Therefore, the power associated with 
the 6 V source is

p6V = (6) (0.825) = 4.95 W

and the voltage source is absorbing power.
Practice your circuit analysis skills by using 

 either the node-voltage method or the mesh- current 
method to solve this circuit and verify that you get 
the same answer.

20 V30 V

4 V 6 V

10 V

5 V

6 V
1

2

1

2
40 V

Figure 4.39 ▲ The circuit for Example 4.12.
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A couple of questions arise from the source transformation depicted 
in Fig. 4.40.

• What happens if there is a resistance Rp in parallel with the voltage 
source?

• What happens if there is a resistance Rs in series with the current 
source?

In both cases, the resistance can be removed to create a simpler equiva-
lent circuit with respect to terminals a and b. Figure 4.41 summarizes this 
observation. The two circuits depicted in Fig. 4.41(a) are equivalent with 
respect to terminals a and b because they produce the same voltage and 
current in any resistor RL inserted between nodes a and b. The same can 
be said for the circuits in Fig. 4.41(b). Example 4.13 illustrates an applica-
tion of the equivalent circuits depicted in Fig. 4.41.

6 V

30 V

6 V

10 V

4 V

20 V 8 A
1

2
6 V 5 V

(a)  First step

30 V

6 V

10 V

4 V 4 V

32 V
1

2

1

2
6 V

(b)  Second step

20 V30 V

4 V

1

2
1.6 A6 V

(c)  Third step

12 V4 V

19.2 V
1

2

1

2

(d)  Fourth step

Figure 4.40 ▲ Step-by-step simplification of the circuit shown in Fig. 4.39.

(a)

is

Rp

R

ys
1

2

a

b

R

ys
1

2

a

b

(b)

a

b

Rs

R R

a

b

is

Figure 4.41 ▲ (a) Generating a simplified equivalent 
circuit from a circuit with a resistor in parallel with a 
voltage source; (b) generating a simplified circuit from 
a circuit with a resistor in series with a current source.

EXAMPLE 4.13 Using Special Source Transformation Techniques

a) Use source transformations to find the voltage vo
in the circuit shown in Fig. 4.42.

b) Find the power developed by the 250 V voltage 
source.

c) Find the power developed by the 8 A current 
source.

Solution

a) We begin by removing the 125 Ω and 10 Ω resis-
tors because the 125 Ω resistor is connected in par-
allel with the 250 V voltage source and the 10 Ω 
resistor is connected in series with the 8 A current 
source. We also combine the series- connected resis-
tors in the rightmost branch into a single resistance 
of 20 Ω. Figure 4.43 shows the simplified circuit.

Now use a source transformation to replace 
the series-connected 250 V source and 25 Ω re-
sistor with a 10 A source in parallel with the 25 Ω 
resistor, as shown in Fig. 4.44. We can then use  
Kirchhoff’s current law to combine the parallel 

15 V

5 V25 V

250 V 125 V
1

2
10 V

8 A
100 Vyo

1

2

Figure 4.42 ▲ The circuit for Example 4.13.
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20 V

25 V

250 V
1

2
8 A 100 Vyo

1

2

Figure 4.43 ▲ A simplified version of the circuit 
shown in Fig. 4.42.

current sources into a single source. The par-
allel resistors combine into a single resistor.  
Figure 4.45 shows the result. Hence vo = 20 V.

b) We need to return to the original circuit in 
Fig. 4.42 to calculate the power associated with 
the sources. While a resistor connected in paral-
lel with a voltage source or a resistor connected 
in series with a current source can be removed 
without affecting the terminal behavior of the 
circuit, these resistors play an important role in 
how the power is dissipated throughout the cir-
cuit. The current supplied by the 250 V source, 
 represented as is, equals the current in the 125 Ω 
resistor plus the current in the 25 Ω resistor. Thus,

is =
250
125

+  
250 - 20

25
= 11.2 A.

Therefore, the power developed by the voltage 
source is

p250V(developed) = (250) (11.2) = 2800 W.

c) To find the power developed by the 8 A cur-
rent source, we first find the voltage across the 
source. If we let vs represent the voltage across 
the source, positive at the upper terminal of the 
source, we obtain

vs + 8(10) = vo = 20,  or  vs = -60 V,

and the power developed by the 8 A source is 
480 W. Note that the 125 Ω and 10 Ω resistors do 
not affect the value of vo but do affect the power 
calculations. Check your power calculations by 
 determining the power absorbed by all of the re-
sistors in the circuit.

20 V10 A 25 V 8 A 100 Vyo

1

2

Figure 4.44 ▲ The circuit shown in Fig. 4.43 after a 
source transformation.

2 A 10 Vyo

1

2

Figure 4.45 ▲ The circuit shown in Fig. 4.44 after 
combining sources and resistors.

Objective 4—Understand source transformation

 4.15 a)  Use a series of source transformations to 
find the voltage v in the circuit shown.

b) How much power does the 120 V source 
deliver to the circuit?

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 4.59 and 4.62.

6 V 8 V36 A y

1

2

1.6 V

2

1

5 V

60 V20 V

2
120 V1

Answer: (a) 48 V;
(b) 374.4 W.

4.10  Thévenin and Norton 
Equivalents

At times in circuit analysis, we want to concentrate on what happens 
at a specific pair of terminals. For example, when we plug a toaster 
into an outlet, we are interested primarily in the voltage and current at 
the terminals of the toaster. We have little or no interest in the effect 
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that connecting the toaster has on voltages or currents elsewhere in the 
circuit supplying the outlet. We can expand this interest in terminal 
behavior to a set of appliances, each requiring a different amount of 
power. We then are interested in how the voltage and current delivered 
at the outlet change as we change appliances. In other words, we want 
to focus on the behavior of the circuit supplying the outlet, but only at 
the outlet terminals.

Thévenin and Norton equivalents are circuit simplification tech-
niques. These equivalent circuits retain no information about the inter-
nal behavior of the original circuit and focus only on terminal behavior. 
They are extremely valuable when analyzing complex circuits where one 
portion of the circuit is fixed, so it can be replaced by a simple Thévenin 
or Norton equivalent, and another portion of the circuit is changing. 
Although here we discuss them as they pertain to resistive circuits, 
Thévenin and Norton equivalent circuits may be used to represent any 
circuit made up of linear elements.

The Thévenin equivalent circuit is the simplest equivalent for a 
given circuit and consists of a single voltage source in series with a sin-
gle resistor. The Norton equivalent circuit is the source transform of the 
Thévenin equivalent circuit. To better grasp the concept of a Thévenin 
equivalent circuit, imagine a circuit with a complex interconnection 
of resistors, independent sources, and dependent sources, as shown 
in Fig.  4.46(a). We are interested in simplifying this complex circuit 
with respect to the terminals a and b. The simplified equivalent circuit, 
shown in Fig. 4.46(b), is the series combination of a voltage source VTh 
and a resistor RTh called the Thévenin equivalent circuit. It is equiva-
lent to the original circuit in the sense that, if we connect the same load 
across the terminals a and b of each circuit, we get the same voltage and 
current at the terminals of the load. This equivalence holds for all pos-
sible values of load resistance.

The Thévenin Equivalent
To represent the original circuit by its Thévenin equivalent, we must cal-
culate the Thévenin voltage VTh and the Thévenin resistance RTh. First, 
we note that if the load resistance is infinitely large, we have an open- 
circuit condition. The open-circuit voltage at the terminals a and b in the 
circuit shown in Fig. 4.46(b) is VTh. By hypothesis, this must be the same 
as the open-circuit voltage at the terminals a and b in the original circuit. 
Therefore, to find the Thévenin voltage VTh, calculate the open-circuit 
voltage in the original circuit.

Reducing the load resistance to zero gives us a short-circuit condition. 
If we place a short circuit across the terminals a and b of the Thévenin 
equivalent circuit, the short-circuit current directed from a to b is

 isc =
VTh

RTh
 . (4.36)

By hypothesis, this short-circuit current must be identical to the short- 
circuit current that exists in a short circuit placed across the terminals a 
and b of the original network. From Eq. 4.36,

 RTh =
VTh

isc
 . (4.37)

Thus, the Thévenin resistance is the ratio of the open-circuit voltage to 
the short-circuit current. Work through Example 4.14 to see how to find 
the Thévenin equivalent of a circuit.

A resistive
network containing
independent and
dependent sources

a

b

a

b

(a) (b)

1

2

RTh

VTh

Figure 4.46 ▲ (a) A general circuit. (b) The Thévenin 
equivalent circuit.
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EXAMPLE 4.14 Finding a Thévenin Equivalent

Find the Thévenin equivalent of the circuit in 
Fig. 4.47.

Solution
To find the Thévenin equivalent of the circuit shown 
in Fig. 4.47, we first calculate the open-circuit volt-
age vab. Note that when the terminals a, b are open, 
there is no current in the 4 Ω resistor. Therefore the 
open-circuit voltage vab is identical to the voltage 
across the 3 A current source, labeled v1. We find the 
voltage by solving a single KCL equation. Choosing 
the lower node as the reference node, we get

v1 - 25
5

+
v1

20
- 3 = 0.

Solving for v1 yields

v1 = 32 V = VTh.

Hence, the Thévenin voltage for the circuit is 32 V.
The next step is to place a short circuit across the 

terminals a and b and calculate the resulting short- 
circuit current. Figure 4.48 shows the circuit with the 
short in place. Note that the short-circuit current is 

in the direction of the open-circuit voltage drop across 
the terminals a and b. If the short-circuit current is in 
the direction of the open-circuit voltage rise across the 
terminals, a minus sign must be inserted in. Eq. 4.37.

The short-circuit current (isc) is found easily 
once v2 is known. Therefore, the problem reduces 
to finding v2 with the short in place. Again, if we 
use the lower node as the reference node, the KCL 
equation at the node labeled v2 is

v2 - 25
5

+  
v2

20
- 3 +  

v2

4
= 0.

Solving for v2 gives

v2 = 16 V.

Hence, the short-circuit current is

isc =
16
4

= 4 A.

We now find the Thévenin resistance by substituting 
the numerical values for the Thévenin voltage, VTh, 
and the short-circuit current, isc, into Eq. 4.37:

RTh =
VTh

isc
=

32
4

= 8 Ω.

Figure 4.49 shows the Thévenin equivalent for 
the circuit shown in Fig. 4.45.

You should verify that, if a 24 Ω resistor is con-
nected across the terminals a and b in Fig. 4.47, the 
voltage across the resistor will be 24 V and the current 
in the resistor will be 1 A, as would be the case with the 
Thévenin circuit in Fig. 4.49. This same equivalence 
between the circuits in Figs. 4.47 and 4.49 holds for any 
resistor value connected between nodes a and b.

20 V

5 V 4 V

25 V
1

2
3 Ay1

1

2

yab

1

2

a

b

Figure 4.47 ▲ A circuit used to illustrate a Thévenin 
equivalent.

20 V

5 V 4 V

25 V
1

2

a

b

3 Ay2

1

2

isc

Figure 4.48 ▲ The circuit shown in Fig. 4.47 with terminals 
a and b short-circuited.

8 V

32 V
1

2

a

b

Figure 4.49 ▲ The Thévenin equivalent of the circuit shown 
in Fig. 4.47.

The Norton Equivalent
A Norton equivalent circuit consists of an independent current source in 
parallel with the Norton equivalent resistance, as shown in Fig. 4.50. We can 
 derive it directly from the original circuit by calculating the open-circuit volt-
age and the short-circuit current, just as we did when calculating the Thévenin 
equivalent. The Norton current equals the short-circuit current at the ter-
minals of interest, and the Norton resistance is the ratio of the open-circuit 
 voltage to the short-circuit current, so it is identical to the Thévenin resistance:
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IN = isc;

 RN =
voc

isc
= RTh. 

(4.38)

If we already have a Thévenin equivalent circuit, we can de-
rive the Norton equivalent circuit from it simply by making a source 
transformation.

Using Source Transformations
Sometimes we can use source transformations to derive a Thévenin or 
Norton equivalent circuit. This technique works best when the network 
contains only independent sources. Dependent sources require us to retain 
the identity of the controlling voltages and/or currents, and this constraint 
usually prohibits simplification of the circuit by source transformations. 
Work through Example 4.15 to see how a series of source transformations 
leads to a Norton equivalent circuit.

A resistive
network containing
independent and
dependent sources

a

b

a

b

(a) (b)

IN RN

Figure 4.50 ▲ (a) A general circuit. (b) The Norton 
equivalent circuit.

Gain additional practice with Thévenin equivalent circuits and see 
how to cope with the presence of a dependent source in the original circuit 
by working through Example 4.16.

EXAMPLE 4.15 Finding a Norton Equivalent

Find the Norton equivalent of the circuit in Fig. 4.47 
by making a series of source transformations.

Solution
We start on the left side of the circuit and trans-
form the series-connected 25 V source and 5 Ω 
resistor to a parallel-connected 5 A source and 
5 Ω resistor, as shown in Step 1 of Fig. 4.51. Use 
KCL to combine the parallel-connected 5 A and 
3 A sources into a single 8 A source, and com-
bine the parallel-connected 5 Ω and 25 Ω resistors 

20 V

5 V 4 V

25 V 3 A
1

2

a

b

20 V5 V

4 V

3 A5 A

a

b

Source transformation; series 
resistors combined, producing 
the Thévenin equivalent circuit

Source transformation Parallel sources and
parallel resistors combined

4 V
a

b

4 V8 A

a

b

8 V4 A

Source transformation, producing
the Norton equivalent circuit

8 V
a

b

32 V
1

2

Step 1 

Step 3 Step 4 

Step 2 

Figure 4.51 ▲ Step-by-step derivation of the Thévenin and Norton equivalents of the circuit shown in Fig. 4.47.

into a single 4 Ω resistor, as shown in Step 2 of 
Fig. 4.51. Now transform the parallel-connected  
8 A source and 4 Ω resistor to a series-connected 
32 V source and 4 Ω resistor, and combine the two 
 series-connected 4 Ω resistors into a single 8 Ω 
 resistor, as shown in Step 3 of Fig. 4.51. Note that 
the result of Step 3 is the Thévenin equivalent cir-
cuit we derived in Example 4.12. Finally, transform 
the series-connected 32 V source and 8 Ω resistor 
into a parallel-connected 4 A source and 8 Ω re-
sistor, which is the Norton equivalent circuit, as 
shown in Step 4 of Fig. 4.51.
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EXAMPLE 4.16  Finding the Thévenin Equivalent of a Circuit with  
a Dependent Source

Find the Thévenin equivalent for the circuit con-
taining dependent sources shown in Fig. 4.52.

1
2

25 V

2 kV

5 V 3 y 20 i
1

2
yab

1

2

y

1

2

a

b

i

ix

Figure 4.52 ▲ A circuit used to illustrate a Thévenin equiva-
lent when the circuit contains dependent sources.

Solution
The first step in analyzing the circuit in Fig. 4.52 is 
to recognize that the current labeled ix must be zero. 
(Note the absence of a return path for ix to enter 
the left-hand portion of the circuit.) The open- 
circuit, or Thévenin, voltage is the voltage across 
the 25 Ω resistor. Since ix = 0,

VTh = vab = (-20i)(25) = -500i.

The current i is

i =
5 - 3v

2000
=

5 - 3VTh

2000
 .

In writing the equation for i, we recognize that the 
Thévenin voltage is identical to v. When we com-
bine these two equations, we obtain

VTh = -5 V.

To calculate the short-circuit current, we place 
a short circuit across a and b. When the terminals  
a and b are shorted together, the control voltage 
v is reduced to zero. Therefore, with the short in 
place, the circuit shown in Fig. 4.52 becomes the 
one shown in Fig. 4.53. With the short circuit shunt-
ing the 25 Ω resistor, all of the current from the de-
pendent current source appears in the short, so

isc = -20i.

As the voltage controlling the dependent volt-
age source has been reduced to zero, the current 
controlling the dependent current source is

i =
5

2000
= 2.5 mA.

Combining these two equations yields a short- 
circuit current of

isc = -20(2.5) = -50 mA.

From isc and VTh we get

RTh =
VTh

isc
=

-5
-0.05

= 100 Ω.

Figure 4.54 illustrates the Thévenin equivalent 
for the circuit shown in Fig. 4.52. Note that the 
reference polarity marks on the Thévenin voltage 
source in Fig. 4.54 agree with the preceding equa-
tion for VTh.

100 V

5 V
2
1

a

b

Figure 4.54 ▲ The Thévenin equivalent for the circuit shown 
in Fig. 4.52.

25 V

2 kV

5 V 20 i
1

2
isc

a

b

i

Figure 4.53 ▲ The circuit shown in Fig. 4.52 with terminals 
a and b short-circuited.

Objective 5—Understand Thévenin and Norton equivalents

 4.16 Find the Thévenin equivalent circuit with re-
spect to the terminals a, b for the circuit shown.

ASSESSMENT PROBLEMS

1

2

12 V

5 V 8 V

20 V72 V

a

bAnswer: Vab = VTh = 64.8 V, RTh = 6 Ω.
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4.11  More on Deriving the Thévenin 
Equivalent

We can calculate the Thévenin resistance, RTh, directly from the circuit 
rather than calculating it as the ratio of the open-circuit voltage to the 
short-circuit current (Eq. 4.37). If the circuit contains only independent 
sources and resistors, we can determine RTh by deactivating all indepen-
dent sources and then calculating the resistance seen looking into the net-
work at the designated terminal pair. A voltage source is deactivated by 
replacing it with a short circuit, while a current source is deactivated by re-
placing it with an open circuit. Example 4.17 illustrates this direct method 
for determining RTh.

 4.17 Find the Norton equivalent circuit with respect 
to the terminals a, b for the circuit shown.

8 V 12 V

2 V

10 V

15 A

a

b

Answer: IN = 6 A (directed toward a), RN = 7.5 Ω.

 4.18 A voltmeter with an internal resistance of 
100 kΩ is used to measure the voltage vAB in the 
circuit shown. What is the voltmeter reading?

18 mA 60 kV

12 kV 15 kV

36 V yAB

1

2

A

B

2

1

Answer: 120 V.

SELF-CHECK: Also try Chapter Problems 4.64, 4.68, and 4.72.

EXAMPLE 4.17  Finding the Thévenin Equivalent Resistance Directly  
from the Circuit

Find RTh the circuit shown in Fig. 4.55.

with  the parallel combination of the 5 and 20 Ω 
 resistors. Thus,

Rab = RTh = 4 +
(5)(20)

5 + 20
= 8 Ω.

Note that deriving RTh directly from the circuit is 
much simpler than finding RTh from Eq. 4.37, as we 
did in Example 4.14.

20 V

5 V 4 V

25 V 3 A yab

1

2

a

b

1

2

Figure 4.55 ▲ A circuit used to illustrate a Thévenin 
equivalent.

Solution
Deactivating the independent sources simplifies the 
circuit to the one shown in Fig. 4.56. The resistance 
seen looking into the terminals a and b is denoted 
Rab, which consists of the 4 Ω resistor in series 

a

b

5 V

20 V

4 V

Rab

Figure 4.56 ▲ The circuit shown in Fig. 4.55 after deactiva-
tion of the independent sources.

If the circuit or network contains dependent sources, a direct method 
for finding the Thévenin resistance RTh is as follows. We first deactivate 
all independent sources, and then we apply either a test voltage source 
or a test current source to the Thévenin terminals a and b. The Thévenin 
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resistance equals the ratio of the voltage across the test source to the cur-
rent delivered by the test source. Example 4.18 illustrates this alternative 
procedure for finding RTh, using the same circuit as Example 4.16.

EXAMPLE 4.18 Finding the Thévenin Equivalent Resistance Using a Test Source

Find the Thévenin resistance RTh for the circuit in 
Fig. 4.52, using the test source method.

Solution
Begin by deactivating the independent voltage 
source and exciting the circuit from the terminals 
a and b with either a test voltage source or a test 
current source. If we apply a test voltage source, 
we will know the voltage of the dependent volt-
age source and hence the controlling current i. 
Therefore, we opt for the test voltage source. 
Figure 4.57 shows the circuit for computing the 
Thévenin resistance.

The test voltage source is denoted vT, and the 
current that it delivers to the circuit is labeled iT. To 
find the Thévenin resistance, we solve the circuit 
for the ratio of the voltage to the current at the test 
source; that is, RTh = vT>iT. From Fig. 4.57,

 iT =
vT

25
+ 20i,

 i =
-3vT

2000
 .

We then substitute the expression for i into the 
equation for iT and solve the resulting equation for 
the ratio iT>vT:

 iT =
vT

25
 -

60vT

2000
,

 
iT

vT
=

1
25

-
6

200
=

50
5000

=
1

100
 .

The Thévenin resistance is the inverse of the ratio 
iT>vT, so

RTh =
vT

iT
= 100 Ω.

i

2 kV

25 V3 yT

1

2 20 i

iT

yT
1

2

Figure 4.57 ▲ An alternative method for computing the 
Thévenin resistance.

In a network containing only resistors and dependent sources, the 
Thévenin equivalent voltage VTh = 0 and the Norton equivalent current 
IN = 0. It should be clear that if the circuit you start with has no indepen-
dent sources, its equivalent circuit cannot have any independent sources 
either. Therefore, the Thévenin and Norton equivalents for a circuit with 
only dependent sources and resistors is a single equivalent resistance, 
whose value must be determined using the test source method. The proce-
dure is illustrated in Example 4.19.

EXAMPLE 4.19  Finding the Thévenin Equivalent of a Circuit with Dependent 
Sources and Resistors

Find the Norton equivalent for the circuit in Fig. 4.58. Solution
The circuit in Fig. 4.58 has no independent sources. 
Therefore, the Norton equivalent current is zero, 
and the Norton equivalent circuit consists only of 
the Norton resistance, RN. Applying a test source to 
the terminals a and b is the only way to determine 
RN. We have applied a test current source, whose 
value is iT, as shown in Fig. 4.59. Analyze this circuit 
to calculate the voltage across the test source, vT, 
and then calculate the Norton equivalent resistance 
using the ratio of vT to iT.

a

b

20 V

10 V 30 Vyx

1

2

vx

6

Figure 4.58 ▲ A circuit used to determine a Thévenin equiv-
alent when the circuit contains only dependent sources and 
resistors.
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We conclude this discussion of Thévenin and Norton equivalents with 
one final example of their application in circuit analysis. Sometimes we 
can use a Thévenin equivalent to simplify one portion of a circuit, thereby 
greatly simplifying analysis of the larger network. Let’s return to the am-
plifier circuit first introduced in Section 2.5 and subsequently analyzed in 
Sections 4.4 and 4.7. Study Example 4.20 to see how a Thévenin equiv-
alent of one portion of this circuit helps us in the analysis of the whole 
circuit.

Write a KCL equation at the top essential node to 
give

iT =
vT

20 + 10
-

vx

6
+

vT

30
 .

Use voltage division to find the voltage across the 
10 Ω resistor:

vx =
10

20 + 10
 vT =

vT

3
 .

Then,

iT =
vT

30
-

vT

18
+

vT

30
=

vT

90
 .

Therefore, the Norton equivalent of the circuit 
in Fig. 4.58 is a single resistor whose resistance 
RN = vT>iT = 90 Ω.

a

b

20 V

10 V 30 Vyx yT iT

1

2

1

2

vx

6

Figure 4.59 ▲ The circuit in Fig. 4.58 with a test current 
source.

EXAMPLE 4.20 Using a Thévenin Equivalent to Analyze the Amplifier Circuit

Use a Thévenin equivalent of the left side of the am-
plifier circuit, shown in Fig. 4.60, to find the current iB.

Solution
We redraw the circuit as shown in Fig. 4.61 to pre-
pare to replace the subcircuit to the left of V0 with 
its Thévenin equivalent. You should be able to de-
termine that this modification has no effect on the 

branch currents i1, i2, iB, and iE. Then replace the 
circuit made up of VCC, R1, and R2 with a Thévenin 
equivalent, with respect to the terminals b and d. 
The Thévenin voltage and resistance are

 VTh =
VCCR2

R1 + R2
, (4.39)

 RTh =
R1R2

R1 + R2
 . (4.40)

iE

VCC

R2

R1

RE

biB

RC

1

2

a

b c

d

V0

1 2

iB

i1

i2

Figure 4.60 ▲ The application of a Thévenin equivalent in 
circuit analysis.

biB

RC

a9a

d

R1i1

RE iE

R2i2

VCC
1

2
VCC

1

2 V0

1 2

iB

b c

Figure 4.61 ▲ A modified version of the circuit shown in 
Fig. 4.60.
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c

1

2
VTh

RTh

d

a

RE iE

RC

VCC
1

2
b

V0

iB

1 2

biB

Figure 4.62 ▲ The circuit shown in Fig. 4.61 modified by a 
Thévenin equivalent.

With the Thévenin equivalent, the circuit in Fig. 4.61 
becomes the one shown in Fig. 4.62.

We now derive an equation for iB by summing 
the voltages around the left mesh. In writing this 
mesh equation, we recognize that iE = (1 + b)iB. 
Thus,

VTh = RThiB + V0 + RE (1 + b)iB,

from which

 iB =
VTh - V0

RTh +  (1 + b)RE
 . (4.41)

When we substitute Eqs. 4.39 and 4.40 into Eq. 4.41, 
we get the same expression obtained in Eq. 2.25. 
Note that once we have incorporated the Thévenin 
equivalent into the original circuit, we can obtain 
the solution for iB by writing a single equation.

4.12 Maximum Power Transfer
Circuit analysis plays an important role in the analysis of systems designed 
to transfer power from a source to a load. This text discusses power trans-
fer in two basic types of systems.

• Systems Optimized for Maximum Efficiency Power utility systems 
are a good example of this type because they generate, transmit, and 
distribute large quantities of electric power. If a power utility system 
is inefficient, a large percentage of the power generated is lost in the 
transmission and distribution processes, and thus wasted. We will look 
at these types of systems in Sections 9.10 and 9.11.

• Systems Optimized for Maximum Power Communication and in-
strumentation systems are good examples because when information 
(data) is transmitted via electric signals, the power available at the 
transmitter or detector is limited. Thus, transmitting as much of this 
power as possible to the receiver (load) is desirable. In such applica-
tions, the amount of power being transferred is small, so the transfer 
efficiency is not a primary concern. Here we consider maximum power 
transfer in systems that can be modeled by a purely resistive circuit.

Objective 5—Understand Thévenin and Norton equivalents

 4.19 Find the Thévenin equivalent circuit with  respect 
to the terminals a, b for the circuit shown.

1

2

3 ix

24 V 4 A

b

a
2 V

8 Vix

Answer: VTh = vab = 8 V, RTh = 1 Ω.

 4.20 Find the Thévenin equivalent circuit with 
 respect to the terminals a, b for the circuit 
shown. (Hint: Define the voltage at the left-
most node as v, and write two nodal equations 
with VTh as the right node voltage.)

1 2
20 V

a

b

160 iD

iD4 A60 V 80 V 40 V

Answer: VTh = vab = 30 V, RTh = 10 Ω.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 4.74 and 4.79.
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Maximum power transfer can best be described with the aid of the circuit 
shown in Fig. 4.63. We assume a resistive network containing independent and 
dependent sources and a designated pair of terminals, a and b, to which a load, 
RL, is connected. The problem is to determine the value of RL that permits max-
imum power delivery to RL. The first step in this process is to recognize that a 
resistive network can always be replaced by its Thévenin equivalent. Therefore, 
we redraw the circuit shown in Fig. 4.63 as the one shown in Fig. 4.64. Replacing 
the original network by its Thévenin equivalent greatly simplifies the task of 
finding RL. To derive RL, begin by expressing the power dissipated in RL as a 
function of the three circuit parameters VTh, RTh, and RL. Thus

 p = i2RL = a VTh

RTh + RL
b

2

RL. (4.42)

Next, we recognize that for a given circuit, VTh and RTh will be fixed. 
Therefore, the power dissipated is a function of the single variable RL. To 
find the value of RL that maximizes the power, we use elementary calculus 
to write an equation for the derivative of p with respect to RL:

dp

dRL
= VTh

2 c (RTh + RL)2 - RL
#  2(RTh + RL)

(RTh + RL)4  d .

The derivative is zero and p is maximized when

(RTh + RL)2 = 2RL(RTh +  RL).

Solving for the load resistance RL yields

Resistive network
containing
independent and
dependent sources

b

a

RL

Figure 4.63 ▲ A circuit describing maximum power 
transfer.

1

2

a

b

VTh

RTh

i RL

Figure 4.64 ▲ A circuit used to determine the value 
of RL for maximum power transfer.

EXAMPLE 4.21 Calculating the Condition for Maximum Power Transfer

a) For the circuit shown in Fig. 4.65, find the value 
of RL that results in maximum power being trans-
ferred to RL.

b) Calculate the maximum power that can be deliv-
ered to RL.

c) When RL is adjusted for maximum power trans-
fer, what percentage of the power delivered by 
the 360 V source reaches RL?

RL150 V

30 V a

b

360 V
1

2

Figure 4.65 ▲ The circuit for Example 4.21.

CONDITION FOR MAXIMUM POWER 
TRANSFERRED TO A RESISTIVE LOAD

 RL = RTh. (4.43)

Thus, maximum power transfer occurs when the load resistance RL equals 
the Thévenin resistance RTh. To find the maximum power delivered to RL, 
substitute Eq. 4.43 into Eq. 4.42:

MAXIMUM POWER TRANSFERRED  
TO A RESISTIVE LOAD

 pmax =
VTh

2 RL

(2RL)2 =
VTh

2

4RL
 . (4.44)

Analyzing a circuit to calculate the load resistor required for maximum 
power transfer is illustrated in Example 4.21.
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Solution

a) The Thévenin voltage for the circuit to the left of 
the terminals a and b is

VTh =
150
180

 (360) = 300 V.

The Thévenin resistance is

RTh =
(150)(30)

180
= 25 Ω

Replacing the circuit to the left of the terminals 
a and b with its Thévenin equivalent gives us the 
circuit shown in Fig. 4.66, so RL must equal 25 Ω 
for maximum power transfer.

b) The maximum power that can be delivered to RL is

pmax = a 300
50

b
2

(25) = 900 W.

c) When RL equals 25 Ω, the voltage vab is

vab = a 300
50

b(25) = 150 V.

From Fig. 4.65, when vab equals 150 V, the current 
in the voltage source in the direction of the volt-
age rise across the source is

is =
360 - 150

30
=

210
30

= 7 A.

Therefore, the source is delivering 2520 W to the 
circuit, or

ps = - is(360) = -2520 W.

The percentage of the source power delivered to 
the load is

900
2520

  *  100 = 35.71%.

RL

25 V a

b

300 V
1

2

Figure 4.66 ▲ Reduction of the circuit shown in Fig. 
4.66 by means of a Thévenin equivalent.

Objective 6—Know the condition for and calculate maximum power transfer to resistive load

 4.21 a) Find the value of R that enables the circuit 
shown to deliver maximum power to the 
terminals a, b.

b) Find the maximum power delivered to R.

R

4 V

4 V

4 V a

b

20 V
1

2

100 V
1

2

4 V yf
1

2

yf

2 1

Answer: (a) 3 Ω;
(b) 1.2 kW.

 4.22 Assume that the circuit in Assessment Problem 
4.21 is delivering maximum power to the load 
resistor R.
a) How much power is the 100 V source deliv-

ering to the network?
b) Repeat (a) for the dependent voltage source.
c) What percentage of the total power gener-

ated by these two sources is delivered to the 
load resistor R?

Answer:
(a) 3000 W;
(b) 800 W;
(c) 31.58%.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 4.87 and 4.89.
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4.13 Superposition
A linear system obeys the principle of superposition, which states that 
whenever a linear system is excited, or driven, by more than one inde-
pendent source of energy, the total response is the sum of the individual 
responses. An individual response is the result of an independent source 
acting alone. Because we are dealing with circuits made up of intercon-
nected linear-circuit elements, we can apply the principle of superposition 
directly to the analysis of such circuits when they are driven by more than 
one independent energy source. At present, we restrict the discussion to 
simple resistive networks; however, the principle is applicable to any lin-
ear system.

Superposition is applied in both the analysis and design of circuits. In 
analyzing a complex circuit with multiple independent voltage and current 
sources, there are often fewer, simpler equations to solve when the effects 
of the independent sources are considered one at a time. Applying super-
position can thus simplify circuit analysis. Be aware, though, that some-
times applying superposition actually complicates the analysis, producing 
more equations to solve than with an alternative method. Superposition 
is required only if the independent sources in a circuit are fundamentally 
different. In these early chapters, all independent sources are dc sources, 
so superposition is not required. We introduce superposition here in an-
ticipation of later chapters in which circuits will require it.

Superposition is applied in design to synthesize a desired circuit re-
sponse that could not be achieved in a circuit with a single source. If the 
desired circuit response can be written as a sum of two or more terms, the 
response can be realized by including one independent source for each 
term of the response. This approach to the design of circuits with complex 
responses allows a designer to consider several simple designs instead of 
one complex design.

We demonstrate the superposition principle in Example 4.22.

EXAMPLE 4.22 Using Superposition to Solve a Circuit

Use the superposition principle to find the branch 
currents in the circuit shown in Fig. 4.67.

We can easily find the branch currents in the cir-
cuit in Fig. 4.68 once we know the node voltage across 
the 3 Ω resistor. Denoting this voltage v1,  we write

v1 - 120
6

+  
v1

3
+  

v1

2 + 4
= 0,

from which

v1 = 30 V.

4 V3 V

6 V

120 V
i1

2 V

i3
i4i2

1

2
12 A

Figure 4.67 ▲ A circuit used to illustrate superposition.

4 V3 V120 V

6 V

i91

2 V

i93

i94i92
1

2

y1

Figure 4.68 ▲ The circuit shown in Fig. 4.67 with the cur-
rent source deactivated.

Solution
We begin by finding the branch currents resulting 
from the 120 V voltage source. We denote those 
currents with a prime. Replacing the ideal current 
source with an open circuit deactivates it; Fig. 4.68 
shows this. The branch currents in this circuit are 
the result of only the voltage source.



158 Techniques of Circuit Analysis

When applying superposition to linear circuits containing both inde-
pendent and dependent sources, you must recognize that the dependent 
sources are never deactivated. Example 4.23 applies superposition when a 
circuit contains both dependent and independent sources.

Now we can write the expressions for the branch 
currents i′1 -  i′4 directly:

 i′1 =
120 - 30

6
= 15 A,

 i′2 =
30
3

= 10 A,

 i′3 = i′4 =
30
6

= 5 A.

To find the component of the branch currents 
resulting from the current source, we deactivate the 
ideal voltage source and solve the circuit shown in 
Fig. 4.69. The double-prime notation for the cur-
rents indicates they are the components of the total 
current resulting from the ideal current source.

We determine the branch currents in the cir-
cuit shown in Fig. 4.69 by first solving for the node 
voltages across the 3 and 4 Ω resistors, respec-
tively. Figure 4.70 shows the two node voltages.  

The two KCL equations that describe the circuit 
are

 
v3

3
+

v3

6
+

v3 - v4

2
= 0,

 
v4 - v3

2
+  

v4

4
  + 12 = 0.

Solving the simultaneous KCL equations for v3 and 
v4, we get

v3 = -12 V,

v4 = -24 V.

Now we can write the branch currents i″1 through i″4 
directly in terms of the node voltages v3 and v4:

 i″1 =
-v3

6
=

12
6

= 2 A,

 i″2 =
v3

3
=

-12
3

= -4 A,

 i″3 =
v3 - v4

2
=

-12 + 24
2

= 6 A,

 i″4 =
v4

4
=

-24
4

= -6 A.

To find the branch currents in the original circuit, 
that is, the currents i1, i2, i3, and i4 in Fig. 4.67, 
we simply add the single-primed currents to the 
 double-primed currents:

 i1 = i′1 +  i″1 = 15 + 2 = 17 A,

 i2 = i′2 +  i″2 = 10 - 4 = 6 A,

 i3 = i′3 +  i″3 = 5 + 6 = 11 A,

 i4 = i′4 +  i″4 = 5 - 6 = -1 A.

You should verify that the currents i1, i2, i3, and i4 
have the correct values for the branch currents in 
the circuit shown in Fig. 4.67.

4 V3 V

6 V

i10

2 V

i30
i40i20 12 A

Figure 4.69 ▲ The circuit shown in Fig. 4.67 with the volt-
age source deactivated.

4 V3 V

6 V 2 V

12 Ay4

1

2

y3

1

2

Figure 4.70 ▲ The circuit shown in Fig. 4.69 showing the 
node voltages v3 and v4.

EXAMPLE 4.23 Using Superposition to Solve a Circuit with Dependent Sources

Use the principle of superposition to find vo in the 
circuit shown in Fig. 4.71.

2 1

10 V20 V

5 V

10 V
iD1

2
5 A

0.4 yD

2 iD
yo

1

2

yD

1

2

Figure 4.71 ▲ The circuit for Example 4.23.

Solution
We begin by finding the component of vo resulting 
from the 10 V source. Figure 4.72 shows the circuit. 
With the 5 A source deactivated, v′∆ must equal 
(-0.4v′∆) (10). Hence, v′∆ must be zero, the branch 
containing the two dependent sources is open, and

v′o =
20
25

 (10) = 8 V.
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Practical Perspective
Circuits with Realistic Resistors
It is not possible to fabricate identical electrical components. For exam-
ple, resistors produced from the same manufacturing process can vary 
in value by as much as 20%. Therefore, in creating an electrical system, 
the designer must consider the impact that component variation will 
have on the performance of the system. Sensitivity analysis permits the 
designer to calculate the impact of variations in the component values 
on the output of the system. We will see how this information enables a 
designer to specify an acceptable component value tolerance for each 
of the system’s components.

Consider the circuit shown in Fig. 4.74. We will use sensitivity 
analysis to determine the sensitivity of the node voltages v1 and v2 to 
changes in the resistor R1. Using the node-voltage method, we derive 
the expressions for v1 and v2 as functions of the circuit resistors and 
source currents. The results are given in Eqs. 4.45 and 4.46:

  v1 =
R1{R3R4Ig2 -  [R2(R3 + R4) + R3R4]Ig1}

(R1 + R2)(R3 + R4) + R3R4
, (4.45)

  v2 =
R3R4[(R1 + R2)Ig2 - R1Ig1]

(R1 + R2) (R3 + R4) +  R3R4
 .  (4.46)

10 V20 V

5 V

10 V
iD9

0.4 yD9

2 iD9
yo9

1

2

yD9

1

2
2 1

1

2

Figure 4.72 ▲ The circuit shown in Fig. 4.71 with the 5 A 
source deactivated.

10 V20 V

5 V a b

c

iD0

5 A

0.4 yD0

2 iD0
yo0

1

2

yD0

1

2
2 1

Figure 4.73 ▲ The circuit shown in Fig. 4.71 with the 
10 V source deactivated.

When the 10 V source is deactivated, the circuit re-
duces to the one shown in Fig. 4.73. We have added 
a reference node and the node designations a, b, and 
c to aid the discussion. Summing the currents away 
from node a yields

v″o
20

+  
v″o
5

- 0.4v″∆ = 0, or 5v″o -  8v″∆ = 0.

Summing the currents away from node b gives

 0.4v″∆ +
vb - 2i″∆

10
- 5 = 0, or

 4v″∆ +  vb - 2i″∆ = 50.

We now use

vb = 2i″∆ +  v″∆

to find the value for v″∆. Thus,

5v″∆ = 50,  or  v″∆ = 10 V.

From the node a equation,

5v″0 = 80,  or  v″0 = 16 V.

The value of vo is the sum of v′o and v″o, or 24 V.

SELF-CHECK: Assess your understanding of this material by trying Chapter Problems 4.92 and 4.97.

y2

1

2

y1

1

2

R4R1Ig1 Ig2R3

R2

Figure 4.74 ▲ Circuit used to introduce sensitivity 
analysis.
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The sensitivity of v1 with respect to R1 is found by differentiating Eq. 4.45 
with respect to R1, and similarly the sensitivity of v2 with respect to R1 is 
found by differentiating Eq. 4.46 with respect to R1. We get

  
dv1

dR1
=

[R3R4 + R2(R3 + R4)] {R3R4Ig2 - [R3R4 + R2(R3 + R4)]Ig1}

[(R1 + R2)(R3 + R4) + R3R4]
2 ,  

(4.47)

  
dv2

dR1
=

R3R4{R3R4Ig2 - [R2(R3 + R4) +  R3R4]Ig1}

[(R1 + R2)(R3 + R4) + R3R4]
2  . (4.48)

We now consider an example with actual component values to illus-
trate the use of Eqs. 4.47 and 4.48.

EXAMPLE
Assume the nominal values of the components in the circuit in Fig. 4.74 
are: R1 = 25 Ω; R2 = 5 Ω; R3 = 50 Ω; R4 = 75 Ω; Ig1 = 12 A; and 
Ig2 = 16 A. Use sensitivity analysis to predict the values of v1 and v2 if 
the value of R1 is different by 10% from its nominal value.

Solution
From Eqs. 4.45 and 4.46 we find the nominal values of v1 and v2. Thus

 v1 =
25{3750(16) - [5(125) + 3750]12}

30(125) + 3750
= 25 V, (4.49)

and

 v2 =
3750[30(16) - 25(12)]

30(125) + 3750
= 90 V. (4.50)

Now from Eqs. 4.47 and 4.48 we can find the sensitivity of v1 and v2 
to changes in R1. Hence,

dv1

dR1
=

[3750 + 5(125)] - {3750(16) - [3750 + 5(125)]12}

[(30)(125) + 3750]2

 =
7
12

  V>Ω, (4.51)

and

dv2

dR1
=

3750{3750(16) - [5(125) + 3750]12}]

(7500)2

 = 0.5 V>Ω. (4.52)

How do we use the results given by Eqs. 4.51 and 4.52? Assume 
that R1 is 10% less than its nominal value, that is, R1 = 22.5 Ω. Then 
∆R1 = -2.5 Ω and Eq. 4.51 predicts that ∆v1 will be

∆v1 = a 7
12

b(-2.5) = -1.4583 V.

Therefore, if R1 is 10% less than its nominal value, our analysis pre-
dicts that v1 will be

 v1 = 25 - 1.4583 = 23.5417 V. (4.53)



Similarly, for Eq. 4.52 we have

∆v2 = 0.5(-2.5) = -1.25 V,

 v2 = 90 - 1.25 = 88.75 V. (4.54)

We attempt to confirm the results in Eqs. 4.53 and 4.54 by substituting the 
value R1 = 22.5 Ω into Eqs. 4.45 and 4.46. When we do, the results are

v1 = 23.4780 V,

v2 = 88.6960 V.

Why is there a difference between the values predicted from the sensi-
tivity analysis and the exact values computed by substituting for R1 in 
the equations for v1 and v2? We can see from Eqs. 4.47 and 4.48 that 
the sensitivity of v1 and v2 with respect to R1 is a function of R1 because 
R1 appears in the denominator of both Eqs. 4.47 and 4.48. This means 
that as R1 changes, the sensitivities change; hence, we cannot expect 
Eqs. 4.47 and 4.48 to give exact results for large changes in R1. Note 
that for a 10% change in R1, the percent error between the predicted 
and exact values of v1 and v2 is small. Specifically, the percent error in 
v1 = 0.2713% and the percent error in v2 = 0.0676%.

From this example, we can see that a tremendous amount of work is 
involved if we are to determine the sensitivity of v1 and v2 to changes in the 
remaining component values, namely, R2, R3, R4, Ig1, and Ig2. Fortunately, 
PSpice2 has a sensitivity function that will perform sensitivity analysis for 
us. The sensitivity function in PSpice calculates two types of sensitivity. The 
first is known as the one-unit sensitivity, and the second is known as the 
1% sensitivity. In the example circuit, a one-unit change in a resistor would 
change its value by 1 Ω and a one-unit change in a current source would 
change its value by 1 A. In contrast, 1% sensitivity analysis determines the 
effect of changing resistors or sources by 1% of their nominal values.

The result of PSpice sensitivity analysis of the circuit in Fig. 4.69 is 
shown in Table 4.2. Because we are analyzing a linear circuit, we can 

2See the PSpice supplement that accompanies this text.

TABLE 4.2 PSpice Sensitivity Analysis Results

Element 
Name

Element 
Value

Element Sensitivity 
(Volts ,Unit)

Normalized Sensitivity 
(Volts ,Percent)

(a) DC Sensitivities of Node Voltage V1

R1 25 0.5833 0.1458

R2 5 -5.417 -0.2708

R3 50 0.45 0.225

R4 75 0.2 0.15

IG1 12 -14.58 -1.75

IG2 16 12.5 2

(b) Sensitivities of Output V2

R1 25 0.5 0.125

R2 5 6.5 0.325

R3 50 0.54 0.27

R4 75 0.24 0.18

IG1 12 -12.5 -1.5

IG2 16 15 2.4
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use superposition to predict values of v1 and v2 if more than one com-
ponent’s value changes. For example, let us assume R1 decreases to 
24 Ω and R2 decreases to 4 Ω. From Table 4.2 we can combine the unit 
sensitivity of v1 to changes in R1 and R2 to get

∆v1

∆R1
+  

∆v1

∆R2
= 0.5833 - 5.417 = -4.8337 V>Ω.

Similarly,

∆v2

∆R1
+

∆v2

∆R2
= 0.5 + 6.5 = 7.0 V>Ω.

Thus, if both R1 and R2 decreased by 1 Ω, we would predict

 v1 = 25 +  4.8227 = 29.8337 V,

 v2 = 90 - 7 = 83 V.

If we substitute R1 = 24 Ω and R2 = 4 Ω into Eqs. 4.45 and 4.46, we 
get

v1 = 29.793 V,

v2 = 82.759 V.

In both cases, our predictions are within a fraction of a volt of the actual 
node voltage values.

Circuit designers use the results of sensitivity analysis to determine 
which component value variation has the greatest impact on the output of 
the circuit. As we can see from the PSpice sensitivity analysis in Table 4.2,  
the node voltages v1 and v2 are much more sensitive to changes in 
R2 than to changes in R1. Specifically, v1 is (5.417>0.5833) or approxi-
mately 9 times more sensitive to changes in R2 than to changes in R1,  
and v2 is (6.5>0.5) or 13 times more sensitive to changes in R2 than to 
changes in R1. Hence, in the example circuit, the tolerance on R2 must 
be more stringent than the tolerance on R1 if it is important to keep v1 
and v2 close to their nominal values.

SELF-CHECK: Assess your understanding of this Practical Perspective 
by trying Chapter Problems 4.105–4.107.

Summary

• For the topics in this chapter, mastery of some basic terms, 
and the concepts they represent, is necessary. Those terms 
are node, essential node, path, branch, essential branch, 
mesh, and planar circuit. Table 4.1 provides definitions 
and examples of these terms. (See page 123.)

• Two new circuit analysis techniques were introduced in 
this chapter:

• The node-voltage method works with both planar 
and nonplanar circuits. The steps in the node-voltage 
method are in Table 4.3. (See page 163.)

• The mesh-current method works only with planar 
circuits. The steps in the mesh-current method are in 
Table 4.3. (See page 163.)

• Several new circuit simplification techniques were intro-
duced in this chapter:

• Source transformations allow us to exchange a volt-
age source (vs) and a series resistor (R) for a current 
source (is) and a parallel resistor (R) and vice  versa. 
The combinations must be equivalent in terms of 
their terminal voltage and current. Terminal equiva-
lence holds, provided that

is =
vs

R
 .

(See page 143–144.)



• Thévenin equivalents and Norton equivalents al-
low us to simplify a circuit composed of sources and 
resistors into an equivalent circuit consisting of a 
voltage source and a series resistor (Thévenin) or 
a current source and a parallel resistor (Norton). 
The simplified circuit and the original circuit must 
be equivalent in terms of their terminal voltage and 
current. Note that

• The Thévenin voltage (VTh) is the open-circuit volt-
age across the terminals of the original circuit;

• The Thévenin resistance (RTh) is the ratio of the 
Thévenin voltage to the current in a short circuit con-
necting the terminals of the original circuit;

• The Norton equivalent is obtained by performing a 
source transformation on a Thévenin equivalent.

(See page 146–149.)

TABLE 4.3 Steps in the Node-Voltage Method and the Mesh-Current Method

Node-Voltage Method Mesh-Current Method

Step 1
Identify nodes/meshes

Identify the essential nodes by circling them 
on the circuit diagram

Identify the meshes by drawing directed 
arrows inside each mesh

Step 2
Label node voltages/mesh currents
Recognize special cases

Pick and label a reference node; then label 
the remaining essential node voltages
• If a voltage source is the only component 

in a branch connecting the reference 
node and another essential node, label 
the essential node with the value of the 
voltage source

• If a voltage source is the only com-
ponent in a branch connecting two 
 nonreference essential nodes, create 
a supernode that includes the voltage 
source and the two nodes on either side

Label each mesh current
• If a current source is in a single mesh, 

label the mesh current with the value of 
the current source

• If a current source is shared by two 
adjacent meshes, create a supermesh by 
combining the two adjacent meshes and 
temporarily eliminating the branch that 
contains the current source

Step 3
Write the equations

Write the following equations:
• A KCL equation for any supernodes
• A KCL equation for any remaining 

essential nodes where the voltage is 
unknown

• A constraint equation for each dependent 
source that defines the controlling vari-
able for the dependent source in terms of 
the node voltages

• A constraint equation for each supernode 
that equates the difference between the 
two node voltages in the supernode to the 
voltage source in the supernode

Write the following equations:
• A KVL equation for any supermeshes
• A KVL equation for any remaining 

meshes where the current is unknown
• A constraint equation for each dependent 

source that defines the controlling vari-
able for the dependent source in terms of 
the mesh currents

• A constraint equation for each super-
mesh that equates the difference between 
the two mesh currents in the supermesh 
to the current source eliminated to form 
the supermesh

Step 4
Solve the equations

Solve the equations to find the node voltages Solve the equations to find the mesh 
 currents

Step 5
Solve for other unknowns

Use the node voltage values to find any 
unknown voltages, currents, or powers

Use the mesh current values to find any 
unknown voltages, currents, or powers

• Maximum power transfer is a technique for calculating 
the maximum value of p that can be delivered to a load, 
RL. Maximum power transfer occurs when RL = RTh, 
the Thévenin resistance as seen from the resistor RL. 
The equation for the maximum power transferred is

p =
VTh

2

4RL
 .

(See page 154–155.)

• In a circuit with multiple independent sources, super-
position allows us to activate one source at a time and 
calculate voltages and currents due to each source. To 
determine the voltages and currents that exist when all 
independent sources are active, sum the voltages and cur-
rents that resulted from each of the sources. Dependent 
sources are never deactivated when applying superposi-
tion. (See page 157.)

 Summary 163
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 4.4 A current leaving a node is defined as positive.

a) Sum the currents at each essential node in the 
circuit shown in Fig. P4.3.

b) Show that any one of the equations in (a) can be 
derived from the remaining three equations.

 4.5 Look at the circuit in Fig. 4.4.

a) Write the KCL equation at the essential node 
labeled g.

b) Show that the KCL equation in part (a) can be 
derived from the KCL equations at nodes b, c, 
and e (see Example 4.2).

Section 4.2

 4.6 Use the node-voltage method to find vo in the cir-
cuit in Fig. P4.6.

Figure P4.6

20 V

60 V

yo

1

2

10 V

20 V
1

2

25 mA

 4.7 a) Find the power developed by the 40 mA current 
source in the circuit in Fig. P4.6.

b) Find the power developed by the 25 V voltage 
source in the circuit in Fig. P4.6.

c) Verify that the total power developed equals the 
total power dissipated.

 4.8 A 100 Ω resistor is connected in series with the 
40 mA current source in the circuit in Fig. P4.6.

a) Find vo.

b) Find the power developed by the 40 mA current 
source.

c) Find the power developed by the 25 V voltage 
source.

d) Verify that the total power developed equals the 
total power dissipated.

e) What effect will any finite resistance connected 
in series with the 40 mA current source have on 
the value of vo?

 4.9 Use the node-voltage method to find how much 
power the 4 A source extracts from the circuit in 
Fig. P4.9.
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Section 4.1

 4.1 For the circuit shown in Fig. P4.1, state the 
 numerical value of the number of (a) branches, (b) 
branches where the current is unknown, (c) essen-
tial branches, (d) essential branches where the cur-
rent is  unknown, (e) nodes, (f) essential nodes, and 
(g) meshes.

Figure P4.1
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 4.2 a) If only the essential nodes and branches are 
identified in the circuit in Fig. P4.1, how many 
simultaneous equations are needed to describe 
the circuit?

b) How many of these equations can be derived us-
ing Kirchhoff’s current law?

c) How many must be derived using Kirchhoff’s 
voltage law?

d) What two meshes should be avoided in applying 
the voltage law?

 4.3 Assume the voltage vs in the circuit in Fig. P4.3 is 
known. The resistors R1 - R7 are also known.

a) How many unknown currents are there?

b) How many independent equations can be writ-
ten using Kirchhoff’s current law (KCL)?

c) Write an independent set of KCL equations.

d) How many independent equations can be de-
rived from Kirchhoff’s voltage law (KVL)?

e) Write a set of independent KVL equations.

Figure P4.3
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 4.14 a) Use the node-voltage method to find v1, v2, and 
v3 in the circuit in Fig. P4.14.

b) How much power does the 30 V voltage source 
deliver to the circuit?

Figure P4.14
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 4.15 The circuit shown in Fig. P4.15 is a dc model of a 
residential power distribution circuit.

a) Use the mesh-current method to find the branch 
currents i1 - i6.

b) Test your solution for the branch currents by 
showing that the total power dissipated equals 
the total power developed.

Figure P4.15
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 4.16 Use the mesh-current method to find the total 
 power dissipated in the circuit in Fig. P4.16.

Figure P4.16
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 4.17 a) Use the node-voltage method to find vo in the 
circuit in Fig. P4.17.

b) Find the power absorbed by the dependent 
source.
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Figure P4.9

10 V

5 V

20 V4 A 20 V
1

2

 4.10 a) Use the node-voltage method to show that the 
output voltage v0 in the circuit in Fig. P4.10 is 
equal to the average value of the source voltages.

b) Find vo if v1 = 120 V, v2 = 60 V, and 
v3 = -30 V.

Figure P4.10
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 4.11 a) Use the node-voltage method to find the branch 
currents ia - ie in the circuit shown in Fig. P4.11.

b) Find the total power developed in the circuit.

Figure P4.11
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 4.12 Use the node-voltage method to find v1 and v2 in 
the circuit in Fig. P4.12.

Figure P4.12
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 4.13 Use the node-voltage method to find v1 and v2 in 
the circuit shown in Fig. P4.13.

Figure P4.13
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Figure P4.21
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 4.22 a) Use the node-voltage method to find vo and the 
power delivered by the 2 A current source in the 
circuit in Fig. P4.22. Use node a as the reference 
node.

b) Repeat part (a), but use node b as the reference 
node.

c) Compare the choice of reference node in (a) and 
(b) Which is better, and why?

Figure P4.22

20 V

50 V 150 V 55 V2 A

b

a

25 V

1 2

yo

1

2

 4.23 Use the node-voltage method to find the value of vo 
in the circuit in Fig. P4.23.

Figure P4.23
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 4.24 Use the mesh-current method to find io in the circuit 
in Fig. P4.24.

Figure P4.24
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c) Find the total power developed by the indepen-
dent sources.

Figure P4.17
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 4.18 Use the mesh-current method to calculate the 
 power delivered by the dependent voltage source in 
the circuit in Fig. P4.18.

Figure P4.18
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 4.19 a) Use the node-voltage method to find the total 
power developed in the circuit in Fig. P4.19.

b) Check your answer by finding the total power 
absorbed in the circuit.

Figure P4.19
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 4.20 a) Use the node-voltage method to find vo for the 
circuit in Fig. P4.20.

b) Find the total power supplied in the circuit.

Figure P4.20
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 4.21 a) Find the node voltages v1, v2, and v3 in the circuit 
in Fig. P4.21.

b) Find the total power dissipated in the circuit.
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 4.29 Assume you are a project engineer and one of your 
staff is assigned to analyze the circuit shown in Fig.  
P4.29. The reference node and node numbers given 
on the figure were assigned by the analyst. Her solu-
tion gives the values of v1 and v2 as 105 V and 85 V, 
respectively.

a) What values did the analyst use for the left-most 
and right-most node voltages when writing KCL 
equations at nodes 1 and 2?

b) Use the values supplied by the analyst to calcu-
late the total power developed in the circuit and 
the total power dissipated in the circuit.

c) Do you agree with the solution submitted by the 
analyst?

Figure P4.29
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 4.30 Use the node-voltage method to find the power de-
veloped by the 20 V source in the circuit in Fig. P4.30.

Figure P4.30
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 4.31 Show that when Eqs. 4.13, 4.14, and 4.16 are solved 
for iB, the result is identical to Eq. 2.21.

 4.32 a) Use the mesh-current method to find the branch 
currents ia, ib, and ic in the circuit in Fig. P4.32.

b) Repeat (a) if the polarity of the 140 V source is 
reversed.

Figure P4.32
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 4.25 a) Use the node-voltage method to find the power dis-
sipated in the 2 Ω resistor in the circuit in Fig. P4.25.

b) Find the power supplied by the 230 V source.

Figure P4.25
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 4.26 Use the node-voltage method to find vo in the  circuit 
in Fig. P4.26.

Figure P4.26
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 4.27 a) Use the node-voltage method to find the branch 
currents i1, i2, and i3 in the circuit in Fig. P4.27.

b) Check your solution for i1, i2, and i3 by showing 
that the power dissipated in the circuit equals 
the power developed.

Figure P4.27
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 4.28 Use mesh-current method to find the power devel-
oped in the voltage source in the circuit in Fig. P4.28.

Figure P4.28
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 4.41 a) Use the mesh-current method to find vo in the 
circuit in Fig. P4.41.

b) Find the power delivered by the dependent source.

Figure P4.41
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 4.42 Use the mesh-current method to find the power 
developed in the dependent voltage source in the 
circuit in Fig. P4.42.

Figure P4.42
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Section 4.7

 4.43 a) Use the mesh-current method to solve for i∆ in 
the circuit in Fig. P4.43.

b) Find the power delivered by the independent 
current source.

c) Find the power delivered by the dependent volt-
age source.

Figure P4.43
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 4.44 Solve Problem 4.13 using the mesh-current method.

 4.45 Solve Problem 4.21 using the node-voltage method.

 4.46 Use the mesh-current method to find the total pow-
er developed in the circuit in Fig. P4.46.

Figure P4.46
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Section 4.5

 4.33 Solve Problem 4.11 using the mesh-current method.

 4.34 Solve Problem 4.15 using the mesh-current method.

 4.35 Solve Problem 4.25 using the mesh-current method.

 4.36 a) Use the mesh-current method to find the total 
power developed in the circuit in Fig. P4.36.

b) Check your answer by showing that the total  power 
developed equals the total power dissipated.

Figure P4.36
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 4.37 Solve Problem 4.24 using the mesh-current method.

Section 4.6

 4.38 Solve Problem 4.18 using the mesh-current method.

 4.39 Use the mesh-current method to find the power 
dissipated in the 10 Ω resistor in the circuit in 
Fig. P4.39.

Figure P4.39
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 4.40 Use the mesh-current method to find the power 
 delivered by the dependent voltage source in the 
circuit seen in Fig. P4.40.

Figure P4.40
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circuit in Fig. P4.49 to get the same power dissi-
pated by the current source that you found in (a) 
and (b). Use the results in part (c) to calculate 
the new value of this voltage source.

 4.51 Solve Problem 4.27 using the mesh-current method.

 4.52 a) Use the mesh-current method to find the branch 
currents in ia - ie in the circuit in Fig. P4.52.

b) Check your solution by showing that the total 
power developed in the circuit equals the total 
power dissipated.

Figure P4.52
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 4.53 a) Find the branch currents ia - ie for the circuit 
shown in Fig. P4.53.

b) Check your answers by showing that the total 
power generated equals the total power dissi-
pated.

Figure P4.53
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 4.54 Assume you have been asked to find the power dis-
sipated in the horizontal 1 kΩ resistor in the circuit 
in Fig. P4.54.

a) Which method of circuit analysis would you rec-
ommend? Explain why.

b) Use your recommended method of analysis to 
find the power dissipated in the horizontal 1 kΩ 
resistor.

c) Would you change your recommendation if the 
problem had been to find the power developed 
by the 10 mA current source? Explain.

d) Find the power delivered by the 10 mA current 
source.
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 4.47 a) Use the node-voltage method to find how much 
power the 5 A current source delivers to the cir-
cuit in Fig. P4.47.

b) Find the total power delivered to the circuit.

c) Check your calculations by showing that the to-
tal power developed in the circuit equals the to-
tal power dissipated

Figure P4.47
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 4.48 a) Use the mesh-current method to determine 
which sources in the circuit in Fig. P4.48 are gen-
erating power.

b) Find the total power dissipated in the circuit.

Figure P4.48
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 4.49 Use the mesh-current method to find the total pow-
er dissipated in the circuit in Fig. P4.49.

Figure P4.49
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 4.50 a) Assume the 20 V source in the circuit in Fig. 
P4.49 is changed to 60 V. Find the total power 
dissipated in the circuit.

b) Repeat (a) with the 6 A current source replaced 
by a short circuit.

c) Explain why the answers to (a) and (b) are the 
same.

d) Now assume you wish to change the value of the 
90 V source, instead of the 20 V source, in the 
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 4.58 The variable dc voltage source in the circuit in 
Fig. P4.58 is adjusted so that io is zero.

a) Would you use the node-voltage or mesh- current 
method to find vdc? Explain your choice.

b) Find the value of vdc, using the method selected 
in (a).

c) Check your solution by showing the power de-
veloped equals the power dissipated.

Figure P4.58
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 4.59 a) Make a series of source transformations to find 
the voltage v0 in the circuit in Fig. P4.59.

b) Verify your solution using the mesh-current 
method.

Figure P4.59
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 4.60 a) Find the current io in the circuit in Fig. P4.60 by 
making a succession of appropriate source trans-
formations.

b) Using the result obtained in (a), work back 
through the circuit to find the power developed 
by the 50 V source.

Figure P4.60
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 4.61 a) Use source transformations to find the current io 
in the circuit in Fig. P4.61.

b) Verify your solution by using the node-voltage 
method to find io.
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Figure P4.54
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 4.55 A 4 kΩ resistor is placed in parallel with the 10 mA 
current source in the circuit in Fig. P4.56. Assume 
you have been asked to calculate the power devel-
oped by the current source.

a) Which method of circuit analysis would you rec-
ommend? Explain why.

b) Find the power developed by the current source.

 4.56 a) Would you use the node-voltage or mesh- current 
method to find the power absorbed by the 20 V 
source in the circuit in Fig. P4.56? Explain your 
choice.

b) Use the method you selected in (a) to find the 
power.

Figure P4.56
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 4.57 The variable dc current source in the circuit in Fig. 
P4.57 is adjusted so that the power developed by 
the 40 mA current source is zero. You want to find 
the value of idc.

a) Would you use the node-voltage or mesh- current 
method to find idc? Explain your choice.

b) Use the method selected in (a) to find idc.

Figure P4.57
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 4.65 Find the Norton equivalent with respect to the ter-
minals a, b for the circuit in Fig. P4.65.

Figure P4.65

75 mA
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b

2 kV

4 kV 3 kV

 4.66 Find the Norton equivalent with respect to the ter-
minals a, b for the circuit in Fig. P4.66.

Figure P4.66
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 4.67 Find the Norton equivalent with respect to the ter-
minals a and b for the circuit in Fig. P4.67.

Figure P4.67
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 4.68 Find the Norton equivalent with respect to the ter-
minals a, b in the circuit in Fig. P4.68.

Figure P4.68
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 4.69 A Thévenin equivalent can also be determined 
from measurements made at the pair of terminals 
of interest. Assume the following measurements 
were made at the terminals a,b in the circuit in 
Fig. P4.69.
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Figure P4.61
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 4.62 a) Use a series of source transformations to find io 
in the circuit in Fig. P4.62.

b) Verify your solution by using the mesh-current 
method to find io.

Figure P4.62

6 V 5 V

6 V 1.5 V

17 V

2

1

2 A

34 V

1 A

io

 4.63 a) Use source transformations to find vo in the cir-
cuit in Fig. P4.63.

b) Find the power developed by the 520 V source.

c) Find the power developed by the 1 A current 
source.

d) Verify that the total power developed equals the 
total power dissipated.

Figure P4.63
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 4.64 Find the Norton equivalent with respect to the ter-
minals a and b for the circuit in Fig. P4.64.

Figure P4.64
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 current will the galvanometer detect, when the bridge 
is unbalanced by setting R3 to 3003 Ω? (Hint: Find the 
Thévenin equivalent with respect to the galvanome-
ter terminals when R3 = 3003 Ω. Note that once we 
have found this Thévenin equivalent, it is easy to find 
the amount of unbalanced current in the galvanome-
ter branch for different galvanometer movements.)

Figure P4.73
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 4.74 Determine the Thévenin equivalent with respect to 
the terminals a, b for the circuit shown in Fig. P4.74.

Figure P4.74
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 4.75 Find the Norton equivalent with respect to the ter-
minals a, b for the circuit seen in Fig. P4.75.

Figure P4.75
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 4.76 When an ammeter is used to measure the current if 
in the circuit shown in Fig. P4.76, it reads 6 A.

a) What is the resistance of the ammeter?

b) What is the percentage of error in the current 
measurement?

Figure P4.76
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When a 20 Ω resistor is connected to the terminals 
a, b, the voltage vab is measured and found to be 100 V.

When a 50 Ω resistor is connected to the ter-
minals a, b, the voltage is measured and found to 
be 200 V.

Find the Thévenin equivalent of the network 
with respect to the terminals a, b.

Figure P4.69
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 4.70 An automobile battery, when connected to a car 
 radio, provides 12.5 V to the radio. When connected 
to a set of headlights, it provides 11.7 V to the head-
lights. Assume the radio can be modeled as a 6.25 Ω 
resistor and the headlights can be modeled as a 
0.65 Ω resistor. What are the Thévenin and Norton 
equivalents for the battery?

 4.71 Determine io and vo in the circuit shown in Fig. P4.71 
when Ro is a resistor from Appendix H such that 
100 Ω … Ro 6 200 Ω.

Figure P4.71
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 4.72 A voltmeter with a resistance of 85.5 kΩ is used to 
measure the voltage vab in the circuit in Fig. P4.72.

a) What is the voltmeter reading?

b) What is the percentage of error in the voltmeter 
reading if the percentage of error is defined as 
3(measured - actual)>actual4 * 100?

Figure P4.72
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 4.73 The Wheatstone bridge in the circuit shown in 
Fig. P4.73 is balanced when R3 equals 3000 Ω. If the 
galvanometer has a resistance of 50 Ω, how much 
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 4.81 Find the Thévenin equivalent with respect to the 
terminals a and b for the circuit in Fig. P4.81.

Figure P4.81
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 4.82  The variable resistor in the circuit in Fig. P4.82 is 
adjusted for maximum power transfer to Ro.

a) Find the value of Ro.

b) Find the maximum power that can be delivered 
to Ro.

c) Find a resistor in Appendix H closest to the val-
ue in part (a). How much power is delivered to 
this resistor?

Figure P4.82
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 4.83  What percentage of the total power developed in 
the circuit in Fig. P4.82 is delivered to Ro when Ro is 
set for maximum power transfer?

 4.84  a) Calculate the power delivered for each value of 
Ro used in Problem 4.71.

b) Plot the power delivered to Ro versus the resis-
tance Ro.

c) At what value of Ro is the power delivered to Ro 
a maximum?

 4.85 a) Find the value of the variable resistor Ro in the 
circuit in Fig. P4.85 that will result in maximum 
power dissipation in the 5 Ω resistor. (Hint: Hasty 
conclusions could be hazardous to your career.)

b) What is the maximum power that can be deliv-
ered to the 5 Ω resistor?

Figure P4.85
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Section 4.11

 4.77 a) Find the Thévenin equivalent resistance with 
 respect to the terminals a, b in the circuit in 
Fig. P4.64 without finding either the open cir-
cuit voltage or the short circuit current.

b) Find the Norton equivalent resistance with 
 respect to the terminals a, b in the circuit in 
Fig. P4.66 without finding either the open circuit 
voltage or the short circuit current.

 4.78 a) Find the Thévenin equivalent with respect to 
the terminals a, b for the circuit in Fig. P4.78 by 
finding the open-circuit voltage and short-circuit 
current.

b) Solve for the Thévenin resistance by removing 
the independent sources. Compare your result to 
the Thévenin resistance found in (a).

Figure P4.78

1

2

20 V

15 V
1.8 A

20 V

10 V 20 V9 V

a

b

 4.79  Find the Thévenin equivalent with respect to the 
terminals a,b in the circuit in Fig. P4.79.

Figure P4.79
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 4.80  Find the Thévenin equivalent with respect to the 
terminals a, b in the circuit in Fig. P4.80.

Figure P4.80
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Figure P4.89
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 4.90  The variable resistor (RL) in the circuit in Fig. P4.90 
is adjusted for maximum power transfer to RL.

a) Find the numerical value of RL.

b) Find the maximum power transferred to RL.

Figure P4.90
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 4.91 The variable resistor (Ro) in the circuit in Fig. P4.91 
is adjusted for maximum power transfer to Ro.

a) Find the value of Ro.

b) Find the maximum power that can be delivered 
to Ro.

c) What percentage of the total power developed 
in the circuit is delivered to Ro found in part(a)?

d) If Ro is selected from Appendix H, which resistor 
value will result in the greatest amount of power 
delivered to Ro?

Figure P4.91
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Section 4.13

 4.92 a) In the circuit in Fig. P4.92, before the 5 mA cur-
rent source is attached to the terminals a,b, the 
current io is calculated and found to be 3.5 mA. 
Use superposition to find the value of io after the 
current source is attached.

b) Verify your solution by finding io when all three 
sources are acting simultaneously.

PSPICE

MULTISIM

PSPICE
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 4.86  A variable resistor Ro is connected across the ter-
minals a, b in the circuit in Fig. P4.75. The variable 
resistor is adjusted until maximum power is trans-
ferred to Ro.

a) Find the value of Ro.

b) Find the maximum power delivered to Ro.

c) Find the percentage of the total power devel-
oped in the circuit that is delivered to Ro.

d) Find the resistor from Appendix H closest in 
 value to the Ro. from part (a).

e) Find the percentage of the total power devel-
oped in the circuit that is delivered to the resis-
tor in part (d).

 4.87 The variable resistor (Ro) in the circuit in Fig. P4.87 
is adjusted until it absorbs maximum power from 
the circuit.

a) Find the value of Ro.

b) Find the maximum power.

c) Find the percentage of the total power devel-
oped in the circuit that is delivered to Ro.

Figure P4.87
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 4.88  The variable resistor (Ro) in the circuit in Fig. P4.88 
is adjusted until the power dissipated in the resistor 
is 250 W. Find the values of Ro that satisfy this con-
dition.

Figure P4.88
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 4.89  The variable resistor in the circuit in Fig. P4.89 is 
adjusted for maximum power transfer to Ro.

a) Find the numerical value of Ro.

b) Find the maximum power delivered to Ro.

c) How much power does the 180 V source deliver 
to the circuit when Ro is adjusted to the value 
found in (a)?
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Figure P4.96
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 4.97 Use the principle of superposition and find the 
voltage across the 10 kΩ resistor in the circuit in 
Fig. P4.97.

Figure P4.97
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 4.98 Use the principle of superposition to find the cur-
rent i in the circuit of Fig. P4.98.

Figure P4.98
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 4.99  Assume your supervisor has asked you to deter-
mine the power developed by the 50 V source in the 
circuit in Fig. P4.99. Before calculating the power 
developed by the 50 V source, the supervisor asks 
you to submit a proposal describing how you plan 
to attack the problem. Furthermore, he asks you to 
explain why you have chosen your proposed meth-
od of solution.

a) Describe your plan of attack, explaining your 
reasoning.

b) Use the method you have outlined in (a) to find 
the power developed by the 50 V source.

PSPICE

MULTISIM

PSPICE

MULTISIM

Figure P4.92
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 4.93 a) Use the principle of superposition to find the 
voltage across the 20 Ω resistor in the circuit of 
Fig. P4.93.

b) Find the power dissipated in the 20 Ω resistor.

Figure P4.93
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 4.94 Using the principle of superposition, find the 
voltage across the 30 Ω resistor in the circuit in 
Fig. P4.94.

Figure P4.94
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 4.95 Using the principle of superposition, find the cur-
rent through the 50 Ω resistor in the circuit shown 
in Fig. P4.95.

Figure P4.95
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 4.96 Using the principle of superposition, find the 
current through the 10 Ω resistor in the circuit in 
Fig. P4.96.
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b) Show that the voltage v will be minimum when

x =
L

v2 - v1
 c -v1 { Av1v2-  

R
2rL

 (v1 - v2)
2 d .

c) Find x when L = 16 km, v1 = 1000 V, 
v2 = 1200 V, R = 3.9 Ω, and 
r = 5 * 10 - 5 Ω >m.

d) What is the minimum value of v for the circuit 
of part (c)?

Figure P4.102
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 4.103  Laboratory measurements on a dc voltage source 
yield a terminal voltage of 75 V with no load con-
nected to the source and 60 V when loaded with a 
20 Ω resistor.

a) What is the Thévenin equivalent with respect to 
the terminals of the dc voltage source?

b) Show that the Thévenin resistance of the source 
is given by the expression

RTh = avTh

vo
- 1bRL,

where
vTh = the Thévenin voltage,

vo  = the terminal voltage corresponding to the 
        load resistance RL.

 4.104  For the circuit in Fig. 4.74 derive the expressions for 
the sensitivity of v1 and v2 to changes in the source 
currents Ig1 and Ig2.

 4.105  Assume the nominal values for the components in 
the circuit in Fig. 4.74 are: R1 = 25 Ω; R2 = 5 Ω; 
R3 = 50 Ω; R4 = 75 Ω; Ig1 = 12 A; and Ig2 = 16 A. 
Predict the values of v1 and v2 if Ig1 decreases to 
11 A and all other components stay at their nomi-
nal values. Check your predictions using a tool like 
PSpice or MATLAB.
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 4.100  Find i1 and i2 in the circuit in Fig. P4.100.

Figure P4.100
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 4.101  Find v1, v2, and v3 in the circuit in Fig. P4.101.

Figure P4.101
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 4.102  Two ideal dc voltage sources are connected by elec-
trical conductors that have a resistance of r Ω >m, as 
shown in Fig. P4.102. A load having a resistance of 
R Ω moves between the two voltage sources. Let x 
equal the distance between the load and the source 
v1, and let L equal the distance between the sources.

a) Show that

v =
v1RL + R(v2 - v1)x

RL + 2rLx - 2rx2  .
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 4.108  Use the results given in Table 4.2 to predict the val-
ues of v1 and v2 if R1 and R3 increase to 10% above 
their nominal values and R2 and R4 decrease to 10% 
below their nominal values. Ig1 and Ig2 remain at 
their nominal values. Compare your predicted val-
ues of v1 and v2 with their actual values.

PRACTICAL
PERSPECTIVE

 4.106  Repeat Problem  4.105 if Ig2 increases to 17 A, and 
all other components stay at their nominal values. 
Check your predictions using a tool like PSpice or 
MATLAB.

 4.107  Repeat Problem  4.105 if Ig1 decreases to 11 A and 
Ig2 increases to 17 A. Check your predictions using a 
tool like PSpice or MATLAB.

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE
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CHAPTER CONTENTS

5
CHAPTER 

The Operational Amplifier
This chapter analyzes circuits containing sources, resistors, and 
a new component, the operational amplifier (op amp). Unlike 
sources and resistors, the op amp is not an ideal basic circuit ele-
ment. Instead, it is a complicated integrated circuit consisting of 
many electronic components such as transistors and diodes that 
are beyond the scope of this text. We can use op amps in intro-
ductory circuits, however, by taking a black box approach that 
focuses solely on the terminal behavior of the op amp (not on its 
internal structure or the currents and voltages that exist in this 
structure).

Operational amplifier circuits were first used as basic build-
ing blocks in analog computers. The term operational refers to 
op amp circuits that implement mathematical operations such 
as integration, differentiation, addition, sign changing, and scal-
ing. While the range of applications has broadened beyond im-
plementing mathematical operations, the original name for the 
circuit persists.

We do not introduce new circuit analysis techniques in this 
chapter. Instead, we apply tools we have already introduced to 
analyze and design interesting and useful op amp circuits that 
perform scaling, addition, and subtraction. Once we introduce 
inductors and capacitors in Chapter 6, we will present op amp 
circuits that integrate and differentiate electric signals.

Initially, we employ an ideal model of the op amp’s terminal 
behavior. At the conclusion of this chapter, we consider a more 
realistic op amp model that employs a dependent source. This 
provides additional opportunities to practice analyzing circuits 
with these sources.

5.1 Operational Amplifier Terminals p. 180

5.2 Terminal Voltages and Currents p. 180

5.3 The Inverting-Amplifier Circuit p. 184

5.4 The Summing-Amplifier Circuit p. 186

5.5 The Noninverting-Amplifier Circuit  
p. 188

5.6 The Difference-Amplifier Circuit p. 190

5.7 A More Realistic Model for the 
 Operational Amplifier p. 195

1 Be able to name the five op amp terminals  
and describe and use the voltage and 
 current constraints and the resulting 
 simplifications they lead to in an ideal  
op amp.

2 Be able to analyze simple circuits  
containing ideal op amps and recognize  
the following op amp circuits: inverting 
amplifier, summing amplifier, noninverting 
amplifier, and difference amplifier.

3 Understand the more realistic model for an 
op amp and be able to use this model to 
analyze simple circuits containing op amps.

CHAPTER OBJECTIVES



Practical Perspective
Sensors
A sensor senses a physical stimulus or property and con-
verts it to an electrical signal or property. Myriad sensors 
are used in almost all fields of science and technology. 
Sensors are crucial components in signal processing, 
control circuits, automation, telecommunication, health, 
biotechnology, manufacturing, transportation, and the 
military, among other fields.

The smartphones we use today come with accel-
erometers, gyroscopes, magnetometers, and sensors 
to detect proximity, light, infrared waves, temperature, 
 humidity, and pressure, in addition to microphones, 
cameras, touchscreens, GPS devices, and fingerprint 
scanners. A modern automobile has hundreds of sen-
sors including some to measure the fuel level, wheel 
speed, and oxygen levels, some to assist with parking, 
and some to monitor the seatbelt tension to name just 
a few. From home appliances to computers, from toys 
to robots, and from instruments to industrial machines, 
we can estimate that almost a trillion sensors are used 
in the world today. In our “data hungry” world, devices 
are required to connect and communicate with each 
other in a network structure. The Internet of Things (IoT) 

is becoming more popular and could pave the way to 
utilize an even greater number of sensors.

Most sensors generally produce analog signals. 
However, the data must be digital so that it can be easily 
collected, processed, transferred, and stored. Therefore, 
analog-to-digital converters (ADCs) are used to convert 
analog sensor signals to digital numbers. Many micropro-
cessor chips have built in ADC inputs available. At this 
stage, one problem is that the output voltage range of 
sensors does not generally match the ADC input range. 
A circuit that interconnects the sensor output to the ADC 
input is needed, and operational amplifiers are commonly 
used for this purpose.

luchschen/123rf

Stephen VanHorn/123rf

scyther5/123rf



180 The Operational Amplifier

5.1 Operational Amplifier Terminals
We begin by looking at the terminal behavior of a commercially available 
op amp, the mA 741. Fairchild Semiconductor introduced this widely used 
device in 1968. This op amp is available in several different packages. For 
our discussion, we assume an eight-lead DIP.1 Figure 5.1 shows a top view 
of the package, with the terminals, their names, and numbers. We focus 
on the following terminals:

• inverting input,
• noninverting input,
• output,
• positive power supply (V +),
• negative power supply (V -).

The remaining three terminals are of little or no concern. The two offset 
null terminals may be used in an auxiliary circuit that compensates for 
performance degradation owing to aging and imperfections. These termi-
nals are seldom used because degradation is usually negligible. Terminal 8 
is an unused terminal; NC stands for no connection, which means that the 
terminal is not connected to the op amp circuit.

Figure 5.2 shows a common circuit symbol for an op amp that con-
tains the five terminals of primary interest. Because word labels are in-
convenient in circuit diagrams, we simplify the terminal designations in 
the following way. The noninverting input terminal is labeled plus (+), 
and the inverting input terminal is labeled minus (-). The power supply 
 terminals, which are always drawn outside the triangle, are marked V + 
and V -. The terminal at the apex of the triangle is always understood to 
be the output terminal. Figure 5.3 summarizes these simplifications.

5.2 Terminal Voltages and Currents
We now describe the behavior of the op amp using the terminal voltages 
and currents. The voltage variables are measured from a common refer-
ence node.2 Figure 5.4 shows the five voltage variables with their refer-
ence polarities.

All voltages are considered as voltage rises from the common node, a 
convention we also used in the node-voltage analysis method. A positive 
supply voltage (VCC) is connected between V + and the common node. A 
negative supply voltage (-VCC) is connected between V - and the common 
node. The voltage between the inverting input terminal and the common 
node is denoted vn. The voltage between the noninverting input terminal 
and the common node is designated as vp. The voltage between the output 
terminal and the common node is denoted vo.

Figure 5.5 shows the current variables with their reference directions, 
all of which are into the terminals of the operational amplifier: in is the 
current into the inverting input terminal; ip is the current into the nonin-
verting input terminal; io is the current into the output terminal; ic+ is the 
current into the positive power supply terminal; and ic- is the current into 
the negative power supply terminal.

1 DIP is an abbreviation for dual in-line package. This means that the terminals on each side 
of the package are in line and that the terminals on opposite sides of the package also line up.

Offset null

Inverting

input

Noninverting

input

NC

Output

Offset null

V
1

V
2

Figure 5.1 ▲ The eight-lead DIP package (top view).
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Figure 5.2 ▲ The circuit symbol for an operational 
amplifier (op amp).
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Figure 5.3 ▲ A simplified circuit symbol for  
an op amp.

2 The common node is external to the op amp. It is the reference terminal of the circuit in 
which the op amp is embedded.
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The terminal behavior of the op amp as a linear circuit element is 
characterized by constraints on the input voltages and the input currents. 
The voltage constraint is derived from the voltage transfer characteristic 
of the op amp integrated circuit, pictured in Fig. 5.6.

The voltage transfer characteristic describes how the output voltage 
varies as a function of the input voltages—that is, how voltage is trans-
ferred from the input to the output. Note that the op amp’s output voltage 
is a function of the difference between its input voltages, vp - vn. The 
equation for the voltage transfer characteristic is

 vo = •
-VCC A(vp - vn) 6 -VCC,
A(vp - vn) -VCC … A(vp - vn) … +VCC,
+VCC A(vp - vn) 7 +VCC.

 (5.1)

We see from Fig. 5.6 and Eq. 5.1 that the op amp has three distinct 
regions of operation: negative saturation, linear region, and positive sat-
uration. When the magnitude of the input voltage difference ( 0 vp - vn 0 ) 
is small, the op amp behaves as a linear device, so the output voltage is a 
linear function of the input voltages. More specifically, the output voltage 
is equal to the difference between the input voltages times the multiplying 
constant, or gain, A. Outside this linear region are two saturation regions. 
When the output of the op amp saturates, the op amp behaves as a non-
linear device; its output voltage is no longer a linear function of the input 
voltages.

Op Amp Input Voltage Constraints
When we confine the op amp to its linear operating region, a constraint is 
imposed on the input voltages, vp and vn. The constraint is based on typi-
cal numerical values for VCC and A in Eq. 5.1. For most op amps, the rec-
ommended dc power supply voltages seldom exceed 20 V, and the gain, 
A, is rarely less than 10,000, or 104. We see from both Fig. 5.6 and Eq. 5.1 
that in the linear region, the magnitude of the input voltage difference 
( 0 vp -  vn 0 ) must be less than 20>104, or 2 mV.

Node voltages in the circuits we study are typically much larger than 
2 mV, so a voltage difference of less than 2 mV means the two voltages 
are essentially equal. Thus, when an op amp is constrained to its linear 
operating region and the node voltages are much larger than 2 mV, the 
constraint on the input voltages of the op amp is
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Figure 5.5 ▲ Terminal current variables.
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Figure 5.6 ▲ The voltage transfer characteristic of 
an op amp.

INPUT VOLTAGE CONSTRAINT FOR AN OP AMP

 vp = vn. (5.2)

Note that Eq. 5.2 characterizes the relationship between the input volt-
ages for an ideal op amp—that is, an op amp whose value of A is infinite.

We can use Eq. 5.2 only if the op amp is confined to its linear oper-
ating region. The op amp stays in its linear region if the op amp circuit 
includes a signal path from the op amp’s output terminal to its inverting 
input terminal. This configuration is known as negative feedback because 
the signal is fed back from the output and is subtracted from the input 
signal. The negative feedback causes the input voltage difference to de-
crease. Because the output voltage is proportional to the input voltage 
difference, the output voltage is also decreased, and the op amp operates 
in its linear region.
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If a circuit containing an op amp does not provide a negative feed-
back path from the op amp output to the inverting input, then the op amp 
will normally saturate. But even if the circuit provides a negative feedback 
path for the op amp, linear operation is not guaranteed. So how do we 
know whether the op amp is operating in its linear region?

The answer is, we don’t! We deal with this dilemma by assuming lin-
ear operation, performing the circuit analysis, and then checking our re-
sults for contradictions. For example, suppose we assume that an op amp 
in a circuit is operating in its linear region, and we compute the output 
voltage of the op amp to be 10 V. On examining the circuit, we discover 
that VCC is 6 V, resulting in a contradiction, because the op amp’s output 
voltage can be no larger than VCC. Thus, our assumption of linear opera-
tion was invalid, and the op amp output must be saturated at 6 V.

We have identified a constraint on the input voltages that is based on 
the voltage transfer characteristic of the op amp, the assumption that the 
op amp is restricted to its linear operating region, and typical values for 
VCC

3 and A. Equation 5.2 represents the voltage constraint for an ideal op 
amp, that is, with a value of A that is infinite.

Op Amp Input Current Constraints
We now turn our attention to the constraint on the input currents. Analysis of 
the op amp integrated circuit reveals that the equivalent resistance seen by the 
input terminals of the op amp is very large, typically 1 MΩ or more. Ideally, 
the equivalent input resistance is infinite, resulting in the current constraint

3 The positive and negative power supply voltages do not have to be equal in magnitude. 
In the linear operating region, vo must lie between the two supply voltages. For example, if 
V + = 15 V and V - = -10 V, then -10 V … vo … 15 V.

INPUT CURRENT CONSTRAINT FOR AN IDEAL OP AMP

 ip = in = 0. (5.3)

Note that the current constraint is not based on assuming that the op amp 
is confined to its linear operating region, as was the voltage constraint. 
Together, Eqs. 5.2 and 5.3 form the constraints on terminal behavior that 
define our ideal op amp model.

From Kirchhoff’s current law we know that the sum of the currents 
entering the operational amplifier is zero, or

ip + in + io + ic+ + ic- = 0.

Substituting the constraint given by Eq. 5.3 into this KCL equation gives

io = -(ic+ +  ic-).

The equation for io tells us that, even though the current at the input ter-
minals is negligible, there may still be appreciable current at the output 
terminal.

When we use Eqs. 5.2 and 5.3 in analyzing a circuit with an op amp, 
we are effectively using an ideal model of that op amp. Let’s summarize 
the circuit analysis steps:

 Step 1:  Check for the presence of a negative feedback path; if it exists, we 
can assume the op amp is operating in its linear region.

ANALYZING A CIRCUIT WITH 
AN IDEAL OP AMP

1. Check for a negative feedback path.  
If it exists, assume the op amp operates  
in its linear region.
2. Write a KCL equation at the inverting 
input terminal.
3. Solve the KCL equation and use the 
solution to find the op amp’s output  
voltage.
4. Compare the op amp’s output  
voltage to the power supply voltages to 
determine if the op amp is operating in its 
linear region or if it is saturated.

Analysis Method 5.1 Analyzing an ideal  
op amp circuit with a negative feedback path.
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 Step 2:  Write a KCL equation at the inverting input terminal, using the 
input current constraint (Eq. 5.3), the value of vn (Eq. 5.2), and 
Ohm’s law to find the currents. This equation will usually contain 
the unknown voltage at the op amp’s output terminal.

 Step 3:  Solve the KCL equation and calculate the voltage at the op amp’s 
output terminal.

 Step 4:  Compare the voltage at the op amp’s output terminal to the power 
supply voltages to determine whether the op amp is actually in its 
linear region or whether it has saturated.

These steps are summarized in Analysis Method 5.1. Example 5.1 
 analyzes an op amp circuit using this analysis method.

EXAMPLE 5.1 Analyzing an Op Amp Circuit

The op amp in the circuit shown in Fig. 5.7 is ideal.

a) Calculate vo if va = 1 V and vb = 0 V.

b) Repeat (a) for va = 1 V and vb = 2 V.

c) If va = 1.5 V, specify the range of vb that avoids 
amplifier saturation.

Solution
a)  Step 1:  A negative feedback path exists from the 

op amp’s output to its inverting input through the 
100 kΩ resistor, so we assume the op amp is con-
fined to its linear operating region.

Step 2:  The voltage at the inverting input termi-
nal is 0 because vp = vb = 0 from the connected 
voltage source, and vn = vp from the voltage con-
straint in Eq. 5.2.

Step 3:  Use KCL to sum the currents entering 
the node labeled vn to get

i25 + i100 - in = 0.

Remember that in is the current entering the invert-
ing op amp terminal. From Ohm’s law,

 i25 =
va - vn

25,000
=

1 - 0
25,000

=
1

25,000
 ;

 i100 =
vo - vn

100,000
=

vo - 0
100,000

=
vo

100,000
 .

The current constraint requires in = 0. 
Substituting the values for the three currents into 
the KCL equation, we obtain

1
25

+
vo

100
= 0.

Hence, vo is -4 V.

Step 4: Because vo lies between {10 V, our as-
sumption that the op amp is in its linear region of 
operation is confirmed.

b) Using the same steps as in (a), we get

 vp = vb = vn = 2 V,

 i25 = - i100.

 i25 =
va - vn

25,000
=

1 - 2
25,000

= -
1

25,000
 ;

 i100 =
vo - vn

100,000
=

vo - 2
100,000

 .

Therefore, vo = 6 V. Again, vo lies within {10 V.

c) As before, vn = vp = vb, and i25 = - i100. Be-
cause va = 1.5 V,

1.5 - vb

25,000
=

vo - vb

100,000
 .

Solving for vb as a function of vo gives

vb =
1
5

 16 + vo2 .

Now, if the amplifier operates within its linear 
region, -10 V … vo … 10 V. Substituting these 
limits on vo into the expression for vb, we find 
the range for vb is

-0.8 V … vb … 3.2 V.

25 kV 10 V

210 V
yo

1

2

ya
1

2 yb
1

2

2

1

100 kV

i25

i100

Figure 5.7 ▲ The circuit for Example 5.1.
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5.3 The Inverting-Amplifier Circuit
This section and the three that follow present some important op amp 
circuits. We begin with the inverting-amplifier circuit, shown in Fig. 5.8. 
This circuit contains an ideal op amp, two resistors (Rf  and Rs), a voltage 
source (vs), and a short circuit connecting the noninverting input terminal 
and the common node.

We can analyze this circuit to obtain an expression for the output volt-
age, vo, as a function of the source voltage, vs. Starting with Step 1, we 
note the circuit’s negative feedback path, so assume the op amp is in its 
linear operating region. In Step 2, the voltage constraint of Eq. 5.2 sets the 
voltage at vn = 0, because the voltage at vp = 0. Step 3 generates a single 
KCL equation at the inverting terminal of the op amp, given as

is + if = in.

From Ohm’s law,

is =
vs

Rs
 ,

if =
vo

Rf
 .

Now we invoke the constraint stated in Eq. 5.3, namely,

in = 0.

Substituting the expressions for is, if, and in into the KCL equation and 
solving for vo yields

Objective 1—Use voltage and current constraints in an ideal op amp

 5.1 Assume that the op amp in the circuit shown is 
ideal.
a) Calculate vo for the following values of vs: 

0.4, 2.0, 3.5, -0.6, -1.6, and -2.4 V.
b) Specify the range of vs required to avoid 

amplifier saturation.

Answer: (a) -2, -10, -15, 3, 8, and 10 V;
(b) -2 V … vs … 3 V.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 5.1, 5.3, and 5.4.
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–15 V
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2

ys
1

2

2

1

80 kV

1VCC

2VCC
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1

2

2

1is

in

if

yp

2

1

yn

2

1

Rs

Rf

ys
1

2

Figure 5.8 ▲ An inverting-amplifier circuit.

INVERTING AMPLIFIER EQUATION

 vo =
-Rf

Rs
 vs. (5.4)
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Note that the output voltage is an inverted, scaled replica of the input. The 
sign reverses, or inverts, from input to output. The scaling factor, or gain, 
is the ratio Rf>Rs,which is usually greater than 1, so 0 vo 0 7 0 vs 0 . Hence, we 
call this circuit an inverting amplifier.

Using Step 4, we see that the result given by Eq. 5.4 is valid only if 
the op amp shown in the circuit in Fig. 5.8 is operating in its linear region. 
Even if the op amp is not ideal, Eq. 5.4 is a good approximation. (We 
demonstrate this in Section 5.7.) Equation 5.4 specifies the gain of the in-
verting amplifier with the external resistors Rf  and Rs. In Step 4, the upper 
limit on the gain, Rf>Rs, is determined by the power supply voltages and 
the value of the signal voltage vs. If we assume equal power supply volt-
ages, that is, V + = -V - = VCC, we get

0 vo 0  … VCC,  `
Rf

Rs
 vs ` … VCC,  

Rf

Rs
… ` VCC

vs
` .

For example, if VCC = 15 V and vs = 10 mV, the ratio Rf>Rs must be less 
than 1500.

In the inverting amplifier circuit shown in Fig. 5.8, the resistor Rf  pro-
vides the negative feedback connection. That is, it connects the output ter-
minal to the inverting input terminal. If Rf  is removed, the feedback path 
is opened and the amplifier is said to be operating open loop. Figure 5.9 
shows the open-loop operation.

Opening the feedback path drastically changes the behavior of the 
circuit. To understand the open-loop circuit, we do not replace the op amp 
with its ideal model; although A and the input resistance are both large, 
they are not infinite. Now the output voltage is

 vo = -Avn, (5.5)

assuming as before that V + = -V - = VCC ; then 0 vn 0 6 VCC>A for linear 
operation. Because the inverting input current is almost zero, the voltage 
drop across Rs is almost zero, and the inverting input voltage nearly equals 
the signal voltage, vs; that is, vn ≈ vs. Hence, the op amp can operate 
open loop in the linear mode only if 0 vs 0 6 VCC>A. If 0 vs 0 7 VCC>A, the 
op amp simply saturates. In particular, if vs 6 -VCC>A, the op amp satu-
rates at +VCC, and if vs 7 VCC>A, the op amp saturates at -VCC. Because 
the relationship shown in Eq. 5.5 occurs when there is no feedback path, 
the value of A is often called the open-loop gain of the op amp.

Example 5.2 uses the inverting-amplifier equation to design an invert-
ing amplifier using realistic resistor values.

1VCC

2VCC

yo

1

2

ys
1

2

2

1

yn

2

1

Rs

Figure 5.9 ▲ An inverting amplifier operating open 
loop.

EXAMPLE 5.2 Designing an Inverting Amplifier

a) Design an inverting amplifier (see Fig. 5.8) with 
a gain of 12. Use {15 V power supplies and an 
ideal op amp.

b) What range of input voltages, vs, allows the op 
amp in this design to remain in its linear operat-
ing region?

Solution

a) We need to find two resistors whose ratio is  
12 from the realistic resistor values listed 

in Appendix H. There are lots of different 
 possibilities, but let’s choose Rs = 1 kΩ and 
Rf = 12 kΩ. Use the inverting-amplifier equa-
tion (Eq. 5.4) to verify the design:

 vo = -
Rf

Rs
 vs = -

12,000
1000

 vs = -12vs.

Thus, we have an inverting amplifier with a gain 
of 12, as shown in Fig. 5.10.
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5.4 The Summing-Amplifier Circuit
Figure 5.11 shows a summing amplifier with three input voltages. The 
output voltage of a summing amplifier is an inverted, scaled sum of the 
voltages applied to the input of the amplifier. We can find the relationship 
between the output voltage vo and the three input voltages, va, vb, and vc,
using Analysis Method 5.1.

The summing amplifier has a negative feedback path that includes 
the resistor Rf, so in Step 1 we assume the op amp is in its linear region. 
We then use the ideal op amp voltage constraint in Step 2 together with 
the ground imposed by the circuit at vp to determine that vn = vp = 0. 
In Step 3, we write a KCL equation at the inverting input terminal, using 
Ohm’s law to specify the current in each resistor in terms of the voltage 
across that resistor, to get

vn - va

Ra
+

vn - vb

Rb
+

vn - vc

Rc
+

vn - vo

Rf
+ in = 0.

Apply the voltage constraint from Step 2 and the current constraint in = 0 
to the KCL equation, then solve for vo to get

115V

215V
yo

1

2

ys
1

2

2

1

1 kV

12 kV

Figure 5.10 ▲ Inverting amplifier for Example 5.2.

b) Solve two different versions of the inverting- 
amplifier equation for vs, first using vo = +15 V 
and then using vo = -15 V:

 15 = -12vs  so  vs = -1.25 V;

 -15 = -12vs   so  vs = 1.25 V.

Thus, if the input voltage is greater than or equal 
to -1.25 V and less than or equal to +1.25 V, the 
op amp in the inverting amplifier will remain in 
its linear operating region.

Objective 2—Be able to analyze simple circuits containing ideal op amps

 5.2 The source voltage vs in the circuit in  
Assessment Problem 5.1 is -640 mV. The 
80 kΩ feedback resistor is replaced by a  
variable resistor Rx. What range of Rx allows 

the inverting amplifier to operate in its linear 
region?

Answer: 0 … Rx … 250 kΩ.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 5.8 and 5.10.
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Rf

Figure 5.11 ▲ A summing amplifier.

INVERTING SUMMING-AMPLIFIER EQUATION

 vo = - a
Rf

Ra
 va +

Rf

Rb
 vb +

Rf

Rc
 vcb . (5.6)
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Equation 5.6 shows that the output voltage is an inverted, scaled sum of 
the three input voltages. According to Step 4, this equation is valid only if 
the value of vo is between the two power supply voltages.

If Ra = Rb = Rc = Rs, then Eq. 5.6 reduces to

vo = -
Rf

Rs
 (va + vb + vc).

Finally, if we make Rf = Rs, the output voltage is just the inverted sum of 
the input voltages. That is,

vo = -(va + vb + vc).

Although we analyzed the summing amplifier with three input signals, 
the number of input voltages can be increased or decreased as needed. 
For example, you might wish to sum 16 individually recorded audio sig-
nals to form a single audio signal. The summing-amplifier configuration 
in Fig. 5.11 could include 16 different input resistors whose values specify 
different amplification factors for each of the input audio tracks. The sum-
ming amplifier thus plays the role of an audio mixer. As with inverting- 
amplifier circuits, the scaling factors in summing-amplifier circuits are 
 determined by the external resistors Rf, Ra, Rb, Rc, c, Rn.

Example 5.3 uses the summing-amplifier equation to design an invert-
ing summing amplifier.

EXAMPLE 5.3 Designing a Summing Amplifier

a) Design a summing amplifier (see Fig. 5.11) whose 
output voltage is

vo = -4va - vb - 5vc.

Use an ideal op amp with {12 V power supplies 
and a 20 kΩ feedback resistor.

b) Suppose va = 2 V and vc = -1 V. What range 
of input voltages for vb allows the op amp in this 
design to remain in its linear operating region?

c) Suppose va = 2 V, vb = 3 V, and vc = -1 V. 
Using the input resistor values found in part (a), 
how large can the feedback resistor be before the 
op amp saturates?

Solution

a) Use the summing-amplifier equation (Eq. 5.6) 
and the feedback resistor value to find the three 
input resistor values:

 -
Rf

Ra
= -4 so Ra =

20 k
4

= 5 kΩ;

 -
Rf

Rb
= -1 so Rb =

20 k
1

= 20 kΩ;

 -
Rf

Rc
= -5 so Rc =

20 k
5

= 4 kΩ.

The resulting circuit is shown in Fig. 5.12.

b) Substitute the values for va and vc into the equa-
tion for vo given in the problem statement to get

vo = -4122 - vb - 51 -12 = -3 - vb.

Solving this equation for vb in terms of vo gives

vb = -3 - vo.

Now substitute the two power supply voltages 
for the output voltage to find the range of vb val-
ues that keeps the op amp in its linear region:

-15 V … vb … 9 V.

c) Starting with the summing-amplifier equation, 
Eq. 5.6, substitute the input resistor values found 
in part (a) and the specified input voltage values. 
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ynya yb yc

212 V
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Figure 5.12 ▲ The summing amplifier for Example 3.3(a).
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5.5 The Noninverting-Amplifier Circuit
Figure 5.13 depicts a noninverting-amplifier circuit. We use Analysis 
Method 5.1 to find the expression for the output voltage as a function of 
the source voltage vg. Starting with Step 1, we note that the noninverting- 
amplifier circuit has a negative feedback path with the resistor Rf, so we 
assume that the op amp is in its linear region. In Step 2, the voltage con-
straint equation (Eq. 5.2) tells us that vn = vp. However, the voltage at 
the noninverting terminal is not 0 because the terminal is not connected to 
the common node. The current constraint equation (Eq. 5.3) tells us the 
noninverting input current is zero. Since this current equals the current in 
the resistor Rs, there is no voltage drop across Rs and vp = vg. Therefore, 
vn = vg as well.

In Step 3, we write a KCL equation at the noninverting terminal, 
using the result of Step 2 and the current constraint equation to give

vg

Rs
+

vg - vo

Rf
= 0.

Solve the KCL equation for vo to get

Remember that the feedback resistor is an un-
known in this equation:

vo = -
Rf

5000
 122 -  

Rf

20,000
 132 -  

Rf

4000
 1 -12 = -

6Rf

20,000
.

From this equation, it should be clear that if the 
op amp saturates, it will do so at its negative 
power supply value, -12 V. Using this voltage 

for vo in the above equation and solving for the 
feedback resistance gives

Rf = 40 kΩ.

Given the specified input voltages, this is the 
largest value of feedback resistance that keeps 
the op amp in its linear region.

Objective 2—Be able to analyze simple circuits containing ideal op amps

 5.3 a) Find vo in the circuit shown if va = 0.1 V and 
vb = 0.25 V.

b) If vb = 0.25 V, how large can va be before 
the op amp saturates?

c) If va = 0.10 V, how large can vb be before 
the op amp saturates?

d) Repeat (a), (b), and (c) with the polarity of 
vb reversed.

Answer: (a) -7.5 V;
(b) 0.15 V;
(c) 0.5 V;
(d) -2.5, 0.25, and 2 V.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 5.12, 5.14, and 5.16.
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Figure 5.13 ▲ A noninverting amplifier.
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From Step 4 we know that keeping the op amp in its linear region requires 
that

Rs + Rf

Rs
 6 ` VCC

vg
` .

Once again, the ideal op amp assumption allows us to express the out-
put voltage as a function of the input voltage and the external resistors Rs 
and Rf.

Example 5.4 illustrates the design of a noninverting amplifier using 
realistic resistor values.

NONINVERTING-AMPLIFIER EQUATION

 vo =
Rs + Rf

Rs
 vg. (5.7)

EXAMPLE 5.4 Designing a Noninverting Amplifier

a) Design a noninverting amplifier (see Fig. 5.13) 
with a gain of 6. Assume the op amp is ideal.

b) Suppose we wish to amplify a voltage vg, where 
-1.5 V … vg … +1.5 V. What are the smallest 
power supply voltages that could be used with 
the resistors selected in part (a) to ensure that 
the op amp remains in its linear region?

Solution

a) Using the noninverting-amplifier equation  
(Eq. 5.7),

vo =
Rs + Rf

Rs
 vg = 6vg so 

Rs + Rf

Rs
= 6.

Therefore,

Rs + Rf = 6Rs, so Rf = 5Rs.

Look at the realistic resistor values listed in 
Appendix H. Let’s choose  Rf = 10 kΩ, so 
Rs = 2 kΩ. But there is not a 2 kΩ resistor in 
Appendix H. We can create an equivalent 2 kΩ 
resistor by combining two 1 kΩ resistors in series. 
We can use a third 1 kΩ resistor for Rg. The re-
sulting circuit is shown in Fig. 5.14.

b) Solve two different versions of the noninverting- 
amplifier equation for vo, first using vg = +1.5 V 
and then using vg = -1.5 V:

 vo = 611.52 = 9 V;

 vo = 61 -1.52 = -9 V.

Thus, if we use {9 V power supplies for the 
noninverting amplifier designed in part (a) and 
-1.5 V … vg …  +1.5 V, the op amp will remain 
in its linear operating region. The circuit resulting 
from the analysis in parts (a) and (b) is shown in 
Fig. 5.14, with V + = 9 V and V - = -9 V.

2
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1 kV 1 kV V+

1
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yoyg

V–1 kV

10 kV
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2

Figure 5.14 ▲ The noninverting amplifier design of 
Example 5.3.
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5.6 The Difference-Amplifier Circuit
The output voltage of a difference amplifier is proportional to the dif-
ference between the two input voltages. To demonstrate, we analyze the 
difference-amplifier circuit shown in Fig. 5.15, using Analysis Method 5.1. 
In Step 1, we note the negative feedback path that includes the resistor Rb 
and thereby assume the op amp is in its linear region. In Step 2, we use the 
voltage constraint equation (Eq. 5.2) to recognize that vn = vp. Now we 
need an expression for vp. Let’s focus on the subcircuit at the noninverting 
input; employing the current constraint equation (Eq. 5.3), we note that 
there is no current into the noninverting input. Therefore, the current in 
the vb source remains in the loop containing that source and the resistors 
Rc and Rd. The voltage at the noninverting terminal is the voltage across 
Rd, which we can find using voltage division:

vp =
Rd

Rc + Rd
 vb = vn.

At Step 3, write a KCL equation at the inverting terminal, employing the 
current constraint equation again to see that the current into the inverting 
terminal is zero:

vn - va

Ra
+

vn - vo

Rb
= 0.

Solving the KCL equation for vo as a function of both va and vn, we get

vo = aRa + Rb

Ra
bvn - aRb

Ra
bva.

Substituting the equation for vn into the equation for vo gives the desired 
relationship:

Objective 2—Be able to analyze simple circuits containing ideal op amps

 5.4 Assume that the op amp in the circuit shown is 
ideal.
a) Find the output voltage when the variable 

resistor is set to 60 kΩ.
b) How large can Rx be before the amplifier 

saturates?

Answer: (a) 4.8 V;
(b) 75 kΩ.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 5.18 and 5.20.
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Figure 5.15 ▲ A difference amplifier.

DIFFERENCE-AMPLIFIER EQUATION

 vo =
Rd(Ra + Rb)

Ra(Rc + Rd)
 vb -

Rb

Ra
 va. (5.8)
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Equation 5.8 shows that the output voltage is proportional to the 
 difference between a scaled replica of vb and a scaled replica of va. In 
general, the scaling factor applied to vb is not the same as that applied to 
va. However, the scaling factor applied to each input voltage can be made 
equal by setting

 
Ra

Rb
=

Rc

Rd
 . (5.9)

When Eq. 5.9 is satisfied, the expression for the output voltage reduces to

SIMPLIFIED DIFFERENCE-AMPLIFIER EQUATION

 vo =
Rb

Ra
 (vb - va). (5.10)

If Eq. 5.9 is satisfied, the output voltage is a scaled replica of the difference 
between the input voltages vb and va. As in the previous ideal amplifier cir-
cuits, the scaling is controlled by the external resistors. Furthermore, the re-
lationship between the output voltage and the input voltages is not affected 
by connecting a nonzero load resistance across the output of the amplifier.

Follow Example 5.5 to design a difference amplifier using realistic re-
sistor values.

EXAMPLE 5.5 Designing a Difference Amplifier

a) Design a difference amplifier (see Fig. 5.15) that 
amplifies the difference between two input volt-
ages by a gain of 8, using an ideal op amp and 
{8 V power supplies.

b) Suppose va = 1 V in the difference amplifier de-
signed in part (a). What range of input voltages 
for vb will allow the op amp to remain in its linear 
operating region?

Solution

a) Using the simplified difference-amplifier equa-
tion (Eq. 5.10),

vo =
Rb

Ra
 1vb - va2 = 81vb - va2   so  

Rb

Ra
= 8.

We want two resistors whose ratio is 8. Look at 
the realistic resistor values listed in Appendix H. 
Let’s choose Rb = 12 kΩ, so Ra = 1.5 kΩ, al-
though there are many other possibilities. Note 
that the simplified difference-amplifier equation 
requires that

Ra

Rb
=

Rc

Rd
 .

A simple choice for Rc and Rd is 
Rc = Ra = 1.5 kΩ and Rd = Rb = 12 kΩ. The 
resulting circuit is shown in Fig. 5.16.

b) Using va = 1, solve two different versions of the 
simplified difference-amplifier equation (Eq. 5.10)  
for vb in terms of vo. Then substitute the two limit-
ing values for the output voltage, vo = +8 V and  
vo = -8 V:

 vb =
vo

8
+ 1 =

8
8

+ 1 = 2 V;

 vb =
vo

8
+ 1 =

-8
8

+ 1 = 0 V.

Thus, if va = 1 V in the difference amplifier from 
part (a), the op amp will remain in its linear re-
gion if 0 V … vb … 2 V.
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Figure 5.16 ▲ The difference amplifier designed in 
Example 5.4.
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The Difference Amplifier—Another Perspective
Let’s examine the difference-amplifier behavior more closely by redefining 
its inputs in terms of two other voltages. The first is the differential mode 
input, which is the difference between the two input voltages in Fig. 5.15:

 vdm = vb - va. (5.11)

The second is the common mode input, which is the average of the two 
input voltages in Fig. 5.15:

 vcm = (va + vb)>2. (5.12)

Using Eqs. 5.11 and 5.12, we can now represent the original input  voltages, 
va and vb, in terms of the differential mode and common mode voltages, 
vdm and vcm:

  va = vcm-  
1
2

 vdm,  (5.13)

  vb = vcm +
1
2

 vdm. (5.14)

Substituting Eqs. 5.13 and 5.14 into Eq. 5.8 gives the output of the dif-
ference amplifier in terms of the differential mode and common mode 
voltages:

 vo = c RaRd - RbRc

Ra(Rc + Rd)
 dvcm +  c Rd(Ra + Rb) + Rb(Rc + Rd)

2Ra(Rc + Rd)
 dvdm

 = Acmvcm + Admvdm,  (5.15)

where Acm is the common mode gain and Adm is the differential mode 
gain. Now, substitute Rc = Ra and Rd = Rb, which are possible values for 
Rc and Rd that satisfy Eq. 5.9, into Eq. 5.15:

 vo = (0)vcm + aRb

Ra
bvdm. (5.16)

Objective 2—Be able to analyze simple circuits containing ideal op amps

 5.5 a) In the difference amplifier shown, vb = 4.0 V.  
What range of values for va will result in linear 
operation?

b) Repeat (a) with the 20 kΩ resistor decreased 
to 8 kΩ.

Answer: (a) 2 V … va … 6 V;
(b) 1.2 V … va … 5.2 V.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 5.25, 5.27, and 5.31.
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Thus, an ideal difference amplifier has Acm = 0, amplifies only the dif-
ferential mode portion of the input voltage, and eliminates the common 
mode portion of the input voltage. Figure 5.17 shows a difference-amplifier  
circuit with differential mode and common mode input voltages in place 
of va and vb.

Equation 5.16 provides an important perspective on the function of 
the difference amplifier. In many applications it is the differential mode 
signal that contains the information of interest, while the common mode 
signal represents the noise found in all electric signals. For example, an 
electrocardiograph electrode measures the voltages produced by your 
body that regulate your heartbeat. These voltages have very small magni-
tudes compared with the electrical noise that the electrode picks up from 
lights and other electrical equipment in the room. The noise appears as 
the common mode portion of the measured voltage, whereas the heart 
rate voltages comprise the differential mode portion. Thus, an ideal dif-
ference amplifier (one whose resistors satisfy Eq. 5.9) amplifies only the 
voltage of interest and suppresses the noise.

Measuring Difference-Amplifier Performance— 
The Common Mode Rejection Ratio
An ideal difference amplifier has zero common mode gain and nonzero 
(and usually large) differential mode gain. Two factors influence the ideal 
common mode gain—resistance mismatches (that is, Eq. 5.9 is not sat-
isfied) or a nonideal op amp (that is, Eqs. 5.2 and 5.3 are not satisfied). 
We focus first on how resistance mismatches affect the performance of a 
difference amplifier.

Suppose that resistor values are chosen that do not precisely satisfy 
Eq. 5.9. Instead, the relationship among the resistors Ra, Rb, Rc, and Rd is

Ra

Rb
= (1 - P)

Rc

Rd
 ,

so

Ra = (1 - P)Rc and Rb = Rd,

or

 Rd = (1 - P)Rb and Ra = Rc, (5.17)

where P is a very small number. We can see the effect of this resistance 
mismatch on the common mode gain of the difference amplifier by substi-
tuting Eq. 5.17 into Eq. 5.15 and simplifying the expression for Acm:

 Acm =
Ra(1 - P)Rb - RaRb

Ra[Ra + (1 - P)Rb]

 =
-PRb

Ra + (1 - P)Rb

  ≈
-PRb

Ra + Rb
 .  (5.18)

The approximation in Eq. 5.18 is valid because P is very small, and there-
fore 11 - P2  is approximately 1. Note that when the resistors in the dif-
ference amplifier satisfy Eq. 5.9, P = 0 and Eq. 5.18 gives Acm = 0.
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Figure 5.17 ▲ A difference amplifier with common 
mode and differential mode input voltages.



194 The Operational Amplifier

Now calculate the effect of the resistance mismatch on the differen-
tial mode gain by substituting Eq. 5.17 into Eq. 5.15 and simplifying the 
expression for Adm:

 Adm =
(1 - P)Rb(Ra + Rb) + Rb[Ra + (1 - P)Rb]

2Ra[Ra + (1 - P)Rb]

 =
Rb

Ra
 c 1 -

(P>2)Ra

Ra + (1 - P)Rb
 d

  ≈
Rb

Ra
 c 1 -

(P>2)Ra

Ra + Rb
 d .  (5.19)

We use the same rationale for the approximation in Eq. 5.19 as in the 
computation of Acm. When the resistors in the difference amplifier satisfy 
Eq. 5.9, P = 0 and Eq. 5.19 gives Adm = Rb>Ra.

The common mode rejection ratio (CMRR) measures a difference 
amplifier’s performance. It is defined as the ratio of the differential mode 
gain to the common mode gain:

 CMRR = ` Adm

Acm
` . (5.20)

The larger the CMRR, the closer the difference amplifier’s behavior is to 
ideal. We can see the effect of resistance mismatch on the CMRR by sub-
stituting Eqs. 5.18 and 5.19 into Eq. 5.20:

 CMRR ≈
†
Rb

Ra
 [1 - (RaP>2)>(Ra + Rb)]

-PRb>(Ra + Rb)
†

 ≈ ` Ra(1 - P>2) + Rb

-PRa
`

  ≈ ` 1 + Rb>Ra

-P ` .  (5.21)

From Eq. 5.21, if the resistors in the difference amplifier are matched, 
P = 0 and CMRR = ∞ . Even if the resistors are mismatched, we can 
minimize the impact of the mismatch by making the differential mode 
gain (Rb>Ra) very large, thereby making the CMRR large.

The second reason for nonzero common mode gain is a nonideal op 
amp. Remember that the op amp is itself a difference amplifier because 
in the linear operating region, its output is proportional to the difference 
of its inputs; that is, vo = A(vp - vn). The output of a nonideal op amp 
is not strictly proportional to the difference between the inputs (the dif-
ferential mode input) but also includes a common mode signal. Internal 
mismatches in the integrated circuit components make the behavior of 
the op amp nonideal, in the same way that the resistor mismatches in the 
 difference-amplifier circuit make its behavior nonideal. Even though a 
discussion of nonideal op amps is beyond the scope of this text, note that 
the CMRR is used to rate op amps in practice by assessing how nearly 
ideal an op amp’s behavior is.

Example 5.6 examines how resistor mismatches affect the CMRR of 
a difference amplifier.
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EXAMPLE 5.6 Calculating the CMRR

a) Suppose the Rc resistor in the difference amplifi-
er designed in Example 5.5, shown in Fig. 5.16, is 
10% larger than its nominal value. All other re-
sistor values are unchanged. Calculate the com-
mon mode gain, the difference mode gain, and 
the CMRR for the difference amplifier.

b) Repeat part (a) assuming the Rd resistor value is 
10% larger than its nominal value and all other 
resistor values are unchanged.

Solution

a) Use the common mode gain equation in Eq. 5.15 
with Rc = 1500(1.1) = 1650 Ω to get

 Acm =
(1500)(12,000) - (12,000)(1650)

1500(1650 + 12,000)

 = -0.0879.

Then use the difference mode gain equation in 
Eq. 5.15 with Rc = 1500(1.1) = 1650 Ω to get

The CMRR (Eq. 5.20) is thus

CMRR = ` 7.956
-0.0879

` = 90.5.

b) Use the common mode gain equation in Eq. 5.15 
with Rd = 12,000(1.1) = 13,200 Ω to get

 Acm =
(1500)(13,200) - (12,000)(1500)

1500(1500 + 13,200)

 = 0.08163.

Then use the difference mode gain equation 
in Eq. 5.15 with Rd = 12,000(1.1) = 13,200 Ω  
to get

 Adm =
13,200(1500 + 12,000) + 12,000(1500 + 13,200)

2(1500)(1500 + 13,200)

 = 8.0408.

The CMRR (Eq. 5.20) is thus

CMRR = ` 8.0408
0.08163

` = 98.5.

 Adm =
12,000(1500 + 12,000) + 12,000(1650 + 12,000)

2(1500)(1650 + 12,000)

 = 7.956.

Objective 2—Be able to analyze simple circuits containing ideal op amps

 5.6 Suppose the 12 kΩ resistor Rd in the difference 
amplifier in Fig. 5.16 is replaced by a variable 
resistor.
What range of Rd values will ensure the differ-
ence amplifier has a CMRR Ú  0 100 0 ?

Answer: 11 kΩ … Rd … 13.18 kΩ.

ASSESSMENT PROBLEM

SELF-CHECK: Assess your understanding of this material by trying Chapter Problems 5.32 and 5.33.

5.7 A More Realistic Model for the 
Operational Amplifier

We now consider a more realistic model, shown in Fig. 5.18, that predicts 
the performance of an op amp in its linear region of operation. This model 
includes three modifications to the ideal op amp: (1) a finite input resistance, 
Ri; (2) a finite open-loop gain, A; and (3) a nonzero output resistance, Ro.
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When using the equivalent circuit shown in Fig. 5.18, the assumptions 
that vn = vp (Eq. 5.2) and in = ip = 0 (Eq. 5.3) are invalid. Equation 5.1 
is also invalid because the output resistance, Ro, is not zero.

Although the presence of A, Ri and Ro makes op amp circuit anal-
ysis more cumbersome, it remains straightforward. To illustrate, we 
use the equivalent circuit shown in Fig. 5.18 when analyzing both an 
inverting and a noninverting amplifier. We begin with the inverting 
amplifier.

Analyzing an Inverting-Amplifier Circuit Using  
a More Realistic Op Amp Model
The circuit for the inverting amplifier, using the op amp circuit shown in 
Fig. 5.18, is depicted in Fig. 5.19. We can find the output voltage, vo, as a 
function of the source voltage, vs, by writing two KCL equations at the 
nodes labeled a and b in Fig. 5.19. Note that vp = 0 due to the external 
short-circuit connection at the noninverting input terminal. The equa-
tions are:

node a: 
vn - vs

Rs
+

vn

Ri
+

vn - vo

Rf
= 0,

node b: 
vo - vn

Rf
+

vo - A(-vn)

Ro
= 0.

We rearrange the KCL equations, preparing to use either back-substitution  
or Cramer’s method to solve for vo:

a 1
Rs

+
1
Ri

+
1
Rf

bvn -
1
Rf

 vo =
1
Rs

 vs,

a A
Ro

-
1
Rf

bvn + a 1
Rf

+
1

Ro
bvo = 0.

Solving for vo yields

 vo =
-A + (Ro>Rf)

Rs

Rf
 a1 + A +

Ro

Ri
b + aRs

Ri
+ 1b +

Ro

Rf
 
 vs. (5.22)

Note that Eq. 5.22 reduces to Eq. 5.4 as Ro S 0, Ri S ∞ , and A S ∞ .
If the inverting amplifier shown in Fig. 5.19 has a load resistance, RL, 

at its output terminal, the relationship between vo and vs is

vo =
-A + (Ro>Rf)

Rs

Rf
 a1 + A +

Ro

Ri
+

Ro

RL
b + a1 +

Ro

RL
b a1 +

Rs

Ri
b +

Ro

Rf

 vs.

Analyzing a Noninverting-Amplifier Circuit Using  
a More Realistic Op Amp Model
Using the equivalent circuit shown in Fig. 5.18 to analyze a noninvert-
ing amplifier, we obtain the circuit depicted in Fig. 5.20. Here, the volt-
age source vg in series with the resistance Rg represents the signal source. 
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Figure 5.18 ▲ An equivalent circuit for an 
 operational amplifier.
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Figure 5.19 ▲ An inverting-amplifier circuit.
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Figure 5.20 ▲ A noninverting-amplifier circuit.
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The resistor RL denotes the load on the amplifier. We derive an expres-
sion for vo as a function of vg by writing KCL equations at nodes a and b:

 node a: 
vn

Rs
+

vn - vg

Rg + Ri
+

vn - vo

Rf
= 0, (5.23)

 node b: 
vo - vn

Rf
+

vo

RL
+

vo - A(vp - vn)

Ro
= 0. (5.24)

The current in Rg is the same as in Ri, so

 
vp - vg

Rg
=

vn - vg

Ri + Rg
 . (5.25)

Use Eq. 5.25 to eliminate vp from Eq. 5.24, giving

vna 1
Rs

+
1

Rg + Ri
+

1
Rf

b - voa 1
Rf

b = vga 1
Rg + Ri

b ,

vn c
ARi

Ro(Ri + Rg)
-

1
Rf

 d + voa 1
Rf

+
1

Ro
+

1
RL

b = vg c
ARi

Ro(Ri + Rg)
 d .

Solving for vo yields

 vo =
[(Rf + Rs) + (RsRo>ARi)]vg

Rs +
Ro

A
 (1 + Kr) +

RfRs + (Rf + Rs)(Ri + Rg)

ARi
 

 , (5.26)

where

Kr =
Rs + Rg

Ri
+

Rf + Rs

RL
+

RfRs + RfRg + RgRs

RiRL
 .

Note that Eq. 5.26 reduces to Eq. 5.7 when Ro S 0, A S ∞ , and Ri S ∞ . 
For the unloaded (RL = ∞) noninverting amplifier, Kr reduces to 
1Rs + Rg2 >Ri and the expression for vo becomes

 vo =
[(Rf + Rs) + RsRo>ARi]vg

Rs +
Ro

A
 a1 +

Rs + Rg

Ri
b +

1
ARi

 [RfRs + (Rf + Rs)(Ri + Rg)]

 .

 (5.27)

Example 5.7 analyzes a noninverting-amplifier circuit that employs 
the more realistic op amp model.

EXAMPLE 5.7  Analyzing a Noninverting-Amplifier  
Circuit using a Realistic  
Op Amp Model

Here we analyze the noninverting amplifier de-
signed in Example 5.5 using the realistic op amp 
model in Fig. 5.18. Assume that the open-loop gain 
A = 50,000, the input resistance Ri = 100 kΩ, and 
the output resistance Ro = 7.5 kΩ. The circuit is 
shown in Fig. 5.21; note that there is no load resis-
tance at the output.
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Figure 5.21 ▲ The difference amplifier from 
Example 5.5,using a realistic op amp model with 
A = 50,000, Ri = 100 kΩ, and Ro = 7.5 kΩ.



198 The Operational Amplifier

vo

vg
=

10 k + 2 k +
(2 k) (7.5 k)

(100 k) (50,000)
 

2 k +
7.5 k

50,000
 a1 +

2 k + 1 k
100 k

b +
1

50,000(100 k)
 3(10 k) (2 k) + (10 k + 2 k) (100 k + 1 k)4

= 5.9988.

Note how close this value is to the gain of 6 spec-
ified and achieved in Example 5.5 using the ideal 
op amp model.

b) From part (a), when vg = 1 V, vo = 5.9988 V.  
Now use Eq. 5.23 to solve for vn in terms of vo and vg:

vna 1
2 k

+
1

1 k + 100 k
+

1
10 k

b

 =
1

100 k + 1 k
+

5.9988
10 k

;

 vn = 0.999803 V.

Use Eq. 5.25 to solve for vp:

 vp =
Rg1vn - vg2

Ri + Rg
+ vg =

1 k10.999803 - 12
100 k + 1 k

+ 1

 = 0.999996 V.

a) Calculate the ratio of the output voltage to the 
source voltage, vo>vg.

b) Find the voltages at the op amp input terminals 
op amp, vn and vp, with respect to the common 
node, when vg = 1 V.

Solution

a) Using Eq. 5.27,

c) Using the results from part (b), we find that  
the voltage difference at the op amp input 
 terminals is

vp - vn = 192.895 mV.

While this voltage difference is very small, it is 
not zero, as we assume when using the ideal op 
amp model.

d) The current in the signal source is the current in 
the resistor Rg. Using Ohm’s law,

ig =
vg - vp

Rg
=

1 - 0.999996
1000

= 3.86 nA.

This is also the current into the noninverting 
op amp terminal. It is very small but is not 
zero, as we assume when using the ideal op 
amp model.

Objective 3—Understand the more realistic model for an op amp

 5.7 The inverting amplifier in the circuit shown 
has an input resistance of 500 kΩ, an output 
resistance of 5 kΩ, and an open-loop gain of 
300,000. Assume that the amplifier is operating 
in its linear region.
a) Calculate the voltage gain (vo>vg) of the 

amplifier.
b) Calculate the value of vn in microvolts when 

vg = 1 V.
c) Calculate the resistance seen by the signal 

source (vg).
d) Repeat (a)–(c) using the ideal model for the 

op amp.

20 V

220 V
yo

1

2

yg
1

2

2

1

5 kV

100 kV

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 5.44 and 5.48.

Answer: (a) -19.9985;
(b) 69.995 mV;
(c) 5000.35 Ω;
(d) -20, 0 mV, 5 kΩ.

c) Find the voltage difference at the op amp input termi-
nals, (vp - vn), when vg = 1 V.

d) Find the current in the signal source, ig, when the volt-
age of the source vg = 1 V.



Practical Perspective
Sensors
A sensor can often be modelled as a voltage or current source with an 
internal resistance. The physical stimulus to be converted has a certain 
span or range which can be mapped to a range of electrical values. A 
thermocouple, for example, can be constructed simply by joining two 
different metal wires. Due to the Seebeck effect, a voltage proportional 
to the temperature at the joint is produced. It is possible to measure 
high temperatures of up to 1500°C or even more with this method. 
However, the corresponding voltages produced on thermocouples will 
be in  millivolts. The signals need to be amplified to be in volts to avoid 
the added electrical noise of the environment, and to be adequately fed 
into digital electronic devices for control and automation.

Analog-to-digital converters (ADCs) receive analog signals and pro-
duce binary digital numbers with a certain number of bits. Once the 
signal is converted to digital, it can be easily transferred, evaluated or 
stored without any deficiency or loss. However. ADCs have a certain 
input voltage range. Some ADCs are bipolar accepting both positive and 
negative voltages, for example from -10 V to 10 V, and some are unipo-
lar working only with positive inputs such as from 0 to 3.3 V. Therefore, 
an interface circuit implementing the proper mapping is needed from 
the output of the sensor to the ADC input. If the mapping covers only 
some part of the ADC input range, then some digital numbers would 
not be used causing underutilization of the resolution provided by the 
ADC. If, on the other hand, the mapping is outside the limits of ADC 
input range, then some sensor outputs will not be correctly represented. 
Therefore, care needs to be taken when designing the interface circuit.

To construct the mapping between the sensor output and the ADC 
input, consider Fig. 1. VSH and VSL represents the maximum and mini-
mum values of the sensor output voltage range, and VOH and VOL rep-
resents the corresponding desired maximum and minimum levels of the 
ADC input voltage. A linear (or affine) mapping function from the sensor 
output voltage VS to the ADC input voltage VO can be constructed using

 VO = K VS + L (5.28)

where we need to have

 VOH = K VSH + L, and VOL = K VSL + L. (5.29)

From Eq. 5.29, we obtain

 K =
VOH - VOL

VSH - VSL
, and L = VOL - K VSL. (5.30)

Here, K represents the amplification ratio. Although normally more than 1,  
it could also be less than 1 if the sensor output voltage range is larger 
than the ADC input voltage range. Sometimes K may also be chosen 
as a negative value. In this case, lower sensor values will be mapped 
to higher ADC inputs, and vice versa. This will not be a problem be-
cause, once the digital numbers are received, they can be evaluated in 
the correct way by considering the inversion in the interface circuit. The 
constant L represents the level shift value which could be positive or 
negative. Adding such a constant value between voltage levels is called 
level shifting, and may be needed to correctly map the zero sensor out-
put level to the desired ADC input level.
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Figure 5.22 ▲ The mapping from the 
sensor to the ADC.
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Figure 5.23 ▲ An op amp implementing both 
 amplification and level shifting operations.
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The mapping in Eq. 5.28 can be readily implemented using an op 
amp circuit. For example, the circuit in Fig. 5.23 implements the follow-
ing mapping function

 VO = a1 +
Rf (R1 + R2)

R1R2
b  VS -

Rf

R2
 Vr. (5.31)

 K L

Here, K is greater than 1 but by adding a voltage divider to the input (or 
output) terminal, the gain can be made less than 1 if needed. The sign of 
L can be changed using the polarity of the reference voltage Vr.

SELF-CHECK: Assess your understanding of this Practical Perspective 
by trying Chapter Problem 5.49.

Summary

• The operational amplifier (op amp) is a complex elec-
tronic circuit with two input terminals, two power supply 
terminals and one output terminal. The voltage at the 
inverting input terminal is vn, the voltage at the nonin-
verting input terminal is vp, and the voltage at the output 
terminal is vo, all with respect to a common node. The 
current into the inverting input terminal is in, while the 
current into the noninverting input terminal is ip. (See 
page 180.)

• The equation that defines the voltage transfer character-
istic of an ideal op amp is

vo = •
-VCC, A(vp - vn) 6 -VCC,
A(vp - vn), -VCC … A(vp - vn) … +VCC,
+VCC, A(vp - vn) 7 +VCC,

where A is a proportionality constant known as the 
open-loop gain, and VCC represents the power supply 
voltages. (See page 181.)

• A feedback path between an op amp’s output and its 
inverting input can constrain the op amp to its linear op-
erating region where vo = A(vp - vn). (See page 181.)

• A voltage constraint exists when the op amp is confined 
to its linear operating region due to typical values of VCC 
and A. If the ideal modeling assumptions are made—
meaning A is assumed to be infinite—the ideal op amp 
model is characterized by the voltage constraint

vp = vn.

(See page 181.)

• A current constraint further characterizes the ideal op 
amp model, assuming the ideal input resistance of the 

op amp integrated circuit is infinite. This current con-
straint is given by

ip = in = 0.

(See page 182.)

• To analyze an ideal op amp circuit, follow these steps:

• Check for the presence of a negative feedback path; 
if it exists, we can assume the op amp is operating in 
its linear region.

• Write a KCL equation at the inverting input terminal, 
using the input current constraint (Eq. 5.3), the value 
of vn, and Ohm’s law to find the currents. This equa-
tion will usually contain the unknown voltage at the 
op amp’s output terminal.

• Solve the KCL equation and determine the voltage 
at the op amp’s output terminal.

• Compare the voltage at the op amp’s output terminal 
to the power supply voltages to determine whether 
the op amp is actually in its linear region or whether 
it has saturated.

• An inverting amplifier is an op amp circuit producing an 
output voltage that is an inverted, scaled replica of the 
input. (See page 184.)

• A summing amplifier is an op amp circuit producing an 
output voltage that is a scaled sum of the input voltages. 
(See page 186.)

• A noninverting amplifier is an op amp circuit producing 
an output voltage that is a scaled replica of the input 
voltage. (See page 188.)

•

∂
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• A difference amplifier is an op amp circuit producing an 
output voltage that is a scaled replica of the input volt-
age difference. (See page 190.)

• The two voltage inputs to a difference amplifier can 
be used to calculate the common mode and difference 
mode voltage inputs, vcm and vdm. The output from the 
difference amplifier can be written in the form

vo = Acmvcm + Admvdm,

where Acm is the common mode gain and Adm is the dif-
ferential mode gain. (See page 192.)

• In an ideal difference amplifier, Acm = 0. To measure 
how nearly ideal a difference amplifier is, we use the 
common mode rejection ratio:

CMRR = ` Adm

Acm
` .

An ideal difference amplifier has an infinite CMRR. 
(See page 194.)

• We considered both a simple, ideal op amp model and 
a more realistic model in this chapter. The differences 
between the two models are as follows:

Simplified Model More Realistic Model

Infinite input resistance Finite input resistance

Infinite open-loop gain Finite open-loop gain

Zero output resistance Nonzero output resistance

(See page 195.)

Problems

Sections 5.1–5.2

 5.1 The op amp in the circuit in Fig. P5.1 is ideal.

a) Label the 5 op amp terminals with their names.

b) What ideal op amp constraint determines the 
value of in? What is this value?

c) What ideal op amp constraint determines the 
value of (vp - vn)? What is this value?

d) Calculate vo.

Figure P5.1
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 5.2 a) Replace the 3 V source in the circuit Fig. P5.1 
and calculate vo for each of the following source 
values: -5 V, -7 V, 5 V, 7 V.

b) Specify the range of voltage source values that 
will not cause the op amp to saturate.

PSPICE

MULTISIM

 5.3 Find iL (in milliamperes) in the circuit in Fig. P5.3.

Figure P5.3
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 5.4 The op amp in the circuit in Fig. P5.4 is ideal.

a) Calculate vo if va = 2 V and vb = 1 V.

b) Calculate vo if va = -1 V and vb = 0 V.

c) Calculate vo if va = 3 V and vb = 3.5 V.

d) Calculate vo if va = -2 V and vb = 1 V.

e) Calculate vo if va = 4 V and vb = 0 V.

f) If vb = 3 V, specify the range of va such that  
the amplifier does not saturate.

Figure P5.4
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c) Suppose you wish to amplify a 4 V signal, us-
ing your design from part (a) with a variable 
feedback resistor. What is the largest value of 
feedback resistance that keeps the op amp in 
its linear operation region? Using this resis-
tor value, what is the new gain of the inverting  
amplifier?

 5.9 a) Design an inverting amplifier with a gain of 2.5, 
using an ideal op amp. Use a set of identical re-
sistors from Appendix H.

b) If you wish to amplify signals between -2 V and 
+3 V using the circuit you designed in part (a), 
what are the smallest power supply voltages you 
can use?

 5.10 a) The op amp in the circuit shown in Fig. P5.10 
is ideal. The adjustable resistor R∆ has a maxi-
mum value of 100 kΩ, and a is restricted to the 
range of 0.5 … a … 1. Calculate the range of vo 
if vg = 40 mV.

b) If a is not restricted, at what value of a will the 
op amp saturate?

Figure P5.10
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 5.11 The op amp in the circuit in Fig. P5.11 is ideal.

a) Find the range of values for s in which the op 
amp does not saturate.

b) Find io (in microamperes) when s = 0.272.

Figure P5.11
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 5.5 Find vo in the circuit in Fig. P5.5.

Figure P5.5
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 5.6 The op amp in the circuit in Fig. P5.6 is ideal. Calculate 
the following:

a) ia

b) va

c) vo

d) io

Figure P5.6
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 5.7 A voltmeter with a full-scale reading of 20 V is 
used to measure the output voltage in the circuit 
in Fig. P5.7. What is the reading of the voltmeter? 
 Assume the op amp is ideal.

Figure P5.7
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Section 5.3

 5.8 a) Design an inverting amplifier with a gain of 6. 
Use an ideal op amp, a 20 kΩ resistor in the 
feedback path, and {15 V power supplies.

b) Using your design from part (a), determine the 
range of input voltages that will keep the op amp 
in its linear operating region.
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 5.16 a) Design an inverting-summing amplifier using an 
80 kΩ resistor in the feedback path so that

vo = -(10va + 4vb + 6vc).

  Use {12 V power supplies.

b) Suppose va =  4 V and vc =  -2 V. What range of 
values for vb will keep the op amp in its linear 
operating region?

 5.17 Design an inverting-summing amplifier so that

vo = -(8va + 4vb + 10vc + 6vd).

  Start by choosing a feedback resistor (Rf) from 
 Appendix H. Then choose single resistors or con-
struct resistor networks using resistor values in 
 Appendix H to satisfy the design values for Ra, Rb, 
Rc, and Rd. Draw your final circuit diagram.

Section 5.5

 5.18 The op amp in the circuit of Fig. P5.18 is ideal.

a) What op amp circuit configuration is this?

b) Calculate yo.

Figure P5.18
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 5.19 The op amp in the circuit of Fig. P5.19 is ideal.

a) What op amp circuit configuration is this?

b) Find vo in terms of vs.

c) Find the range of values for vs so that vo does 
not saturate and the op amp remains in its linear 
region of operation.

Figure P5.19
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Section 5.4

 5.12 The op amp in Fig. P5.12 is ideal.

a) What circuit configuration is shown in this figure?

b) Find vo if va =  1 V, vb =  1.5 V, and vc =  -4 V.

c) The voltages va and vc remain at 1 V and -4 V, 
respectively. What are the limits on vb if the op 
amp operates within its linear region?

Figure P5.12
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 5.13 Refer to the circuit in Fig. 5.12, where the op amp 
is assumed to be ideal. Given that Ra =  4 kΩ,  
Rb =  5 kΩ, Rc =  20 kΩ, va =  200 mV, vb =  150 mV, 
vc =  400 mV, and VCC =  {6 V,  specify the range of 
Rf  for which the op amp operates within its linear 
region.

 5.14 a) The op amp in Fig. P5.14 is ideal. Find vo if  
va =  4 V, vb =  8 V, vc =  6 V, and vd =  3 V.

b) Assume va, vb, and vd retain their values as given 
in (a). Specify the range of vc such that the op amp 
operates within its linear region.

Figure P5.14
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 5.15 The 100 kΩ feedback resistor in the circuit in  
Fig. P5.14 is replaced by a variable resistance Rf. The 
voltages va - vd have the same values as given in 
Problem 5.14(a).

a) What value of Rf  will cause the op amp to satu-
rate? Note that 0 … Rf … ∞ .

b) When Rf  has a value found in (a), what is the 
current into the output terminal of the op amp?
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 5.24 The circuit in Fig. P5.24 is a noninverting summing 
amplifier. Assume the op amp is ideal. Design the 
circuit so that

vo = 2va + 4vb + vc .

a) Specify the numerical values of Ra and Rc.

b) Calculate ia , ib , and ic (in microamperes) when 
va = 1 V, vb = 0.2 V, and vc = 0.8 V.

Figure P5.24
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Section 5.6

 5.25 a) Using the Ohm’s law, derive the output expression 
of a summing amplifier with two inputs.

b) Solve (a) for three inputs.

 5.26 The op amp in the circuit of Fig. P5.26 is ideal.

a) What op amp circuit configuration is this?

b) Find an expression for the output voltage vo in 
terms of the input voltage va.

c) Suppose va = 2 V. What value of Rf  will cause 
the op amp to saturate?

Figure P5.26
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 5.27 The resistors in the difference amplifier shown  
in Fig. 5.15 are Ra = 24 kΩ, Rb = 75 kΩ, 
Rc = 130 kΩ and Rd = 120 kΩ. The signal volt-
ages va and vb are 8 and 5 V, respectively, and 
VCC = {20 V.

a) Find vo.

b) What is the resistance seen by the signal source va?

c) What is the resistance seen by the signal source vb?

 5.20 The op amp in the circuit shown in Fig. P5.20 is  ideal,

a) Calculate vo when vg equals 4 V.

b) Specify the range of values of vg so that the  
op amp operates in a linear mode.

c) Assume that vg equals 2 V and that the 63 kΩ 
resistor is replaced with a variable resistor. What 
value of the variable resistor will cause the  
op amp to saturate?

Figure P5.20
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 5.21 a) Design an inverting amplifier (see Fig. 5.9) with 
a gain of 10 using a 100 kΩ resistor in the feed-
back path. Draw your final circuit diagram.

b) Suppose you wish to amplify the input signals in 
the range -3 V … vs … -2 V, what are the min-
imum values of the power supplies that will keep 
the op amp in its linear operating region?

 5.22 a) Design a noninverting amplifier (see Fig. 5.13) 
with a gain of 2.5. Use resistors from Appendix H.  
You might need to combine resistors in series 
and in parallel to get the desired resistance. 
Draw your final circuit.

b) If you use {16 V power supplies for the op amp, 
what range of input values will allow the op amp 
to stay in its linear operating region?

 5.23 The op amp in the circuit of Fig. P5.23 is ideal.

a) What op amp circuit configuration is this?

b) Find vo in terms of vs.

c) Find the range of values for vs such that vo does 
not saturate and the op amp remains in its linear 
region of operation.

Figure P5.23
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 5.32 The op amp in the circuit of Fig. P5.32 is ideal.

a) Plot vo versus a when Rf = 4R1 and vg = 2 V. 
Use increments of 0.1 and note by hypothesis 
that 0 … a … 1.0.

b) Write an equation for the straight line you plot-
ted in (a). How are the slope and intercept of the 
line related to vg and the ratio Rf>R1?

c) Using the results from (b), choose values for vg 
and the ratio Rf>R1 such that vo = -6a + 4.

Figure P5.32
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 5.33 In the difference amplifier shown in Fig. P5.33, com-
pute (a) the differential mode gain, (b) the common 
mode gain, and (c) the CMRR.

Figure P5.33
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 5.34 In the difference amplifier shown in Fig. P5.34, what 
range of values of Rx yields a CMRR Ú 1500?

Figure P5.34
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 5.28 The resistor Rf  in the circuit in Fig. P5.28 is adjusted 
until the ideal op amp saturates. Specify Rf  in kilohms.

Figure P5.28
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 5.29 Design a difference amplifier (Fig. 5.15) to meet the 
following criteria: vo = 3vb - 4va. The resistance 
seen by the signal source vb is 470 kΩ, and the resis-
tance seen by the signal source va is 22 kΩ when the 
output voltage vo is zero. Specify the values of Ra, 
Rb, Rc, and Rd using single resistors or combinations 
of resistors from Appendix H.

 5.30 The op amp in the adder-subtractor circuit shown in 
Fig. P5.30 is ideal.

a) Find the output voltage vo given va = 2 V, vb = 3 V, 
vc = 5 V, and vd = 6 V.

b) For the values given in (a), find vo if the feedback 
resistor is replaced with a 100 kΩ resistor.

Figure P5.30
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 5.31 Select the values of Rb and Rf in the circuit in  
Fig. P5.31 so that

vo = 8000(ib - ia).

  Use single resistors or combinations of resistors 
from Appendix H. The op amp is ideal.

Figure P5.31
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 5.37 a) Show that when the ideal op amp in Fig. P5.37 is 
operating in its linear region,

ia =
3vg

R
.

b) Show that the ideal op amp will saturate when

Ra =
R({VCC - 2vg)

3vg
.

Figure P5.37
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 5.38 Assume that the ideal op amp in the circuit seen in 
Fig. P5.38 is operating in its linear region.

a) Derive the expression for the output voltage.

b) Find the output voltage vo when R1 =  2 kΩ,  
R2 =  100 kΩ, Rs =  10 kΩ, and vs = 4 V.

c) How does this circuit behave when R2 =  0?

Figure P5.38
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 5.39 The two op amps in the circuit in Fig. P5.39 are ideal. 
Calculate vo1 and vo2.

Sections 5.1–5.6

 5.35 The voltage vg shown in Fig. P5.35(a) is applied 
to the inverting amplifier shown in Fig. P5.35(b). 
Sketch vo versus t, assuming the op amp is ideal.

Figure P5.35
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 5.36 A signal voltage vg in the circuit shown in Fig. P5.36 
is described by the following equations:

 vg = 0,       t … 0,

  vg = 5 cos(p>4)t V,  0 … t … ∞ .

Sketch vo versus t, assuming the op amp is ideal.

Figure P5.36
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Figure P5.41
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 5.42 The circuit inside the shaded area in Fig. P5.42 is a con-
stant current source for a limited range of values of RL.

a) Find the value of iL for RL = 4 kΩ.

b) Find the maximum value for RL for which iL will 
have the value in (a).

c) Assume that RL = 16 kΩ. Explain the operation 
of the circuit. You can assume that in = ip ≈ 0 
under all operating conditions.

d) Sketch iL versus RL for 0 … RL … 16 kΩ.

Figure P5.42
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Section 5.7

 5.43 Derive Eq. 5.31.

 5.44 Repeat Assessment Problem 5.7, given that the in-
verting amplifier is loaded with a 500 Ω resistor.

 5.45 a) Find the Thévenin equivalent circuit with respect 
to the output terminals a, b for the inverting am-
plifier of Fig. P5.45. The dc signal source has a 
value of 880 mV. The op amp has an input resis-
tance of 500 kΩ, an output resistance of 2 kΩ, 
and an open-loop gain of 100,000.

b) What is the output resistance of the inverting 
amplifier?

c) What is the resistance (in ohms) seen by the sig-
nal source vs when the load at the terminals a, b 
is 330 Ω?
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 5.40 Assume that the ideal op amp in the circuit in 
Fig.  P5.40 is operating in its linear region.

a) Calculate the power delivered to the 16 kΩ 
 resistor.

b) Repeat (a) with the op amp removed from the 
circuit, that is, with the 16 kΩ resistor connect-
ed in the series with the voltage source and the 
48 kΩ resistor.

c) Find the ratio of the power found in (a) to that 
found in (b).

d) Does the insertion of the op amp between the  
source and the load serve a useful purpose? Explain.

Figure P5.40
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 5.41 The op amps in the circuit in Fig. P5.41 are ideal.

a) Find ia.

b) Find the value of the left source voltage for 
which ia = 0.
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Figure P5.48
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Section 5.1–5.7

 5.49 A type-J thermocouple is constructed of iron and 
constantan (copper-nickel alloy) wires, and has a  
50-mV/°C sensitivity (i.e. voltage-temperature 
slope). With a cold-junction compensation, it pro-
duces 0 V for 0°C. The temperature of an indus-
trial oven in the range of 200°C to 600°C needs to  
be measured. Use the circuit structure shown in  
Fig. 5.23, and find the necessary parameters, so that 
the corresponding output voltage range is 0 to 5 V.

 5.50 Magnetic field sensors are used in industrial and 
consumer applications for proximity detection 
and position sensing. A high-sensitivity magnet-
ic sensor modelled as a resistor (RM) is shown in  
Fig. P5.50. For the range of 0 to 100 Gauss, the  
corresponding resistance values are 60 kΩ down 
to 30 kΩ. Find the necessary voltage source and 
 resistor values to correspondingly obtain a 0 to 
5 V range at the output of the circuit.

Figure P5.50
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 5.51 A pH sensor measures the acidity or basicity 
of solutions in the range of 0 to 14. It provides a  
voltage of +420 mV down to -420 mV for the cor-
responding range. The internal resistance of the 
sensor is very high (around 100 MΩ) so, to avoid 
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Figure P5.45
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 5.46 Repeat Problem 5.45 assuming an ideal op amp.

 5.47 Assume the input resistance of the op amp in 
Fig. P5.47 is infinite and its output resistance is zero.

a) Find vo as a function of vg and the open-loop 
gain A.

b) What is the value of vo if vg = 0.4 V and A = 90?

c) What is the value of vo if vg = 0.4 V and A = ∞?

d) How large does A have to be so that vo is 95% of 
its value in (c)?

Figure P5.47

15 kV 6 V

26 V
yo

1

2

yg
1

2

2

1

135 kV

 5.48 The op amp in the noninverting amplifier circuit of 
Fig. P5.48 has an input resistance of 600 kΩ, an out-
put resistance of 10 kΩ, and an open-loop gain of 
60,000. Assume that the op amp is operating in its 
linear region.

a) Calculate the voltage gain (vo>vg).

b) Find the inverting and non-inverting input volt-
ages vn and vp (in millivolts) if vg = 1 V.

c) Calculate the difference (vp - vn) in microvolts 
when vg = 1 V.

d) Find the current drain in picoamperes on the sig-
nal source vg when vg = 1 V.

e) Repeat (a)–(d) assuming an ideal op amp.
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Figure P5.52
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 5.53 A pressure sensor measures the relative pressure in 
the range of 0 to 1 bar. It produces a current output 
from 4 mA to 20 mA for the corresponding pressure 
range. A load resistor of 220 Ω is used to obtain 
voltage from the sensor current. An ADC is avail-
able with the range of 0 to 5 V. Design an interface 
circuit for the measurement system.
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altering the measured voltage, the current pulled 
from the sensor must be extremely small. The pH 
value needs to be acquired by an ADC with an in-
put voltage range of 0 to 3.3 V. Design the  necessary 
interface circuit.

 5.52 Infrared radiation (IR) photodiodes are used in 
many applications and devices, including fiber 
optic communications, motion detectors, and re-
mote controllers to name just a few. When the 
reverse voltage Vr is kept constant, an IR photo-
diode produces a reverse current Ir proportional 
to the infrared light irradiance (Ee) with a cer-
tain wavelength (typically 940 nm). The photodi-
ode shown in Fig. P5.52, needs to have a reverse 
voltage of 5 V, and, produces Ir = 40 mA for an 
irradiance of Ee = 1 mW/cm2. For this value, we 
would like 10 V to appear at the circuit output. 
Find the necessary voltage supply (VN) and resis-
tance (Rf) values.
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6
CHAPTER 

Inductance, Capacitance, 
and Mutual Inductance
Here we introduce inductors and capacitors, the last two 
ideal circuit elements mentioned in Chapter 2. Fortunately, the 
circuit analysis techniques you learned in Chapters 3 and 4 apply 
to circuits containing inductors and capacitors as well. Once you 
understand the terminal behavior of these elements in terms of 
current and voltage, you can use Kirchhoff’s laws to describe any 
interconnections with the other basic elements.

Like other components, inductors and capacitors are easier to 
describe in terms of circuit variables rather than electromagnetic 
field variables. Hence, Sections 6.1 and 6.2 briefly review the field 
concepts underlying inductors and capacitors before focusing 
on the circuit descriptions. These sections also examine energy 
in inductors and capacitors. Energy can be stored in both mag-
netic and electric fields, so inductors and capacitors can store en-
ergy. For example, energy can be stored in an inductor and then 
 released to fire a spark plug, or stored in a capacitor and then 
released to fire a strobe light. In ideal inductors and  capacitors, 
you can extract only as much energy as you have stored. Because 
 inductors and capacitors cannot generate energy, they are classi-
fied as passive elements.

Section 6.3 describes circuit simplification using series and 
parallel combinations of capacitors or inductors.

In Sections 6.4 and 6.5, we consider two circuits linked by a 
magnetic field and thus magnetically coupled. The voltage in-
duced in one circuit is related to the time-varying current in the 
other circuit by a parameter known as mutual inductance. The 
practical significance of magnetic coupling unfolds as we study 
the relationships between current, voltage, power, and several 
new parameters specific to mutual inductance. We introduce 
these relationships here and then describe their utility in a device 
called a transformer in Chapters 9 and 10.

6.1 The Inductor p. 212

6.2 The Capacitor p. 217

6.3 Series-Parallel Combinations of  
Inductance and Capacitance p. 222

6.4 Mutual Inductance p. 227

6.5 A Closer Look at Mutual Inductance p. 231

1 Know and be able to use the equations for 
voltage, current, power, and energy in an 
inductor; understand how an inductor be-
haves in the presence of constant current; 
and understand the requirement that the 
current be continuous in an inductor.

2 Know and be able to use the equations 
for voltage, current, power, and energy in 
a capacitor; understand how a capacitor 
 behaves in the presence of constant volt-
age; and understand the requirement that 
the voltage be continuous in a capacitor.

3 Be able to combine inductors with initial 
conditions in series and in parallel to form 
a single equivalent inductor with an initial 
condition; be able to combine capacitors 
with initial conditions in series and in par-
allel to form a single equivalent capacitor 
with an initial condition.

4 Understand the basic concept of mutual 
 inductance and be able to write mesh- 
current equations for a circuit containing 
magnetically coupled coils using the dot 
convention correctly.

CHAPTER OBJECTIVES



Practical Perspective
Capacitive Touch Screens
The Practical Perspective in Chapter 3 used a grid of re-
sistors to create a touch screen for a phone or computer 
monitor. But resistive touch screens have some limita-
tions, the most important of which is that the screen can 
only process a single touch at any instant in time (see 
Problem 3.75). This means a resistive touch screen can-
not process the “pinch” gesture used by many devices to 
enlarge or shrink the image on the screen.

Multi-touch screens use a different component 
within a grid below the screen—capacitors. When you 
touch a capacitive touch screen, the capacitor’s value 

changes, causing a voltage change. Once you have 
learned the basic behavior of capacitors and know how 
they combine in series and in parallel, we will present 
two possible designs for a multi-touch screen using a 
grid of capacitors.

cobalt88 /Shutterstock
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6.1 The Inductor
An inductor is an electrical component that opposes any change in electri-
cal current. It is composed of a coil of wire wound around a supporting core 
whose material can be magnetic or nonmagnetic. The behavior of inductors 
is based on phenomena associated with magnetic fields. The source of the 
magnetic field is charge in motion, or current. If the current is varying with 
time, the magnetic field is varying with time. A time-varying magnetic field 
induces a voltage in any conductor linked by the field. The circuit parame-
ter of inductance relates the induced voltage to the current.

Figure 6.1(a) shows an inductor, represented graphically as a coiled 
wire. Its inductance is symbolized by the letter L and is measured in henrys 
(H). Assigning the reference direction of the current in the direction of the 
voltage drop across the terminals of the inductor, as shown in Fig. 6.1(b), 
and using the passive sign convention yields

(a)

L

(b)

L

1 2v

i

Figure 6.1 ▲ (a) The graphic symbol for an inductor 
with an inductance of L henrys. (b) Assigning refer-
ence voltage and current to the inductor, following 
the passive sign convention.

THE INDUCTOR V - i EQUATION

 v = L
di
dt

, (6.1)

where v is measured in volts, L in henrys, i in amperes, and t in seconds. 
If the current reference is in the direction of the voltage rise, Eq. 6.1 is 
written with a minus sign.

Note from Eq. 6.1 that the voltage across the terminals of an  inductor 
is proportional to the time rate of change of the current in the inductor. 
We can make two important observations here. First, if the current is 
constant, the voltage across the ideal inductor is zero. Thus, the inductor 
behaves as a short circuit in the presence of a constant, or dc, current. 
Second, current cannot change instantaneously in an inductor; that is, the 
current cannot change by a finite amount in zero time. Equation 6.1 tells 
us that this change would require an infinite voltage, and infinite voltages 
are not possible. For example, when someone opens the switch on an in-
ductive circuit in an actual system, the current initially continues to flow in 
the air across the switch, a phenomenon called arcing. The arc across the 
switch prevents the current from dropping to zero instantaneously.

Example 6.1 illustrates the application of Eq. 6.1 to a simple circuit.

EXAMPLE 6.1  Determining the Voltage, Given the Current, at the Terminals  
of an Inductor

The independent current source in the circuit 
shown in Fig. 6.2 generates zero current for t 6 0 
and the pulse 10te-5tA for t 7 0.

i

1

2

v 100 mH

i 5 0, t , 0

i 5 10te25tA, t . 0

Figure 6.2 ▲ The circuit for Example 6.1.

a) Sketch the current waveform.

b) At what instant of time is the current maximum?

c) Express the voltage across the terminals of the 
100 mH inductor as a function of time.

d) Sketch the voltage waveform.

e) Are the voltage and the current at a maximum at 
the same time?

f) At what instant of time does the voltage change 
polarity?

g) Is there ever an instantaneous change in voltage 
across the inductor? If so, at what time?
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Solution

a) Figure 6.3 shows the current waveform.

b) di>dt = 10(-5te-5t + e-5t) = 10e-5t(1 - 5t) A>s; 
di>dt = 0 when t = 0.2 s. (See Fig. 6.3.)

c) v = Ldi>dt = 10.1210e-5t11 - 5t2  

=  e-5t11 - 5t2  V,  t 7 0; v = 0, t 6 0.

d) Figure 6.4 shows the voltage waveform.

e) No; the voltage is proportional to di>dt, not i.

f) At 0.2 s, which corresponds to the moment when 
di>dt is passing through zero and changing sign.

g) Yes, at t = 0. Note that the voltage can change  
instantaneously across the terminals of an in-
ductor, even though the current in the inductor 
 cannot change instantaneously.

Current in an Inductor in Terms of the Voltage Across 
the Inductor
Equation 6.1 expresses the voltage across the terminals of an inductor as 
a function of the current in the inductor. Now we express the current as 
a function of the voltage. To find i as a function of v, start by multiplying 
both sides of Eq. 6.1 by a differential time dt:

v dt = Ladi
dt
b  dt.

Multiplying the rate at which i varies with t by a differential change in time 
generates a differential change in i, so the expression simplifies to

v dt = L di.

We next integrate both sides of the simplified expression. For conve-
nience, we interchange the two sides of the equation and write

L L
i(t)

i(t0)
dx = L

t

t0

v dt.

Note that we use x and t as the variables of integration, so i and t become 
limits on the integrals. Then, divide both sides of the integral equation by 
L and solve for the inductor current to get

THE INDUCTOR i - V EQUATION

 i(t) =
1
L

 L
t

t0

v dt + i(t0), (6.2)

where i(t0) is the value of the inductor current at the time when we initiate 
the integration, namely, t0. In many practical applications, t0 is zero and 
Eq. 6.2 becomes

i(t) =
1
L

 L
t

0
v dt + i(0).

0.736

i (A)

0.20 t (s)

Figure 6.3 ▲ The current waveform for Example 6.1.

1.0

v (V)

0.20 0.6
t (s)

Figure 6.4 ▲ The voltage waveform for Example 6.1.
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Equations 6.1 and 6.2 both give the relationship between the voltage 
and current at the terminals of an inductor. In both equations, the refer-
ence direction for the current is in the direction of the voltage drop across 
the terminals. Pay attention to the algebraic sign of i(t0). If the initial cur-
rent direction and the reference direction for i are the same, the initial 
current is positive. If the initial current is in the opposite direction, it is 
negative. Example 6.2 illustrates the application of Eq. 6.2.

EXAMPLE 6.2  Determining the Current, Given the Voltage, at the Terminals of 
an Inductor

The voltage pulse applied to the 100 mH inductor 
shown in Fig. 6.5 is 0 for t 6 0 and is given by the 
expression

v1 t2 = 20te-10t V

for t 7 0. Also assume i = 0 for t … 0.

a) Sketch the voltage as a function of time.

b) Find the inductor current as a function of time.

c) Sketch the current as a function of time.

Solution

a) The voltage as a function of time is shown in  
Fig. 6.6.

b) The current in the inductor is 0 at t = 0. There-
fore, the current for t 7 0 is

 i =
1

0.1
 L

t

0
 20 te-10tdt + 0

 = 200 c -e-10t

100
 110 t + 12 d `

0

t

,

 = 211 - 10te-10t - e-10t2  A, t 7 0.

c) Figure 6.7 shows the current as a function of time.

v 100 mH

v 5 0, t , 0

v 5 20te210t V, t . 0

i
1

2

Figure 6.5 ▲ The circuit for Example 6.2.

0.736

0.6

0.4

0.2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t (s)

v (V)

Figure 6.6 ▲ The voltage waveform for Example 6.2.

2

1.5

1

0.5

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t (s)

i (A)

Figure 6.7 ▲ The current waveform for Example 6.2.

In Example 6.2, i approaches a constant value of 2 A as t increases. 
We say more about this result after discussing the energy stored in an 
inductor.

Power and Energy in the Inductor
The power and energy relationships for an inductor can be derived di-
rectly from the current and voltage relationships. If the current reference 
is in the direction of the voltage drop across the terminals of the inductor, 
the power is

 p = vi. (6.3)

Remember that power is in watts, voltage is in volts, and current is in 
amperes. If we express the inductor voltage as a function of the inductor 
current, the expression for inductor power becomes



 6.1 The Inductor 215

We can also express the current in terms of the voltage:

p = v c 1
L

 L
t

t0

v dt + i(t0) d .

We can use Eq. 6.4 to find the energy stored in the inductor. Power is the 
time rate of expending energy, so

p =
dw

dt
= Li 

di
dt

 .

Multiplying both sides by a differential time gives the differential 
relationship

dw = Li di.

Integrate both sides of the differential relationship, recognizing that the ref-
erence for zero energy corresponds to zero current in the inductor. Thus

L
w

0
 dx = L L

i

0
y dy,

so

POWER IN AN INDUCTOR

 p = Li 
di
dt

. (6.4)

ENERGY IN AN INDUCTOR

 w =
1
2

 Li2. (6.5)

As before, we use different symbols of integration to avoid confusion 
with the limits placed on the integrals. In Eq. 6.5, the energy is in joules, 
inductance is in henrys, and current is in amperes. Example 6.3 applies  
Eqs. 6.3 and 6.5 to the circuits in Examples 6.1 and 6.2 to examine power 
and energy in these circuits.

EXAMPLE 6.3  Determining the Current, Voltage, Power, and  
Energy for an Inductor

a) For Example 6.1, plot i, v, p, and w versus time. 
Line up the plots vertically to allow easy assess-
ment of each variable’s behavior.

b) In what time interval is energy being stored in 
the inductor?

c) In what time interval is energy being extracted 
from the inductor?

d) What is the maximum energy stored in the inductor?

e) Evaluate the integrals

L
0.2

0
p dt and L

∞

0.2
p dt,

and comment on their significance.

f) Repeat (a)–(c) for Example 6.2.

g) In Example 6.2, why is there a sustained current 
in the inductor as the voltage approaches zero?

Solution
a) The plots of i and v follow directly from the ex-

pressions for i and v obtained in Example 6.1. 
Applying Eq. 6.3,

p = vi = c e-5t11 - 5t2 d 110te-5t2

             = 10te-10t11 - 5t2  W.
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e) From part (a), 

p = 10te-10t11 - 5t2 = 10te-10t =  50t2e-10t.

Thus

 L
0.2

0
p dt = 10 c e-10t

100
 (-10t - 1) d

0

0.2

 -50e t2e-10t

-10
+  

2
10

 c e-10t

100
 1 -10t - 12 d f

0

0.2

 = 0.2e-2 = 27.07 mJ,

 L
∞

0.2
p dt = 10 c e-10t

100
 1 -10t - 12 d

0.2

∞

 -  50e t2e-10t

-10
+

2
10

 c e-10t

100
 1 -10t - 12 d f

0.2

∞

 = -0.2e-2 = -27.07 mJ.

Based on the definition of p, the area under the plot 
of p versus t represents the energy expended over 
the interval of integration. Hence, integrating the 
power between 0 and 0.2 s represents the energy 

Applying Eq. 6.5,

w =
1
2

 Li =
1
2

 10.12 110te-5t2 2 = 5t2e-10t J.

The plots of i, v, p, and w are shown in Fig. 6.8.

b) When the energy curve increases, energy is being 
stored. Thus, from Fig. 6.8, energy is being stored 
in the time interval 0 to 0.2 s. This corresponds to 
the interval when p 7 0.

c) When the energy curve decreases, energy is be-
ing extracted. Thus, from Fig. 6.8, energy is being 
extracted in the time interval 0.2 s to ∞ . This cor-
responds to the interval when p 6 0.

d) Equation 6.5 tells us that energy is at a maxi-
mum when current is at a maximum; the graphs 
in Fig. 6.8 confirm this. From Example 6.1, 
i max = 0.736 A. Therefore, w max = 27.07 mJ.

0.5

20.5

1.0

0 0.2 1.00.80.60.4
t (s)

v (V)

0

400

800

0.2 1.00.80.60.4
t (s)

i (mA)

100

200

0 0.2 1.00.80.60.4
t (s)

p (mW)

15

30

w (mJ)

0 0.2 1.00.80.60.4
t (s)

Figure 6.8 ▲ The variables i, v, p, and w versus t for  
Example 6.1.

0.5

1.0
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1.0
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0 0.60.20.1 0.50.40.3
t (s)

300

600

p (mW)

0 0.60.20.1 0.50.40.3
t (s)

100

200

w (mJ)

0 0.60.20.1 0.50.40.3
t (s)

Figure 6.9 ▲ The variables v, i, p, and w versus t for  
Example 6.2.
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stored in the inductor during this time interval. 
Integrating p between 0.2 s and infinity gives the 
energy extracted. Note that in this time interval, all 
the energy originally stored is removed, so after the 
current peak, no energy is stored in the inductor.

f) The plots of v, i, p, and w follow directly from 
the expressions for v and i given in Example 6.2 
and are shown in Fig. 6.9. Note that in this case 

the power is always positive, and hence energy 
is always being stored during the voltage pulse.

g) The inductor stores energy when the voltage pulse 
is applied. Because the inductor is ideal, the energy 
cannot dissipate after the voltage subsides to zero, 
and thus current continues to circulate in the cir-
cuit. Practical inductors require a resistor in the cir-
cuit model, which we will examine later in this text.

Objective 1—Know and be able to use the equations for voltage, current, power, and energy in an inductor

 6.1 The current source in the circuit shown gener-
ates the current pulse

 ig1 t2 = 0,  t 6 0,

 ig1 t2 = 8e-300t - 8e-1200t A,  t Ú 0.

  Find (a) v102 ; (b) the instant of time, greater 
than zero, when the voltage v passes through 
zero; (c) the expression for the power delivered 
to the inductor; (d) the instant when the power 
delivered to the inductor is maximum; (e) the 
maximum power; (f) the instant of time when 
the stored energy is maximum; and (g) the max-
imum energy stored in the inductor.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 6.3 and 6.11.

1

2

v 4 mHig

Answer: (a) 28.8 V;
(b) 1.54 ms;
(c) -76.8e-600t +  384e-1500t  

-307.2e-2400t W, t Ú 0;
(d) 411.05 ms;
(e) 32.72 W;
(f) 1.54 ms;
(g) 28.57 mJ.

6.2 The Capacitor
A capacitor is an electrical component consisting of two conductors 
 separated by an insulator or dielectric material. The capacitor is the only 
device other than a battery that can store electrical charge. The behavior 
of capacitors is based on phenomena associated with electric fields. The 
source of the electric field is separation of charge, or voltage. If the voltage 
is varying with time, the electric field is varying with time. A time-varying 
electric field produces a displacement current in the space occupied by 
the field. The circuit parameter of capacitance relates the displacement 
current to the voltage, where the displacement current is equal to the con-
duction current at the terminals of the capacitor.

The circuit symbol for a capacitor is two short parallel conductive 
plates, as shown in Fig. 6.10(a). The capacitance is represented by the let-
ter C and is measured in farads (F). Because the farad is an extremely 
large quantity of capacitance, practical capacitor values usually lie in the 
picofarad (pF) to microfarad 1mF2  range.

The capacitor’s symbol reminds us that capacitance occurs whenever 
electrical conductors are separated by a dielectric, or insulating, material. 
This condition implies that electric charge is not transported through the 
 capacitor. Although applying a voltage to the terminals of the capacitor 
cannot move a charge through the dielectric, it can displace a charge within 

(b)

C

1 2

i

(a)

C

(b)

C

1 2v

i

(a)

C

Figure 6.10 ▲ (a) The circuit symbol for a capacitor. 
(b) Assigning reference voltage and current to the 
capacitor, following the passive sign convention.
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the dielectric. As the voltage varies with time, the displacement of charge 
also varies with time, causing what is known as the displacement current.

The displacement current is indistinguishable from the conduction 
current at the capacitor’s terminals. The current is proportional to the rate 
at which the voltage across the capacitor varies with time, so

CAPACITOR i - V EQUATION

 i = C  
dv

dt
 , (6.6)

where i is measured in amperes, C in farads, v in volts, and t in seconds. In 
Fig. 6.10(b), the current reference is in the direction of the voltage drop 
across the capacitor. Using the passive sign convention, we write Eq. 6.6 
with a positive sign. If the current reference is in the direction of the volt-
age rise, Eq. 6.6 is written with a minus sign.

Two important observations follow from Eq. 6.6. First, if the voltage 
across the terminals is constant, the capacitor current is zero because a 
conduction current cannot be established in the dielectric material of the 
capacitor. Only a time-varying voltage can produce a displacement cur-
rent. Thus, a capacitor behaves as an open circuit in the presence of a con-
stant voltage. Second, voltage cannot change instantaneously across the 
terminals of a capacitor. Equation 6.6 indicates that such a change would 
produce infinite current, a physical impossibility.

Equation 6.6 gives the capacitor current as a function of the capacitor 
voltage. To express the voltage as a function of the current, we multiply 
both sides of Eq. 6.6 by a differential time dt and then integrate the result-
ing differentials:

i dt = C dv or  L
v(t)

v(t0)
dx =

1
C

 L
t

t0

i dt.

Carrying out the integration of the left-hand side of the second equation 
and rearranging gives

CAPACITOR V - i EQUATION

 v(t) =
1
C

 L
t

t0

i dt + v(t0). (6.7)

In many practical applications of Eq. 6.7, the initial time is zero; that is, 
t0 = 0. Thus, Eq. 6.7 becomes

v(t) =
1
C

 L
t

0
 i dt + v(0).

We can easily derive the power and energy relationships for the  capacitor. 
From the definition of power,

CAPACITOR POWER EQUATION

 p = vi = Cv 
dv

dt
 , (6.8)



 6.2 The Capacitor 219

or

p = i c 1
C

 L
t

t0

i dt + v(t0) d .

Combining the definition of energy with Eq. 6.8 yields

dw = Cv dv,

from which

L
w

0
dx = CL

v

0
y dy,

or

CAPACITOR ENERGY EQUATION

 w =
1
2

 Cv

2. (6.9)

In deriving Eq. 6.9, the reference for zero energy corresponds to zero 
voltage.

Examples 6.4 and 6.5 illustrate the current, voltage, power, and en-
ergy relationships for a capacitor.

EXAMPLE 6.4 Determining Current, Voltage, Power, and Energy for a Capacitor

The voltage pulse across the terminals of a 0.5 mF 
capacitor is:

v(t) = •
0, t … 0 s;
4t V, 0 s … t … 1 s;
4e-(t - 1) V, t Ú 1 s.

a) Derive the expressions for the capacitor current, 
power, and energy.

b) Sketch the voltage, current, power, and energy as 
functions of time. Line up the plots vertically.

c) Specify the time interval when energy is being 
stored in the capacitor.

d) Specify the time interval when energy is being 
delivered by the capacitor.

e) Evaluate the integrals

L
1

0
p dt  and  L

∞

1
p dt

and comment on their significance.

Solution

a) From Eq. 6.6,

i = •
(0.5 m)(0) = 0, t 6 0 s;
(0.5 m)(4) = 2 mA, 0 s 6 t 6 1 s;
(0.5 m)(-4e-(t - 1)) = -2e-(t - 1) mA, t 7 1 s.

The expression for the power is derived from Eq. 6.8:

p = •
0, t … 0 s;
(4t)(2 m) = 8t mW, 0 s … t 6 1 s;
(4e-(t - 1))(-2 me-(t - 1)) = -8e-2(t - 1) mW, t 7 1 s.

The energy expression follows directly from Eq. 6.9:

w = •
0, t … 0 s;
1
2 (0.5 m)16t2 = 4t2mJ, 0 s … t 6 1 s;
1
2 (0.5 m)16e-2(t - 1) = 4e-2(t - 1) mJ, t Ú 1 s.



220 Inductance, Capacitance, and Mutual Inductance

b) Figure 6.11 shows the voltage, current, power, 
and energy as functions of time.

c) Energy is being stored in the capacitor  whenever 
the power is positive. Hence, energy is being 
stored in the interval from 0 to 1 s.

d) Energy is being delivered by the capacitor when-
ever the power is negative. Thus, energy is being 
delivered for all t greater than 1 s.

e) The integral of p dt is the energy associated 
with the time interval corresponding to the in-
tegral’s limits. Thus, the first integral represents 
the  energy stored in the capacitor between 0 and 
1 s, whereas the second integral represents the 
 energy returned, or delivered, by the capacitor in 
the interval 1 s to ∞ :

 L
1

0
p dt = L

1

0
8t dt = 4t2 `

0

1

= 4 mJ,

 L
∞

1
p dt = L

∞

1
(-8e-2(t - 1))dt = (-8)

e-2(t - 1)

-2
`
1

∞
= -4 mJ.

The voltage applied to the capacitor returns to zero 
as time increases, so the energy returned by this 
 ideal capacitor must equal the energy stored.

4
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t (s)
2 3 4 5 610

2

22
21

1
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24
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5 6431
t (s)

4

2
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Figure 6.11 ▲ The variables v, i, p, and w versus t  
for Example 6.4.

EXAMPLE 6.5  Finding V, p, and W Induced by a Triangular Current Pulse for a 
Capacitor

An uncharged 0.2 mF capacitor is driven by a trian-
gular current pulse. The current pulse is described by

i(t) = µ
0, t … 0;
5000t A, 0 … t … 20 ms;
0.2 - 5000t A, 20 … t … 40 ms;
0, t Ú 40 ms.

a) Derive the expressions for the capacitor voltage, 
power, and energy for each of the four time inter-
vals needed to describe the current.

b) Plot i, v, p, and w versus t. Align the plots as spec-
ified in the previous examples.

c) Why does a voltage remain on the capacitor after 
the current returns to zero?

Solution

a) For t …  0, v, p, and w all are zero.
For 0 … t … 20 ms,

 v =
1

0.2 * 10-6 L
t

0
15000t2dt + 0 = 12.5 * 109t2 V,

 p = vi = 62.5 * 1012t3 W,

 w =
1
2

 Cv

2 = 15.625 * 1012t4 J.

For 20 ms … t … 40 ms,

v120 * 10-62 = 12.5 * 109120 * 10-62 2 = 5 V.
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Then,

 v =
1

0.2 * 10-6 L
t

20ms
10.2 - 5000t2dt + 5

 = 1106t - 12.5 * 109t2 - 102  V,

 p = vi,

 = 162.5 * 1012t3 - 7.5 * 109t2 +  2.5 * 105t - 22  W,

 w =
1
2

 Cv

2,

 = (15.625 * 1012t4 - 2.5 * 109t3 + 0.125 * 106t2

      -2t +  10-5) J.

For t Ú 40 ms,

 v = 10 V,

 p = vi = 0,

 w =
1
2

 Cv

2 = 10 mJ.

b) The excitation current and the resulting voltage, 
power, and energy are plotted in Fig. 6.12.

c) Note that the power is always positive for the 
duration of the current pulse, which means that 
energy is continuously being stored in the capac-
itor. When the current returns to zero, the stored 
energy is trapped because the ideal capacitor 
cannot dissipate energy. Thus, a voltage remains 
on the capacitor after its current returns to zero.
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Figure 6.12 ▲ The variables i, v, p, and w versus t for  
Example 6.5.

Objective 2—Know and be able to use the equations for voltage, current, power, and energy in a capacitor

 6.2 The voltage at the terminals of the 0.6 mF 
capacitor shown in the figure is 0 for t 6 0 and 
40e-15,000t sin 30,000t V for t Ú 0. Find (a) i(0); 
(b) the power delivered to the capacitor at 
t = p>80 ms; and (c) the energy stored in the 
capacitor at t = p>80 ms.

0.6 mF

v

i

1 2

Answer: (a) 0.72 A;
(b) -649.2 mW;
(c) 126.13 mJ.

 6.3 The current in the capacitor of Assessment 
Problem 6.2 is 0 for t 6 0 and 3 cos 50,000t A 
for t Ú 0. Find (a) v(t); (b) the maximum power 
delivered to the capacitor at any one instant of 
time; and (c) the maximum energy stored in the 
capacitor at any one instant of time.

Answer: (a) 100 sin 50,000t V, t Ú 0;
(b) 150 W; (c) 3 mJ.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 6.17 and 6.21.
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6.3 Series-Parallel Combinations  
of Inductance and Capacitance

Just as series-parallel combinations of resistors can be reduced to a single 
equivalent resistor, series-parallel combinations of inductors or capacitors 
can be reduced to a single inductor or capacitor.

Inductors in Series and Parallel
Figure 6.13 shows inductors in series. The series connection means the 
inductors all have the same current, so we define only one current for the 
series combination. The voltage drops across the individual inductors are

v1 = L1 
di
dt

, v2 = L2 
di
dt

, and v3 = L3 
di
dt

.

The voltage across the series connection is

v = v1 + v2 + v3 = 1L1 + L2 + L32di
dt

.

Thus, the equivalent inductance of series-connected inductors is the sum 
of the individual inductances. For n inductors in series,

L2L1
v11

1 2

2 v21 2
L3
v31 2

v

i

Figure 6.13 ▲ Inductors in series.

COMBINING INDUCTORS IN SERIES

 Leq = a
n

i = 1
 Li. (6.10)

If the original inductors carry an initial current of i(t0), the equivalent in-
ductor carries the same initial current. Figure 6.14 shows the equivalent 
circuit for series inductors carrying an initial current.

Inductors in parallel have the same terminal voltage, so the current in 
each inductor is a function of the terminal voltage and the initial current 
in that inductor. For the three inductors in parallel shown in Fig. 6.15, the 
currents for the individual inductors are

 i1 =
1

L1
 L

t

t0

v dt + i11 t02 ,

 i2 =
1

L2
 L

t

t0

v dt + i21 t02 ,

 i3 =
1

L3
 L

t

t0

v dt +  i31 t02 .

The current entering the top node shared by the three parallel inductors is 
the sum of the inductor currents:

i = i1 + i2 +  i3.

Substituting the expressions for i1, i2, and i3 into the sum yields

 i = a 1
L1

+
1

L2
+

1
L3

b L
t

t0

v dt + i1(t0) + i2(t0) + i3(t0). (6.11)

L2L1

1

1

2

2

L3

v

i(t0)

i

 Leq 5 L1 1 L2 1 L3

v

i(t0)

i

Figure 6.14 ▲ An equivalent circuit for inductors in 
series carrying an initial current i(t0).

v L1

i1
L2

i2
i1(t0) i2(t0) L3

i3
i3(t0)

i

1

2

Figure 6.15 ▲ Three inductors in parallel.
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The expression for the current as a function of the voltage for a single 
equivalent inductor is

 i =
1

Leq
 L

t

t0

v dt +  i(t0). (6.12)

Comparing Eq. 6.12 with Eq. 6.11 yields

 
1

Leq
=

1
L1

+
1

L2
+

1
L3

,

 i(t0) = i1(t0) + i2(t0) + i3(t0).

Figure 6.16 shows the equivalent circuit for the three parallel inductors in 
Fig. 6.15.

The results for three inductors in parallel can be extended to n induc-
tors in parallel:

v
i(t0)

i

1

2

Leq

i(t0) 5 i1(t0) 1 i2(t0) 1 i3(t0)

1
Leq

1
L1

5 1
L2

1 1
L3

1

Figure 6.16 ▲ An equivalent circuit for three induc-
tors in parallel.

Capacitors in Series and Parallel
Capacitors connected in series can be reduced to a single equivalent ca-
pacitor. The reciprocal of the equivalent capacitance is equal to the sum 
of the reciprocals of the individual capacitances. The initial voltage on 
the equivalent capacitor is the algebraic sum of the initial voltages on the 
individual capacitors. Figure 6.17 and the following equations summarize 
these observations for n series-connected capacitors:

 i1 t02 = a
n

j = 1
 ij1 t02 . (6.14)

 
1

Leq
= a

n

i = 1
 

1
Li

, (6.13)

COMBINING INDUCTORS AND THEIR  
INITIAL CURRENTS IN PARALLEL

 v1 t02 = a
n

j = 1
 vj1 t02 . (6.16)

 
1

Ceq
= a

n

i = 1
 

1
Ci

, (6.15)

COMBINING CAPACITORS AND THEIR  
INITIAL VOLTAGES IN SERIES

We leave the derivation of the equivalent circuit for series-connected 
 capacitors as an exercise. (See Problem 6.27.)

The equivalent capacitance of capacitors connected in parallel is the 
sum of the individual capacitances, as Fig. 6.18 page 224 and the following 
equation show:

 Ceq = a
n

i = 1
 Ci. (6.17)

Capacitors connected in parallel must carry the same voltage. Therefore, 
the initial voltage across the original parallel capacitors equals the 

COMBINING CAPACITORS IN PARALLEL

i

v

1

2

v (t0)
1

2
Ceq

v(t0) 5 v1(t0) 1 v2(t0) 1 ... 1 vn(t0)

1
Ceq

1
C1

5 1
C2

1 1
Cn

1 ... 1

(b)

2

v

v1 (t0)

i
1

2

1

C1

v2 (t0)
1

2
C2

vn (t0)
1

2

Cn

. . .

(a)

Figure 6.17 ▲ An equivalent circuit for capacitors 
connected in series. (a) The series capacitors. (b) 
The equivalent circuit.
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initial voltage across the equivalent capacitance Ceq. The derivation 
of the equivalent circuit for parallel capacitors is left as an exercise.  
(See Problem 6.30.)

Examples 6.6 and 6.7 use series and parallel combinations to simplify 
a circuit with multiple inductors and a circuit with multiple capacitors.

EXAMPLE 6.6 Finding the Equivalent Inductance

Figure 6.19 shows four interconnected inductors. 
The initial currents for two of the inductors are also 
shown in Fig. 6.19. A single equivalent inductor, to-
gether with its initial current, is shown in Fig. 6.20.

a) Find the equivalent inductance, Leq.

b) Find the initial current in the equivalent inductor.

Solution

a) Begin by replacing the parallel-connected 12 mH 
and 24 mH inductors with a single equivalent in-
ductor whose inductance is

a 1
0.012

+
1

0.024
b

-1

= 0.008 = 8 mH.

Now the 8 mH, 6 mH, and 10 mH inductors are 
in series. Combining them gives

Leq = 0.008 + 0.006 + 0.010 = 0.024 = 24 mH.

b) The initial current in the equivalent inductor, i, is 
the same as the current entering the node to the 
left of the 24 mH inductor. The KCL equation 
at that node, summing the currents entering the 
node, is

i - 10 + 6 = 0.

Therefore, the initial current in the equivalent in-
ductor is i = 4 A.

6 mH

24 mH

12 mH

10 mH

6 A

10 A

a

b

Figure 6.19 ▲ Interconnected inductors for 
Example 6.6.

a

b

Leq

i

Figure 6.20 ▲ The equivalent inductor for the 
 inductors in Fig. 6.19

(b)

i

v

1

2

Ceq 5 C1 1 C2 1 ... 1 Cn

i

v

1

2

C1 C2 Cn

...

...

(a)

Figure 6.18 ▲ An equivalent circuit for capacitors connected 
in parallel. (a) Capacitors in parallel. (b) The equivalent circuit.
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EXAMPLE 6.7 Finding the Equivalent Capacitance

Figure 6.21 shows four interconnected capacitors. 
The initial voltages for three of the capacitors 
are also shown in Fig. 6.21. A single equivalent 
 capacitor, together with its initial voltage, is shown in  
Fig. 6.22.

a) Find the equivalent capacitance, Ceq.

b) Find the initial voltage across the  equivalent 
 capacitor.

Solution

a) Begin by replacing the 10 mF and 15 mF capacitors 
with a single equivalent capacitor whose capacitance is

a 1

10 * 10-6 +
1

15 * 10-6 b
-1

= 6 * 10-6 = 6 mF.

Next, combine the 6 mF capacitor from the first sim-
plification with the 14 mF capacitor to give

6 * 10-6 + 14 * 10-6 = 20 * 10-6 = 20 mF.

Finally, combine the 20 mF from the previous simplifica-
tion with the 20 mF on the left side of the circuit to give

Ceq = a 1

20 * 10-6 +
1

20 * 10-6 b
-1

= 10 * 10-6 = 10 mF.

b) To find the initial voltage from a to b, use KVL to sum 
the initial voltages for the capacitors on the perimeter 
of the circuit. This gives

12 - 8 + 16 = 20 V.

Therefore, the initial voltage across the equivalent 
 capacitor is 20 V.

15 mF

10 mF20 mF

14 mF
12

a

b

8 V21 12 V
1

2

16 V

Figure 6.21 ▲ Interconnected capacitors for Example 6.7.

a

b

v

1

2

Ceq

Figure 6.22 ▲ The equivalent capacitor for the capacitors  
in Fig. 6.21.

Objective 3—Be able to combine inductors or capacitors in series and in parallel to form a single equiva-
lent inductor

 6.4 The initial values of i1 and i2 in the circuit 
shown are +3 A and -5 A, respectively. The 
voltage at the terminals of the parallel induc-
tors for t Ú 0 is -30e-5t mV.
a) If the parallel inductors are replaced by a 

single inductor, what is its inductance?
b) Find the initial current and its reference 

direction in the equivalent inductor.
c) Use the equivalent inductor to find i1 t2 .
d) Find i11 t2  and i21 t2 . Verify that the solu-

tions for i11 t2 , i21 t2 , and i1 t2  satisfy Kirch-
hoff’s current law.

Answer: (a) 48 mH;
(b) 2 A, up;
(c) 0.125e-5t - 2.125 A, t Ú 0;
(d) i11 t2 = 0.1e-5t +  2.9 A, t Ú 0, 

i21 t2 = 0.025e-5t -  5.025 A, t Ú 0.

ASSESSMENT PROBLEMS

1

2

60 mH 240 mHv i1(t) i2(t)

i(t)
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Inductor and Capacitor Symmetry
We introduced the concept of symmetry, or duality, in Chapter 4. In that 
chapter, we recognized several examples of duality, including

• essential nodes and meshes;
• KCL and KVL;
• the node voltage method and the mesh current method.

There are also examples of duality in Sections 6.1 through 6.3; these are 
summarized in Table 6.1. From this table we note many dual relation-
ships, including

• voltage and current;
• open circuits and short circuits;
• inductance and capacitance;
• series connections and parallel connections.

 6.5 The current at the terminals of the two capac-
itors shown is 240e-10tmA for t Ú 0. The initial 
values of v1 and v2 are -10 V and -5 V, respec-
tively. Calculate the total energy trapped in the 
capacitors as t S ∞ . (Hint: Don’t combine the 
capacitors in series—find the energy trapped in 
each, and then add.)

Answer: 20 mJ.

SELF-CHECK: Also try Chapter Problems 6.22, 6.24, 6.27, and 6.31.

v1

v2

i

1

2

1 2

2 mF
8 mF

TABLE 6.1 Inductor and Capacitor Duality

Inductors Capacitors

Primary v-i equation
v1 t2 = L

di1 t2
dt

i1 t2 = C
dv1 t2

dt

Alternate v-i equation
i1 t2 =

1
L

 L
t

t0

v1t2dt + i1 t02 v1 t2 =
1
C

 L
t

t0

i1t2dt + v1 t02

Initial condition i1 t02 v1 t02
Behavior with a constant source If i(t) = I, v(t) = 0 and the inductor behaves 

like a short circuit
If v(t) = V, i(t) = 0 and the capacitor behaves 
like an open circuit

Continuity requirement i(t) is continuous for all time so v(t) is finite v(t) is continuous for all time so i(t) is finite

Power equation p1 t2 = v1 t2 i1 t2 = Li1 t2di1 t2
dt

p1 t2 = v1 t2 i1 t2 = Cv1 t2dv1 t2
dt

Energy equation
w1 t2 =

1
2

 Li1 t2 2
w1 t2 =

1
2

 Cv1 t2 2

Series-connected equivalent
 Leq = a

n

j = 1
 Lj

 ieq1 t02 = ij1 t02 for all j

 
1

Ceq
= a

n

j = 1
 

1
Cj

 veq1 t02 = a
n

j = 1
 vj1 t02

Parallel-connected equivalent
 

1
Leq

= a
n

j = 1
 

1
Lj

 ieq1 t02 = a
n

j = 1
 ij1 t02

 Ceq = a
n

j = 1
 Cj

 veq1 t02 = vj1 t02 for all j
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Recognizing the symmetry in the characteristics of inductors and capacitors 
makes it easier to understand and remember these characteristics.

6.4 Mutual Inductance
A time-varying current in an inductor coil creates a time-varying  magnetic 
field that surrounds that coil, as we saw in Section 6.1. Inductance re-
lates the voltage drop across an inductor to the time-varying current in 
that inductor. As you will see, it makes sense to rename this parameter 
self-inductance.

Now we consider circuits containing two inductors with time-varying 
currents, each creating a time-varying magnetic field. In these circuits, the 
magnetic field generated by one coil’s current envelops the other coil and 
vice versa, thereby magnetically coupling the two inductors and the cir-
cuits that contain them. Figure 6.23 shows an example of such a circuit, 
where L1 and L2 are the self-inductances of the individual inductors and M 
is the mutual inductance associated with the magnetic coupling. Note the 
 double-headed arrow adjacent to M; the arrows indicate the pair of coils 
with this value of mutual inductance. We need this notation to accommo-
date circuits with more than one pair of magnetically coupled coils.

The mesh-current method is the easiest way to analyze circuits 
with magnetically coupled inductors. Following Analysis Method 4.6  
(page 138), in Step 1 we identify the meshes, and in Step 2 we label the 
mesh currents. The result is shown in Fig. 6.24. In Step 3, we write a KVL 
equation around each mesh, summing the voltages across each mesh com-
ponent. There will be two voltages across each inductor coil because the 
coils are magnetically coupled. One voltage is the self-induced voltage, 
which is the product of the self-inductance of the coil and the first deriva-
tive of that coil’s current. The other voltage is the mutually induced volt-
age, which is the product of the mutual inductance of the coils and the first 
derivative of the current in the other coil. Consider the inductor on the 
left in Fig. 6.24 with self-inductance L1. The self-induced voltage across 
this coil is L11di1>dt2 , and the mutually induced voltage across this coil is 
M1di2>dt2 . But what about the polarities of these two voltages?

Using the passive sign convention, we find that the self-induced 
 voltage is a voltage drop in the direction of the current producing the 
 voltage. But the polarity of the mutually induced voltage depends on the 
way the inductor coils are wound in relation to the reference direction of 
coil currents. Showing the details of mutually coupled windings is very 
cumbersome. Instead, we use the dot convention to determine the mu-
tually induced voltage polarities. A dot is placed on one terminal of each 
winding, as shown in Fig. 6.25. These dots carry the sign information, so 
we can draw the inductor coils schematically rather than showing how 
they wrap around a core structure.

The dot convention can be summarized as follows:

1

2
L1vg

R1

L2 R2

M

Figure 6.23 ▲ Two magnetically coupled coils.

1

2
vg

R1

R2L1 L2i1 i2

M

Figure 6.24 ▲ Coil currents i1 and i2 used to de-
scribe the circuit shown in Fig. 6.23.

1

2
vg

R1

R2L1 L2 i2i1

M

Figure 6.25 ▲ The circuit of Fig. 6.24 with dots 
added to the coils indicating the polarity of the 
 mutually induced voltages.DOT CONVENTION FOR MAGNETICALLY  

COUPLED INDUCTOR COILS

When the reference direction for a current enters the dot-
ted terminal of a coil, the reference polarity of the volt-
age that it induces in the other coil is positive at its dotted 
terminal.

Or, stated alternatively,
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Usually, dot markings will be provided for you in the circuit diagrams 
in this text, as they are in Fig. 6.25. Let’s use the dot convention to com-
plete Step 3 in the mesh current method. Start with the mesh on the left in 
Fig. 6.25 and sum the voltages around the mesh in the direction of the i1 
mesh current to get

-vg +  i1R1 +  L1
di1

dt
- M 

di2

dt
= 0,

The first three terms in the sum, including their signs, should be familiar 
to you. Look at the fourth term: note that the i2 current enters the undot-
ted terminal of the L2 inductor and creates a mutually induced voltage 
across the L1 inductor that is positive at its undotted terminal. This is a 
voltage rise with respect to the direction of i1, so the sign of M di2>dt in the 
sum is negative.

Now consider the mesh on the right in Fig. 6.25, and sum the voltages 
around the mesh in the direction of the i2 mesh current to get

i2R2 + L2 
di2

dt
- M 

di1

dt
= 0.

Look at the third term in the sum: the i1 current enters the dotted terminal 
of the L1 inductor and creates a mutually induced voltage across the L2 
inductor that is positive at its dotted terminal. This is a voltage rise with 
respect to the direction of i2, so the sign of M di1>dt in the sum is negative. 
Figure 6.26 shows the self- and mutually induced voltages across both in-
ductor coils, together with their polarity marks.

ALTERNATE DOT CONVENTION

When the reference direction for a current leaves the 
dotted terminal of a coil, the reference polarity of the 
voltage that it induces in the other coil is negative at its 
dotted terminal.

1

2
vg

L1

R1

M
di2
dt
1

2

di1
dt

L1

2

1

i1

L2
R2M

di1
dt
1

2

di2
dt

L2

2

1

i2
M

Figure 6.26 ▲ The self- and mutually induced voltages 
 appearing across the coils shown in Fig. 6.25.

(Step 4)

(Step 2)

A

B

C

D

Arbitrarily
dotted
terminal
(Step 1)

iD

iA

fD

Figure 6.27 ▲ A set of coils showing a method for 
determining a set of dot markings.

The Procedure for Determining Dot Markings
If the polarity dots are not given, you can often determine their locations 
by examining the physical configuration of the actual circuit or by testing 
it in the laboratory. We present both of these procedures.

The first procedure assumes that we know the physical arrangement 
of the two coils and the mode of each winding in a magnetically coupled 
circuit. Use the following six steps, applied here to Fig. 6.27, to create the 
dot markings:

1. Arbitrarily select one terminal—say, the D terminal—of one coil 
and mark it with a dot.
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2. Assign a current into the dotted terminal and label it iD.

3. Use the right-hand rule1 to determine the direction of the magnetic 
field established by iD inside the coupled coils and label this field fD.

4. Arbitrarily pick one terminal of the second coil—say, terminal A—
and assign a current into this terminal, showing the current as iA.

5. Use the right-hand rule to determine the direction of the flux estab-
lished by iA inside the coupled coils and label this flux fA.

6. Compare the directions of the two fluxes fD and fA. If the fluxes 
have the same reference direction, place a dot on the terminal of 
the second coil where the test current 1 iA2  enters. If the fluxes have 
different reference directions, place a dot on the terminal of the 
second coil where the test current leaves. In Fig. 6.27, the fluxes fD 
and fA have the same reference direction, and therefore a dot goes 
on terminal A.

The second procedure determines the relative polarities of magneti-
cally coupled coils experimentally. This method is used when it is impos-
sible to determine how the coils are wound on the core. One experimental 
method is to connect a dc voltage source, a resistor, a switch, and a dc volt-
meter to the pair of coils, as shown in Fig. 6.28. The shaded box covering the 
coils implies that physical inspection of the coils is not possible. The resistor 
R limits the magnitude of the current supplied by the dc voltage source.

Begin by marking the coil terminal connected to the positive terminal 
of the dc source, via the switch and limiting resistor, with a dot, as shown 
in Fig. 6.28. When the switch is closed, observe the voltmeter deflection. 
If the momentary deflection is upscale, place a dot on the coil terminal 
connected to the voltmeter’s positive terminal. If the deflection is down-
scale, place a dot on the coil terminal connected to the voltmeter’s nega-
tive terminal.

Example 6.8 constructs the equations for a circuit with magnetically 
coupled coils, using the dot convention.

1See discussion of Faraday’s law on page 231.

2

1

R

Switch

dc
voltmeter

VBB

1

2

Figure 6.28 ▲ An experimental setup for 
 determining polarity marks.

4 H

5 V 20 V

16 H

8 H

i1

i2igig 60 V

Figure 6.29 ▲ The circuit for Example 6.8.

EXAMPLE 6.8  Finding Mesh-Current Equations for a  
Circuit with Magnetically Coupled Coils

a) Use the mesh-current method to write equations 
for the circuit in Fig. 6.29 in terms of the currents 
i1 and i2.

b) Verify that if there is no energy stored in the cir-
cuit at t = 0 and if ig = 16 - 16e-5t A, the solu-
tions for i1 and i2 are

 i1 = 4 +  64e-5t - 68e-4t A,

 i2 = 1 - 52e-5t +  51e-4t A.

Solution

a) Follow the steps in Analysis Method 4.6. Steps 
1 and 2 identify the meshes and label the mesh 
currents, as shown in Fig. 6.29. In Step 3, we write 

a KVL equation for each mesh where the current is 
unknown. Summing the voltages around the i1 mesh 
yields

4
di1

dt
+ 8

d
dt

 1 ig -  i22 + 201 i1 - i22 + 51 i1 - ig2 = 0.
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Look carefully at the second term in this equa-
tion and make certain you understand how the 
dot convention was used. Note that the voltage 
across the 4 H coil due to the current 1 ig - i22 , 
that is, 8d1 ig -  i22 >dt, is a voltage drop in the 
direction of i1, so this term has a positive sign.
The KVL equation for the i2 mesh is

201 i2 - i12 +  60i2 + 16
d
dt

 1 i2 - ig2 - 8
di1

dt
= 0.

Look carefully at the fourth term in this equa-
tion and make certain you understand how the 
dot convention was used. The voltage induced in 
the 16 H coil by the current i1, that is, 8 di1>dt, is a 
voltage rise in the direction of i2, so this term has 
a negative sign.

b) To check the validity of i1 and i2, we begin by 
testing the initial and final values of i1 and i2. We 
know by hypothesis that i1102 = i2102 = 0. 
From the given solutions we have

i1102 = 4 + 64 - 68 = 0,

i2102 = 1 - 52 + 51 = 0.

Now we observe that as t approaches infinity, the 
source current 1 ig2  approaches a constant value 
of 16 A, and therefore the magnetically coupled 
coils behave as short circuits. Hence, at t = ∞  
the circuit reduces to that shown in Fig. 6.30. 
From Fig. 6.30 we see that at t = ∞  the three 
resistors are in parallel across the 16 A source. 
The equivalent resistance is 3.75 Ω, and thus the 

voltage across the 16 A current source is 60 V. 
Write a KCL equation at node a, using Ohm’s 
law to find the currents in the 20 Ω and 60 Ω re-
sistors to give

i1(∞) =
60
20

+
60
60

= 4 A.

Using Ohm’s law,

i2(∞) =
60
60

= 1 A.

These values agree with the final values pre-
dicted by the solutions for i1 and i2:

i11 ∞ 2 = 4 + 64102 - 68102 = 4 A,

i21 ∞ 2 = 1 - 52102 + 51102 = 1 A.

Finally, we check the solutions to see if they satisfy the 
differential equations derived in (a). We will leave this 
final check to the reader via Problem 6.36.

5 V 20 V

60 V

a

i1

i216 A

Figure 6.30 ▲ The circuit of Example 6.8 when 
t = ∞ .

Objective 4—Use the dot convention to write mesh-current equations for mutually coupled coils

 6.6 a) Write a set of mesh-current equations for the 
circuit in Example 6.8 if the dot on the  
4 H inductor is at the right-hand terminal, 
the reference direction of ig is reversed, and 
the 60 Ω resistor is increased to 780 Ω.

b) Verify that if there is no energy stored in the 
circuit at t = 0, and if  ig = 1.96 - 1.96e-4t A, 
the solutions to the differential equations 
derived in (a) of this Assessment Problem are

 i1 = -0.4 - 11.6e-4t +  12e-5t A,

 i2 = -0.01 - 0.99e-4t +  e-5t A.

Answer: (a) 41di1>dt2 + 25i1 + 81di2>dt2 - 20i2
     = -5ig - 81dig>dt2
      and

81di1>dt2 - 20i1 + 161di2>dt2 + 800i2

= -16(dig>dt);

(b) verification.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 6.39.
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6.5 A Closer Look at Mutual 
Inductance

Here we take a closer look at self-inductance, and then we turn to a 
deeper inspection of mutual inductance, examining the limitations and as-
sumptions made in Section 6.4.

A Review of Self-Inductance
Michael Faraday, who studied inductance in the early 1800s, envisioned a 
magnetic field consisting of lines of force surrounding the current- carrying 
conductor. Picture these lines of force as energy-storing elastic bands that 
close on themselves. As the current increases and decreases, the elastic 
bands (that is, the lines of force) spread and collapse about the conductor. 
The voltage induced in the conductor is proportional to the number of 
lines that collapse into, or cut, the conductor. This image of induced volt-
age is expressed by Faraday’s law:

 v =
dl
dt

 , (6.18)

where l is the flux linkage, measured in weber-turns.
So, how is Faraday’s law related to inductance as defined in Section 

6.1? Let’s look at the coil depicted in Fig. 6.31. The lines threading the 
N turns, labeled f, represent the magnetic lines of force that make up 
the magnetic field, which has a spatial orientation and a strength. Use the 
right-hand rule to determine the spatial orientation: When the fingers of 
the right hand are wrapped around the coil and point in the direction of 
the current, the thumb points in the direction of that portion of the mag-
netic field inside the coil.

To determine the magnetic field strength, begin by defining flux link-
age, introduced in Faraday’s law (Eq. 6.18). The flux linkage is the prod-
uct of the magnetic field, f, measured in webers (Wb), and the number of 
turns linked by the field, N:

l = Nf.

The magnitude of the flux, f, is related to the magnitude of the coil cur-
rent by the relationship

f = �Ni

where N is the number of turns on the coil, and � is the permeance 
of the space occupied by the flux. When the space containing the flux 
is made up of magnetic materials (such as iron, nickel, and cobalt), 
the permeance varies with the flux, giving a nonlinear relationship be-
tween f and i. But when the space containing the flux is composed of 
nonmagnetic materials, the permeance is constant, giving a linear rela-
tionship between f and i. Note that the flux is also proportional to the 
number of turns on the coil.

N turns

ff
1

2

v

i

Figure 6.31 ▲ Representation of a magnetic field 
linking an N-turn coil.
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Here, we assume that the core material—the space containing the 
flux—is nonmagnetic. Then, substituting the expressions for flux (f) and 
flux linkage (l) into Eq. 6.18 takes us from Faraday’s law to the inductor 
equation:

 v =
dl
dt

=
d(Nf)

dt

 = N
df

dt
= N

d
dt

 (�Ni)

  = N 2�
di
dt

= L
di
dt

.  (6.19)

The polarity of the induced voltage in the circuit in Fig. 6.31 depends 
on the current creating the magnetic field. For example, when i is increas-
ing, di>dt is positive and v is positive, so energy is required to establish 
the magnetic field. The product vi gives the rate at which energy is stored 
in the field. When i is decreasing, di>dt is negative, v is negative, and the 
field collapses about the coil, returning energy to the circuit.

Given this deeper look at self-inductance, we now reexamine mutual 
inductance.

The Concept of Mutual Inductance
Figure 6.32 shows two magnetically coupled coils. Use the procedure 
presented in Section 6.4 to verify that the dot markings on the two coils 
agree with the direction of the coil windings and currents shown. The 
number of turns on each coil are N1 and N2, respectively. Coil 1 is ener-
gized by a time-varying current source that establishes the current i1 in 
the N1 turns. Coil 2 is not energized and is open. The coils are wound on 
a nonmagnetic core. The flux produced by the current i1 can be divided 
into two components, labeled f11 and f21. The flux component f11 is 
the flux produced by i1 that links only the N1 turns. The component f21 
is the flux produced by i1 that links both the N2 and N1 turns. The first 
digit in the flux subscript gives the coil number, and the second digit 
refers to the coil current. Thus, f11 is a flux linking coil 1 and produced 
by a current in coil 1, whereas f21 is a flux linking coil 2 and produced 
by a current in coil 1.

The total flux linking coil 1 is f1, the sum of f11 and f21:

f1 = f11 + f21.

The flux f1 and its components f11 and f21 are related to the coil current 
i1 as follows:

 f1 = �1N1i1,

 f11 = �11N1i1,

 f21 = �21N1i1,

where �1 is the permeance of the space occupied by the flux f1, �11 is the 
permeance of the space occupied by the flux f11, and �21 is the permeance 
of the space occupied by the flux f21. Combining these four equations and 
simplifying yields the relationship between the permeance of the space 

N1

f21

f21

N2is

1

v1

2

1

v2

2

i1

f11 f11

Figure 6.32 ▲ Two magnetically coupled coils.
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occupied by the total flux f1 and the permeances of the spaces occupied 
by its components f11 and f21:

 �1 = �11 + �21. (6.20)

We use Faraday’s law to derive expressions for v1 and v2:

 v1 =
dl1

dt
=

d(N1f1)

dt
= N1

d
dt

 (f11 + f21)

   = N 1
2(�11 + �21)

di1

dt
= N 1

2 �1
di1

dt
= L1

di1

dt
, (6.21)

and

 v2 =
dl2

dt
=

d(N2f21)

dt
= N2

d
dt

 (�21N1i1)

 = N2N1�21
di1

dt
= M21

di1

dt
.

The coefficient of di1>dt in the equation for v1 is the self-inductance of 
coil 1. The coefficient of di1>dt in the equation for v2 is the mutual induc-
tance between coils 1 and 2. Thus

 M21 = N2N1�21. (6.22)

The subscript on M specifies an inductance that relates the voltage in-
duced in coil 2 to the current in coil 1.

Figure 6.33 again shows two magnetically coupled coils, but now coil 2 
is energized by a time-varying current source 1 i22  and coil 1 is open. The 
total flux linking coil 2 is

f2 = f22 +  f12.

The flux f2 and its components f22 and f12 are related to the coil current 
i2 as follows:

 f2 = �2N2i2,

 f22 = �22N2i2,

 f12 = �12N2i2.

The voltages v2 and v1 are

 v2 =
dl2

dt
= N 2

2 �2
di2

dt
= L2

di2

dt
 , (6.23)

v1 =
dl1

dt
=

d
dt

 (N1f12) = N1N2�12
di2

dt
= M12

di2

dt
.

The coefficient of mutual inductance that relates the voltage induced in 
coil 1 to the time-varying current in coil 2 is

 M12 = N1N2�12. (6.24)

f22 f22

i2

f12

f12

N1 is
N2

1

v1

2

1

v2

2

Figure 6.33 ▲ The magnetically coupled coils of 
Fig. 6.32, with coil 2 excited and coil 1 open.
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For nonmagnetic materials, the permeances �12 and �21 are equal, so 
from Eqs. 6.22 and 6.24,

M12 = M21 = M.

Hence, for linear circuits with just two magnetically coupled coils, attach-
ing subscripts to the coefficient of mutual inductance is not necessary.

Mutual Inductance in Terms of Self-Inductance
Here we derive the relationship between mutual inductance and self- 
inductance. From Eqs. 6.21 and 6.23,

L1 = N 1
2 �1,

L2 = N 2
2 �2,

so

L1L2 = N 1
2N 2

2  �1�2.

Use Eq. 6.20 and the corresponding expression for �2 to write

L1L2 = N 1
2N 2

2(�11 + �21)(�22 + �12).

But for a linear system, �21 = �12, so the expression for L1L2 becomes

L1L2 = (N1N2�12)
2a1 +

�11

�12
b a1 +

�22

�12
b

 = M2a1 +
�11

�12
b  a1 +

�22

�12
b . (6.25)

Now replace the two terms involving permeances by a single constant, 
defined as

 
1
k2 = a1 +

�11

�12
b  a1 +

�22

�12
b . (6.26)

Substituting Eq. 6.26 into Eq. 6.25 and rearranging yields

M2 = k2L1L2

or

RELATING SELF-INDUCTANCES AND  
MUTUAL INDUCTANCE

 M = k1L1L2, (6.27)

where the constant k is called the coefficient of coupling. From Eq. 6.26,

1
k2 Ú 1 so k … 1.
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In fact, the coefficient of coupling must lie between 0 and 1, or

 0 … k … 1. (6.28)

The coefficient of coupling is 0 when the two coils have no common 
flux; that is, when f12 = f21 = 0. This condition implies that �12 = 0, 
and Eq. 6.26 indicates that 1>k2 =  ∞ , or k = 0. If there is no flux linkage 
between the coils, obviously M is 0.

The coefficient of coupling is equal to 1 when f11 and f22 are 0. This condi-
tion implies that all the flux that links coil 1 also links coil 2, so �11 = �22 = 0, 
which represents an ideal state. In reality, winding two coils so that they share 
precisely the same flux is physically impossible. Magnetic materials (such as 
alloys of iron, cobalt, and nickel) create a space with high permeance and are 
used to establish coefficients of coupling that approach unity. (We say more 
about this important quality of magnetic materials in Chapter 9.)

Energy Calculations
We conclude by calculating the total energy stored in magnetically cou-
pled coils. Along the way, we confirm two observations made earlier: For 
linear magnetic coupling, (1) M12 = M21 = M, and (2) M = k1L1L2, 
where 0 … k … 1.

Look at the circuit shown in Fig. 6.34. Initially, assume that the cur-
rents i1 and i2 are zero and that this zero-current state corresponds to zero 
energy stored in the coils. Then let i1 increase from zero to some arbitrary 
value I1 and compute the energy stored when i1 = I1. Because i2 = 0, the 
total power input into the pair of coils is v1i1, and the energy stored is

L
W1

0
dw = L1L

I1

0
i1di1,

W1 =
1
2

 L1I 1
2.

Now we hold i1 constant at I1 and increase i2 from zero to some arbitrary 
value I2. During this time interval, the voltage induced in coil 2 by i1 is 
zero because I1 is constant. The voltage induced in coil 1 by i2 is M12di2>dt. 
Therefore, the power input to the pair of coils is

p = I1M12
di2

dt
+ i2v2.

The total energy stored in the pair of coils when i2 = I2 is

L
W

W1

dw = L
I2

0
I1M12di2 + L

I2

0
L2i2di2,

or

W = W1 + I1I2M12 +
1
2

 L2I2
2,

 =
1
2

 L1I 1
2 +

1
2

 L2 I 2
2 + I1I2M12. (6.29)

If we reverse the procedure—that is, if we first increase i2 from zero to I2 
and then increase i1 from zero to I1—the total energy stored is

 W =
1
2

 L1I 1
2 +

1
2

 L2 I 2
2 + I1I2M21. (6.30)

L1 L2

i1 i2

2

1

v1

2

1

v2

M

Figure 6.34 ▲ The circuit used to derive the basic 
energy relationships.
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Equations 6.29 and 6.30 express the total energy stored in a pair of  linearly 
coupled coils as a function of the coil currents, the self-inductances, and 
the mutual inductance. Note that the only difference between these equa-
tions is the coefficient of the current product I1I2. We use Eq. 6.29 if i1 is 
established first and Eq. 6.30 if i2 is established first.

When the coupling medium is linear, the total energy stored is the 
same regardless of the order used to establish I1 and I2 because the resul-
tant magnetic flux depends only on the final values of i1 and i2, not on how 
the currents reached their final values. If the resultant flux is the same, 
the stored energy is the same. Therefore, for linear coupling, M12 = M21. 
Also, because I1 and I2 are arbitrary values of i1 and i2, respectively, we 
represent the coil currents by their instantaneous values i1 and i2. Thus, at 
any instant of time, the total energy stored in the coupled coils is

 w(t) =
1
2

 L1 i 1
2 +

1
2

 L2 i2
2 + Mi1i2. (6.31)

We derived Eq. 6.31 by assuming that both coil currents entered dot-
ted terminals. We leave it to you to verify that, if one current enters a 
dotted terminal while the other leaves such a terminal, the algebraic sign 
of the term Mi1i2 reverses. Thus, in general,

ENERGY STORED IN MAGNETICALLY COUPLED COILS

 w(t) =
1
2

 L1i 1
2 +

1
2

 L2 i 2
2 { Mi1i2. (6.32)

We can use Eq. 6.32 to show that M cannot exceed 1L1L2. The mag-
netically coupled coils are passive elements, so the total energy stored can 
never be negative. If w1 t2  can never be negative, Eq. 6.32 indicates that

1
2

 L1i  1
2 +

1
2

 L2 i  2
2 - Mi1i2 Ú 0

when i1 and i2 are either both positive or both negative. The limiting value 
of M occurs when

 
1
2

 L1 i  1
2 +

1
2

 L2 i 2
2 - Mi1i2 = 0. (6.33)

To find the limiting value of M, we add and subtract the term 
i1i21L1L2 to the left-hand side of Eq. 6.33. Doing so generates a term that 
is a perfect square:

 aBL1

2
 i1 - BL2

2
 i2b

2

+ i1i211L1L2 - M2 = 0. (6.34)

The squared term in Eq. 6.34 can never be negative, but it can be zero. 
Therefore, w1 t2 Ú 0 only if

 1L1L2 Ú  M, (6.35)

which is another way of saying that

M = k1L1L2  (0 … k … 1).
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We derived Eq. 6.35 by assuming that i1 and i2 are either both positive or 
both negative. However, we get the same result if i1 and i2 have opposite 
signs because in this case we obtain the limiting value of M by selecting 
the plus sign in Eq. 6.32.

Work through Example 6.9 to practice calculating the coupling coeffi-
cient and the stored energy for magnetically coupled coils.

EXAMPLE 6.9  Calculating the Coupling Coefficient and Stored Energy for 
Magnetically Coupled Coils

The mutual inductance and self-inductances of the 
coils in Fig. 6.34 are M = 40 mH, L1 = 25 mH, and 
L2 = 100 mH.

a) Calculate the coupling coefficient.

b) Calculate the energy stored in the coupled coils 
when i1 = 10 A and i2 = 15 A.

c) If the coupling coefficient is increased to 1 and 
i1 = 10 A, what value of i2 results in zero stored 
energy?

Solution

a) k =
M1L1L2

=
0.04110.0252 10.12 = 0.8.

b) w =
1
2

 10.0252 1102 2 +
1
2

 10.12 1152 2

+ 10.042 1102 1152 =  18.5 J.

c) When k = 1, M = 110.025210.12 = 0.05 = 50 mH.  
The energy in the coils is now

1
2

 10.0252 1102 2 +
1
2

 10.12 1 i22 2 + 10.052 1102 1 i22 = 0

so i2 must satisfy the quadratic equation

0.05i  2
2 + 0.5i2 + 1.25 = 0.

Use the quadratic formula to find i2:

i2 =
-0.5 { 20.52 - 410.052 11.252

210.052 = -5 A.

You should verify that the energy is zero for this 
value of i2, when k = 1.

Objective 4—Understand the concept of mutual inductance

 6.7 Consider the magnetically coupled coils de-
scribed in Example 6.9. Assume that the physi-
cal arrangement of the coils results in �1 = �2. 
If coil 1 has 500 turns, how many turns does coil 
2 have?

Answer:

1000 turns

ASSESSMENT PROBLEM

SELF-CHECK: Assess your understanding of this material by trying Chapter Problems 6.45 and 6.48.

Practical Perspective
Capacitive Touch Screens
Capacitive touch screens are often used in applications where two or 
more simultaneous touch points must be detected. We will discuss 
two designs for a multi-touch screen. The first design employs a grid 
of electrodes, as shown in Fig. 6.35. When energized, a small parasitic 
capacitance, Cp, exists between each electrode strip and ground, as 
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shown in Fig. 6.36(a). When the screen is touched, say at position  
x, y on the screen, a second capacitance exists due to the transfer of 
a small amount of charge from the screen to the human body, which 
acts like a conductor. This introduces a second capacitance at the 
point of touch with respect to ground, as shown in Fig. 6.36(b).

A touch-screen controller is continually monitoring the capaci-
tance between the electrodes in the grid and ground. If the screen is 
untouched, the capacitance between every electrode in the x-grid and 
ground is Cp; the same is true for the capacitance between every elec-
trode in the y-grid and ground.

When the screen is touched at a single point, Ct and Cp combine in 
parallel. The equivalent capacitance between the x-grid electrode clos-
est to the touch point and ground is now

Ctx = Ct + Cp.

Likewise, the equivalent capacitance between the y-grid electrode clos-
est to the touch point and ground is now

Cty = Ct + Cp.

Thus, a screen touch increases the capacitance between the 
 electrodes and ground for the x- and y-grid electrodes closest to the 
touch point.

What happens when there are two simultaneous points where the 
screen is touched? Assume that the first touch point has coordinates 
x1, y1 and the second touch point has coordinates x2, y2. Now there are 
four screen locations that correspond to an increase in capacitance: 
x1, y1; x1, y2; x2, y1; and x2, y2. Two of those screen locations match the 
two touch points, and the other two points are called “ghost” points 
because the screen was not touched at those points. Therefore, this 
method for implementing a capacitive touch screen cannot accurately 
identify more than a single touch point.

Most modern capacitive touch screens do not use the “self- 
capacitance” design. Instead of measuring the capacitance between 
each x-grid electrode and ground, and each y-grid electrode and 
ground, the capacitance between each x-grid electrode and each y-grid 
electrode is measured. This capacitance is known as “mutual” capaci-
tance and is shown in Fig. 6.37(a).

When the screen is touched, say at position x, y on the screen, a 
second capacitance again exists due to the transfer of a small amount 
of charge from the screen to the human body. The second capacitance  
exists at the point of touch with respect to ground, as shown in  
Fig. 6.37(b). Therefore, whenever there is a change in the mutual 
 capacitance, Cmxy, the screen touch point can be uniquely identified 
as x, y. If the screen is touched at the points x1, y1 and x2, y2 then 
precisely two mutual capacitances change: Cmx1y1 and Cmx2y2. There 
are no “ghost” points identified, as there were in the self- capacitance 
design. The mutual capacitance design produces a multi-touch 
screen capable of identifying two or more touch points uniquely and 
accurately.

SELF-CHECK: Assess your understanding of the Practical Perspective 
by solving Chapter Problems 6.51–6.53.

a)

b)

Cp

Cp

Electrode

Electrode

Ct

Figure 6.36 ▲ (a) Parasitic capacitance between 
electrode and ground with no touch; (b) Additional 
capacitance introduced by a touch.

Y3
Y2

Y1

Y0

X0 X1 X2 X3

Figure 6.35 ▲ Multi-touch screen with grid of 
electrodes.

x-grid electrode y-grid electrode

x-grid electrode y-grid electrode

b)

a)

Cmxy

Ct

Cmxy

Figure 6.37 ▲ (a) Mutual capacitance between an 
x-grid and a y-grid electrode; (b) Additional capaci-
tance introduced by a touch.
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Summary

• Inductance is a linear circuit parameter that relates the 
voltage induced by a time-varying magnetic field to the 
current producing the field. (See page 212.)

• Capacitance is a linear circuit parameter that relates the 
current induced by a time-varying electric field to the 
voltage producing the field. (See page 217.)

• Inductors and capacitors are passive elements; they can 
store and release energy, but they cannot generate or 
dissipate energy. (See page 210.)

• The instantaneous power at the terminals of an inductor 
or capacitor can be positive or negative, depending on 
whether energy is being delivered to or extracted from 
the element.

• An inductor:

• does not permit an instantaneous change in its termi-
nal current,

• does permit an instantaneous change in its teminal 
voltage, and

• behaves as a short circuit in the presence of a con-
stant terminal current. (See page 212.)

• A capacitor:

• does not permit an instantaneous change in its termi-
nal voltage,

• does permit an instantaneous change in its terminal 
current, and

• behaves as an open circuit in the presence of a con-
stant terminal voltage. (See page 218.)

• Equations for voltage, current, power, and energy in  
ideal inductors and capacitors are given in Table 6.1. 
(See page 226.)

• Inductors in series or in parallel can be replaced 
by an equivalent inductor. Capacitors in series or 
in parallel can be replaced by an equivalent capac-
itor. The equations are summarized in Table 6.1. The 
 table   includes the initial conditions for series and 
parallel equivalent circuits involving inductors and 
capacitors.

• Mutual inductance, M, is the circuit parameter relating 
the voltage induced in one circuit to a time-varying cur-
rent in another circuit. Specifically,

v1 = L1
di1

dt
+  M12

di2

dt

v2 = M21
di1

dt
+ L2

di2

dt
,

where v1 and i1 are the voltage and current in circuit 1, 
and v2 and i2 are the voltage and current in circuit 2. For 
coils wound on nonmagnetic cores, M12 = M21 = M. 
(See page 227.)

• The dot convention establishes the polarity of mutually 
induced voltages:

When the reference direction for a current enters the 
dotted terminal of a coil, the reference polarity of the 
voltage that the current induces in the other coil is 
positive at its dotted terminal.

Or, alternatively,

When the reference direction for a current leaves the 
dotted terminal of a coil, the reference polarity of the 
voltage that the current induces in the other coil is 
negative at its dotted terminal.

(See page 227.)

• The relationship between the self-inductance of 
each winding and the mutual inductance between 
windings is

M = k1L1L2.

The coefficient of coupling, k, is a measure of the degree 
of magnetic coupling. By definition, 0 … k … 1. (See 
page 234.)

• The energy stored in magnetically coupled coils in a lin-
ear medium is related to the coil currents and inductances  
by the relationship

w =
1
2

 L1i  1
2 +

1
2

 L2i  2
2 {  Mi1i2.

(See page 236.)
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c) Show that the total energy extracted from the in-
ductor is equal to the total energy stored.

 6.5 The current in a 300 mH inductor is

 i = 100 mA,                 t … 0;

 i = (B1  cos  220t + B2  sin  220t)e-60t A,   t Ú 0.

The voltage across the inductor (passive sign con-
vention) is 5 V at t = 0. Calculate the power at the 
terminals of the inductor at t = 30 ms. State wheth-
er the inductor is absorbing or delivering power.

 6.6 Evaluate the integral

L
∞

0
p dt

for Example 6.2. Comment on the significance of 
the result.

 6.7 The voltage at the terminals of the 750 mH inductor 
in Fig. P6.7(a) is shown in Fig. P6.7(b). The inductor 
current i is known to be zero for t … 0.

a) Derive the expressions for i for t Ú 0.

b) Sketch i versus t for 0 … t … ∞ .

Figure P6.7

vs (mV)

t (ms)

150

0
(b)

50
(a)

750 mHvs
1

2

i

 6.8 The current in the 50 mH inductor in Fig. P6.8 is 
known to be 100 mA for t 6 0. The inductor volt-
age for t Ú 0 is given by the expression

 vL(t) = 2e-100t V,   0 + … t … 100 ms

 vL(t) = -2e-100(t - 0.1) V,   100 ms … t 6 ∞

Sketch vL(t) and iL(t) for 0 … t 6 ∞ .

Figure P6.8

50 mHvL(t) 1

2

iL(t)

 6.9 The current in and the voltage across a 10 H inductor 
are known to be zero for t … 0. The voltage across the 
inductor is given by the graph in Fig. P6.9 for t Ú 0.

PSPICE

MULTISIM

Section 6.1

 6.1 The current in a 150 mH inductor is known to be

iL = 25te-500t A for t Ú 0.

a) Find the voltage across the inductor for t 7 0. 
(Assume the passive sign convention.)

b) Find the power (in microwatts) at the terminals 
of the inductor when t = 5 ms.

c) Is the inductor absorbing or delivering power at 
5 ms?

d) Find the energy (in microjoules) stored in the 
inductor at 5 ms.

e) Find the maximum energy (in microjoules) 
stored in the inductor and the time (in milli-
seconds) when it occurs.

 6.2 The triangular current pulse shown in Fig. P6.2 is 
applied to a 500 mH inductor.

a) Write the expressions that describe i(t) in 
the four intervals t 6 0, 0 … t … 25 ms, 
25 ms … t …  50 ms, and t 7 50 ms.

b) Derive the expressions for the inductor volt-
age, power, and energy. Use the passive sign 
 convention.

Figure P6.2

100

i (mA)

250 50 t (ms)

 6.3 The current in a 50 mH inductor is known to be

 i = 120 mA,            t … 0;

  i = A1e
-500t + A2e

-2000tA,    t Ú 0.

The voltage across the inductor (passive sign con-
vention) is 3 V at t = 0.

a) Find the expression for the voltage across the in-
ductor for t 7 0.

b) Find the time, greater than zero, when the power 
at the terminals of the inductor is zero.

 6.4 Assume in Problem 6.3 that the value of the voltage 
across the inductor at t = 0 is -18 V instead of 3 V.

a) Find the numerical expressions for i and v for 
t Ú 0.

b) Specify the time intervals when the inductor is 
storing energy and the time intervals when the 
inductor is delivering energy.

PSPICE

MULTISIM

PSPICE

MULTISIM

Problems
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Figure P6.12

ab

10 H5 mV
1

2 1
2 Voltmeter

Section 6.2

 6.13 The voltage across an 8 mF capacitor is known to be

vc = 600te - 2500t V for t Ú 0.

a) Find the current through the capacitor for t 7 0. 
Assume the passive sings convention.

b) Find the power at the terminals of the capacitor 
when t = 100 ms.

c) Is the capacitor absorbing or delivering power 
at t = 100 ms.

d) Find the energy stored in the capacitor at 
t = 100 ms.

e) Find the maximum energy stored in the capaci-
tors and the time when the maximum occurs.

 6.14 The triangular voltage pulse shown in Fig. P6.14 is 
applied to a 200 mF capacitor.

a) Write the expressions that describe v(t) in the five 
time intervals t 6 0, 0 … t … 2 s, 2 s … t … 6 s, 
6 s … t … 8 s, and t 7 8 s.

b) Derive the expressions for the capacitor current, 
power, and energy for the time intervals in part 
(a). Use the passive sign convention.

c) Identify the time intervals between 0 and 8 s 
when power is being delivered by the capacitor. 
Repeat for the time intervals when power is be-
ing absorbed by the capacitor.

Figure P6.14

0

20

–20

2 4 6 8
t (s)

v (V)

 6.15 The voltage across the terminals of a 10 mF capaci-
tor is

v = b70 V, t … 0;
(A1e

-1400t + A2te
-1400t ) V, t Ú 0.

The initial current in the capacitor is 150 mA. 
 Assume the passive sign convention.

PSPICE

MULTISIM

a) Derive the expression for the current as a func-
tion of time in the intervals 0 … t … 25 ms, 
25 ms … t … 75 ms, 75 ms … t … 125 ms, 
125 ms … t … 150 ms, and 150 ms … t 6 ∞ .

b) For t 7 0, what is the current in the inductor 
when the voltage is zero?

c) Sketch i versus t for 0 … t 6 ∞ .

Figure P6.9

25 50 75 125 175
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v (V)

20

0

220

150100

 6.10 a) Find the inductor current in the circuit in 
Fig. P6.10 if v = 20 cos 80t V, L = 100 mH, and 
i(0) = 0 A.

b) Sketch v, i, p, and w versus t. In making 
these sketches, use the format used in Fig. 6.8.
Plot over one complete cycle of the voltage 
waveform.

c) Describe the subintervals in the time interval be-
tween 0 and 8p ms when power is being absorbed 
by the inductor. Repeat for the sub intervals when 
power is being delivered by the inductor.

Figure P6.10

Lv

1

2

i

 6.11 The current in a 100 mH inductor is known to be -10 A 
for t … 0 and 1 -10 cos 400t - 15 sin 400t2e-200t A
for t Ú 0. Assume the passive sign convention.

a) At what instant of time is the voltage across the 
inductor maximum?

b) What is the maximum voltage?

 6.12 In the circuit in Fig. P6.12, there was no energy stored 
initially in the 10 H inductor when it was placed 
across the terminals of the voltmeter. At t = 0 the 
inductor was switched instantaneously to position b 
where it remained for 1.6 s before returning instan-
taneously to position a. The d’Arsonval voltmeter 
has a full-scale reading of 20 V and a sensitivity of 
1000 Ω >V. What will the reading of the voltmeter 
be at the instant the switch returns to position a if 
the inertia of d’Arsonval movement is negligible?

PSPICE

MULTISIM
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c) Check the energy expression within each inter-
val by selecting a time within the interval and 
seeing whether the energy equation gives the 
same result as 1

2 Cv

2. Use 10 and 30 ms as test 
points.

 6.19 The initial voltage on the 0.5 mF capacitor shown in 
Fig. P6.19(a) is -10 V. The capacitor current has the 
waveform shown in Fig. P6.19(b).

a) How much energy, in microjoules, is stored in the 
capacitor at t = 200 ms?

b) Repeat (a) for t = ∞.

Figure P6.19
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1 2v

i
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 6.20 The current shown in Fig. P6.20 is applied to a 3 mF 
capacitor. The initial voltage on the capacitor is zero.

a) Find the charge on the capacitor at t = 6 ms.

b) Find the voltage on the capacitor at t = 10 ms.

c) How much energy is stored in the capacitor by 
this current?

Figure P6.20
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 6.21 The rectangular-shaped current pulse shown in 
Fig. P6.21 is applied to a 0.1 mF capacitor. The initial 
voltage on the capacitor is a 15 V drop in the refer-
ence direction of the current. Derive the expression 
for the capacitor voltage for the time intervals in 
(a)–(d).

PSPICE

MULTISIM

PSPICE

MULTISIM

a) What is the initial energy stored in the  capacitor?

b) Evaluate the coefficients A1 and A2.

c) What is the expression for the capacitor current?

 6.16 A 100 mF capacitor is subjected to a voltage pulse 
having a duration of 4 s. The pulse is described by 
the following equations:

vc(t) = •
5t3 V,  0 … t … 2 s;
-5(t - 4 )3 V, 2 s … t … 4s;

 

0 elsewhere.

Sketch the current pulse that exists in the capacitor 
during the 4 s interval.

 6.17 The voltage at the terminals of the capacitor in 
Fig. 6.10 is known to be

v = b50 V, t … 0;
20 + 4e-300t (5 cos 1000t + sin 1000t  ) V, t Ú 0.

Assume C = 125 mF.

a) Find the current in the capacitor for t 6 0.

b) Find the current in the capacitor for t 7 0.

c) Is there any instantaneous change in the voltage 
across the capacitor at t = 0?

d) Is there an instantaneous change in the current 
in the capacitor at t = 0?

e) How much energy (in millijoules) is stored in the 
capacitor at t = ∞?

 6.18 The expressions for voltage, power, and energy 
derived in Example 6.5 involved both integration 
and manipulation of algebraic expressions. As an 
engineer, you cannot accept such results on faith 
alone. That is, you should develop the habit of ask-
ing yourself, “Do these results make sense in terms 
of the known behavior of the circuit they purport 
to describe?” With these thoughts in mind, test the 
expressions of Example 6.5 by performing the fol-
lowing checks:

a) Check the expressions to see whether the volt-
age is continuous in passing from one time inter-
val to the next.

b) Check the power expression in each interval by 
selecting a time within the interval and seeing 
whether it gives the same result as the corre-
sponding product of v and i. For example, test at 
10 and 30 ms.

PSPICE

MULTISIM
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 6.24 The two parallel inductors in Fig. P6.24 are con-
nected across the terminals of a black box at t = 0. 
The resulting voltage v for t 7 0 is known to be 
64e-4t V. It is also known that i1(0) = - 10 A and 
i2(0) = 5 A.

a) Replace the original inductors with an equiva-
lent inductor and find i(t) for t Ú 0.

b) Find i1(t) for t Ú 0.

c) Find i2(t) for t Ú 0.

d) How much energy is delivered to the black box 
in the time interval 0 … t 6 ∞?

e) How much energy was initially stored in the par-
allel inductors?

f) How much energy is trapped in the ideal 
 inductors?

g) Show that your solutions for i1 and i2 agree with 
the answer obtained in (f).

Figure P6.24

Black
box

i(t)

i1(t) 4 H i2(t) 16 H
t 5 0

v

2

1

 6.25 The three inductors in the circuit in Fig. P6.25 are 
connected across the terminals of a black box at 
t = 0. The resulting voltage for t 7 0 is known to be

vo = 500e - 100t V.

If i1(0) = -6 A and i2(0) = 1 A, find

a) io(0);

b) io(t), t Ú 0;

c) i1(t), t Ú 0;

d) i2(t), t Ú 0;

e) the initial energy stored in the three inductors;

f) the total energy delivered to the black box; and

g) the energy trapped in the ideal inductors.

Figure P6.25

Black
box

1

vo

2

t 5 0
4 Hi21 Hi1

io

4.2 H

a) 0 … t … 10 ms;

b) 10 ms … t … 20 ms;

c) 20 ms … t … 40 ms

d) 40 ms … t 6  ∞

e) Sketch v(t) over the interval -10 ms … t …  50 ms.

Figure P6.21

100

250

160

100

20 30 40

i (mA)

t (ms)

Section 6.3

 6.22 Assume that the initial energy stored in the induc-
tors of Figs. P6.22(a) and (b) is zero. Find the equiv-
alent inductance with respect to the terminals a, b.

Figure P6.22

12 mH
(a)

8 mH
a

b

4 mH

7 mH

20 mH 60 mH

15 mH
8 mH

25 mH
(b)

30 mH
30 mH 75 mH

8 mH

12 mH
20 mH

40 mH15 mH

a

b

 6.23 Use realistic inductor values from Appendix H to con-
struct series and parallel combinations of inductors to 
yield the equivalent inductances specified below. Try 
to minimize the number of inductors used. Assume 
that no initial energy is stored in any of the inductors.

a) 8 mH;

b) 45 mH;

c) 180 mH.
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t = 0 . The resulting current i(t) for t 7 0 is known 
to be 800e-25tmA.

a) Replace the original capacitors with an equiva-
lent capacitor and find vo(t) for t Ú 0.

b) Find v1(t) for t Ú 0.

c) Find v2(t) for t Ú 0.

d) How much energy is delivered to the black box 
in the time interval 0 … t 6 ∞?

e) How much energy was initially stored in the se-
ries capacitors?

f) How much energy is trapped in the ideal capac-
itors?

g) Show that the solutions for v1 and v2 agree with 
the answer obtained in (f).

Figure P6.31

Black
box

i(t)

2

1

5 V

25 V

2 mF

8 mF

2

1

v1

1

2

2

1

v2

1

vo

2t 5 0

 6.32 The four capacitors in the circuit in Fig. P6.32 are con-
nected across the terminals of a black box at t = 0. 
The resulting current ib for t 7 0 is known to be

ib = -5e-50t mA.

If  va(0) = -20 V,  vc(0) = -30 V  and  vd(0) = 250 V, 
find the following for t Ú 0: (a) vb(t), (b) va(t), 
(c) vc(t), (d) vd(t), (e) i1(t), and (f) i2(t).

Figure P6.32

Black
box

2

vb

1

ib

t 5 04 mF

va1 2

vc2 1

800 nF

2 mF

i21200 nF i1

2

vd

1

 6.33 For the circuit in Fig. P6.32, calculate

a) the initial energy stored in the capacitors;

b) the final energy stored in the capacitors;

 6.26 For the circuit shown in Fig. P6.25, how many mil-
liseconds after the switch is opened is the energy 
delivered to the black box 80% of the total energy 
delivered?

 6.27 Find the equivalent capacitance with respect to the 
terminals a, b for the circuits shown in Fig. P6.27.

Figure P6.27

10 nF

8 nF

2 40 V 1

2 20 V 1

48 nF

2 30 V 1

16 nF

5 nF10 nF

2 5 V 1

10 V

2

1

a

b

5 V

36 mF

12 mF
18 mF24 mF

30 mF

5 mF

2 V

15 mF

8 V

10 V

20 V 11 2

1

1 2

1

2

2

2

 6.28 Use realistic capacitor values from Appendix H to 
construct series and parallel combinations of capac-
itors to yield the equivalent capacitances specified 
below. Try to minimize the number of capacitors 
used. Assume that no initial energy is stored in any 
of the capacitors.

a) 480 pF;

b) 600 nF;

c) 120 mF.

 6.29 Derive the equivalent circuit for a series connection 
of ideal capacitors. Assume that each capacitor has 
its own initial voltage. Denote these initial voltages 
as v1(t0), v2(t0), and so on. (Hint: Sum the voltages 
across the string of capacitors, recognizing that the 
series connection forces the current in each capaci-
tor to be the same.)

 6.30 Derive the equivalent circuit for a parallel connec-
tion of ideal capacitors. Assume that the initial volt-
age across the paralleled capacitors is v(t0). (Hint: 
Sum the currents into the string of capacitors, recog-
nizing that the parallel connection forces the volt-
age across each capacitor to be the same.)

 6.31 The two series-connected capacitors in Fig. P6.31 
are connected to the terminals of a black box at 
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a) Can you find vo without having to differentiate 
the expressions for the currents? Explain.

b) Derive the expression for vo.

c) Check your answer in (b) using the appropriate 
current derivatives and inductances.

 6.38 Let vg represent the voltage across the current 
source in the circuit in Fig. 6.29. The reference for 
vg is positive at the upper terminal of the current 
source.

a) Find vg as a function of time when 
ig = 16 - 16e-5t A.

b) What is the initial value of vg?

c) Find the expression for the power developed by 
the current source.

d) How much power is the current source develop-
ing when t is infinite?

e) Calculate the power dissipated in each resistor 
when t is infinite.

 6.39 There is no energy stored in the circuit in Fig. P6.39 
at the time the switch is opened.

a) Derive the differential equation that governs 
the behavior of i2 if L1 = 5 H, L2 = 0.2 H, 
M = 0.5 H, and Ro = 10 Ω.

b) Show that when ig = e-10t - 10 A, t Ú 0, the 
differential equation derived in (a) is satisfied 
when i2 = 625e-10t - 250e-50t mA, t Ú 0.

c) Find the expression for the voltage v1 across the 
current source.

d) What is the initial value of v1? Does this make 
sense in terms of known circuit behavior?

Figure P6.39

t 5 0
ig

1

2

v1 L1 L2 Roi2

M

 6.40 a) Show that the two coupled coils in Fig. P6.40 can 
be replaced by a single coil having an inductance 
of Lab = L1 + L2 + 2M. (Hint: Express vab as a 
function of iab.)

b) Show that if the connections to the ter-
minals of the coil labeled L2 are reversed, 
Lab = L1 + L2 - 2M.

Figure P6.40

M

a b
L1 L2

c) the total energy delivered to the black box;

d) the percentage of the initial energy stored that is 
delivered to the black box; and

e) the time, in milliseconds, it takes to deliver 7.5 mJ 
to the black box.

 6.34 At t = 0, a series-connected capacitor and inductor 
are placed across the terminals of a black box, as 
shown in Fig. P6.34. For t 7 0, it is known that

io = 200e-800t -  40e-200t mA.

If vc(0) = 5 V find vo for t Ú 0.

Figure P6.34

t 5 0 Black
box

1

2

vo

150 mH io

1

2

vc 10 mF

 6.35 The current in the circuit in Fig. P6.35 is known to be

io = 5e-2000t(2 cos  4000t +  sin  4000t) A

for t Ú 0 + . Find v1(0 + ) and v2(0 + ).

Figure P6.35

40 V

10 mH5 mFv1

1

2

v2

1

2

io

Section 6.4

 6.36 a) Show that the differential equations derived in 
(a) of Example 6.8 can be rearranged as follows:

4
di1

dt
+ 25i - 8

di2

dt
- 20i2 = 5ig - 8

dig

dt
;

-8
di1

dt
- 20i1 + 16

di2

dt
+ 80i2 = 16

dig

dt
.

b) Show that the solutions for i1, and i2 given in (b) 
of Example 6.8 satisfy the differential equations 
given in part (a) of this problem.

 6.37 Let vo represent the voltage across the 16 H induc-
tor in the circuit in Fig. 6.29. Assume vo is positive at 
the dot. As in Example 6.8, ig = 16 - 16e-5t A.
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Figure P6.43

(a) (b)

1

2

3

1

2
3

4

4

Section 6.5

 6.44 a) Starting with Eq. 6.26, show that the coefficient 
of coupling can also be expressed as

k = Caf21

f1
b af12

f2
b .

b) On the basis of the fractions f21>f1 and f12>f2, 
explain why k is less than 1.0.

 6.45 Two magnetically coupled coils have self- 
inductances of 60 mH and 9.6 mH, respectively. The 
mutual inductance between the coils is 22.8 mH.

a) What is the coefficient of coupling?

b) For these two coils, what is the largest value that 
M can have?

c) Assume that the physical structure of these cou-
pled coils is such that �1 = �2. What is the turns 
ratio N1>N2 if N1 is the number of turns on the 
60 mH coil?

 6.46 Two magnetically coupled coils are wound on a 
nonmagnetic core. The self-inductance of coil 1 is 
288 mH, the mutual inductance is 90 mH, the coef-
ficient of coupling is 0.75, and the physical structure 
of the coils is such that �11 = �22.

a) Find L2 and the turns ratio N1>N2.

b) If N1 = 1200, what is the value of �1 and �2?

 6.47 The self-inductances of the coils in Fig. 6.34 are 
L1 = 18 mH and L2 = 32 mH. If the coefficient of 
coupling is 0.85, calculate the energy stored in the 
system in millijoules when (a) i1 = 6 A, i2 = 9 A; 
(b) i1 = -6 A, i2 = -9 A; (c) i1 = -6 A, i2 = 9 A; 
and (d) i1 = 6 A, i2 = -9A.

 6.48 The coefficient of coupling in Problem 6.47 is in-
creased to 1.0.

a) If i1 equals 6 A, what value of i2 results in zero 
stored energy?

b) Is there any physically realizable value of i2 that 
can make the stored energy negative?

 6.41 a) Show that the two magnetically coupled coils in 
Fig. P6.41 can be replaced by a single coil having 
an inductance of

Lab =
L1L2 - M2

L1 + L2 - 2M
.

(Hint: Let i1 and i2 be clockwise mesh currents 
in the left and right “windows” of Fig. P6.41, 
respectively. Sum the voltages around the two 
meshes. In mesh 1 let vab be the unspecified 
applied voltage. Solve for di1>dt as a function 
of vab.)

b) Show that if the magnetic polarity of coil 2 is re-
versed, then

Lab =
L1L2 - M2

L1 + L2 + 2M
.

Figure P6.41

L1 L2

a

b

M

 6.42 The polarity markings on two coils are to be de-
termined experimentally. The experimental setup 
is shown in Fig. P6.42. Assume that the terminal 
connected to the positive terminal of the battery 
has been given a polarity mark as shown. When the 
switch is opened, the dc voltmeter kicks downscale. 
Where should the polarity mark be placed on the 
coil connected to the voltmeter?

Figure P6.42

vBB

1

2

R
t 5 0

dc
voltmeter

1

2

 6.43 The physical construction of two pairs of magnet-
ically coupled coils is shown in Fig. P6.43. Assume 
that the magnetic flux is confined to the core mate-
rial in each structure. Show two possible locations 
for the dot markings on each pair of coils.
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b) Assume the mutual capacitance in the  mutual- 
capacitance design, Cmxy = 30 pF, and the ca-
pacitance introduced by a touch is 15 pF (see 
Fig. 6.37[b]). What is the mutual capacitance be-
tween the x- and y-grid electrodes closest to the 
touch point?

c) Compare your results in parts (a) and (b)—does 
touching the screen increase or decrease the ca-
pacitance in these two different capacitive touch 
screen designs?

 6.53 a) As shown in the Practical Perspective, the self- 
capacitance design does not permit a true multi-
touch screen—if the screen is touched at two 
difference points, a total of four touch points are 
identified, the two actual touch points and two 
ghost points. If a self-capacitance touch screen is 
touched at the x, y coordinates (2.1, 4.3) and (3.2, 
2.5), what are the four touch locations that will 
be identified? (Assume the touch coordinates 
are measured in inches from the upper left cor-
ner of the screen.)

b) A self-capacitance touch screen can still function 
as a multi-touch screen for several common ges-
tures. For example, suppose at time t1 the two touch 
points are those identified in part (a), and at time 
t2 four touch points associated with the x, y coor-
dinates (1.8, 4.9) and (3.9, 1.8) are identified. Com-
paring the four points at t1 with the four points at 
t2, software can recognize a pinch gesture—should 
the screen be zoomed in or zoomed out?

c) Repeat part (b), assuming that at time t2 four 
touch points associated with the x, y coordinates 
(2.8, 3.9) and (3.0, 2.8) are identified.

PRACTICAL
PERSPECTIVE

 6.49 The self-inductances of two magnetically coupled 
coils are 72 mH and 40.5 mH, respectively. The 72 mH 
coil has 250 turns, and the coefficient of coupling 
between the coils is 2/3. The coupling medium is non-
magnetic. When coil 1 is excited with coil 2 open, 
the flux linking only coil 1 is 0.2 as large as the flux 
linking coil 2.

a) How many turns does coil 2 have?

b) What is the value of �2 in nanowebers per 
 ampere?

c) What is the value of �11 in nanowebers per 
 ampere?

d) What is the ratio (f22>f12)?

 6.50 The self-inductances of two magnetically coupled 
coils are L1 = 180 mH and L2 = 500 mH. The 
coupling medium is nonmagnetic. If coil 1 has 300 
turns and coil 2 has 500 turns, find �11 and �21 (in 
nanowebers per ampere) when the coefficient of 
coupling is 0.6.

Sections 6.1–6.5

 6.51 Suppose a capacitive touch screen that uses the 
mutual-capacitance design, as shown in Fig. 6.37, 
is touched at the point x, y. Determine the  mutual 
capacitance at that point, C′mxy, in terms of the 
mutual capacitance at the point without a touch, 
Cmxy, and the capacitance introduced by the 
touch, Ct.

 6.52 a) Assume the parasitic capacitance in the self- 
capacitance design, Cp = 30 pF, and the ca-
pacitance introduced by a touch is 15 pF (see 
Fig.  6.36[b]). What is the capacitance at the 
touch point with respect to ground for the x-grid 
and y-grid electrodes closest to the touch point?

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE
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7
CHAPTER 

Response of First-Order 
RL and RC Circuits
In this chapter, we focus on circuits that consist only of sources, 
resistors, and either (but not both) inductors or capacitors. We call 
these circuits RL (resistor-inductor) and RC (resistor- capacitor) 
circuits. In Chapter 6, we saw that inductors and capacitors can 
store energy. We analyze RL and RC circuits to determine the 
currents and voltages that arise when energy is either released 
or acquired by an inductor or capacitor in response to an abrupt 
change in a dc voltage or current source.

We divide our analysis of RL and RC circuits into three phases.

• First Phase: Find the currents and voltages that arise when 
stored energy in an inductor or capacitor is suddenly released 
to a resistive network. This happens when the inductor or 
capacitor is abruptly disconnected from its dc source. Thus, 
we can reduce the circuit to one of the two equivalent forms 
shown in Fig. 7.1 on page 250. These currents and voltages 
characterize the natural response of the circuit because the 
nature of the circuit itself, not external sources of excitation, 
determines its behavior.

• Second Phase: Find the currents and voltages that arise 
when energy is being acquired by an inductor or capacitor 
when a dc voltage or current source is suddenly applied. 
This response is called the step response.

• Third Phase: Develop a general method for finding the response 
of RL and RC circuits to any abrupt change in a dc voltage or 
current source. A general method exists because the process for 
finding both the natural and step responses is the same.

Figure 7.2 (page 250) shows the four general configurations 
of RL and RC circuits. Note that when there are no independent 
sources in the circuit, the Thévenin voltage or Norton current is 
zero, and the circuit reduces to one of those shown in Fig. 7.1; 
that is, we have a natural-response problem.

RL and RC circuits are also known as first-order circuits because 
their voltages and currents are described by first-order differential 
equations. No matter how complex a circuit may appear, if it can 
be reduced to a Thévenin or Norton equivalent connected to the 

7.1 The Natural Response of an RL 
 Circuit p. 250

7.2 The Natural Response of an RC 
 Circuit p. 256

7.3 The Step Response of RL and RC 
 Circuits p. 261

7.4 A General Solution for Step and Natural 
Responses p. 269

7.5 Sequential Switching p. 274

7.6 Unbounded Response p. 278

7.7 The Integrating Amplifier p. 280

1 Be able to determine the natural response 
of both RL and RC circuits.

2 Be able to determine the step response of 
both RL and RC circuits.

3 Know how to analyze circuits with 
 sequential switching.

4 Be able to analyze op amp circuits 
 containing resistors and a single capacitor.

CHAPTER OBJECTIVES



Practical Perspective
Artificial Pacemaker
The muscle that makes up the heart contracts due to 
 rhythmical electrical impulses. Pacemaker cells control 
the impulse frequency. In adults, the pacemaker cells es-
tablish a resting heart rate of about 72 beats per minutes. 
Sometimes, however, damaged pacemaker cells produce a 
very low resting heart rate (a condition known as bradycar-
dia) or a very high resting heart rate (a condition known as 
tachycardia). When either happens, a normal heart rhythm 
can be restored by implanting an artificial pacemaker 
that mimics the pacemaker cells by delivering electrical 

impulses to the heart. Examples of internal and external ar-
tificial pacemakers are shown in the figures below.

Artificial pacemakers are very small and lightweight. 
They have a programmable microprocessor that adjusts 
the heart rate based on several parameters, an efficient 
battery with a life of up to 15 years, and a circuit that 
 generates the pulse. The simplest circuit consists of a 
 resistor and a capacitor. After we introduce and study 
the RC circuit, we will look at an RC circuit design for an 
 artificial pacemaker.

Wires Pacemaker

Electrode

Pacemaker

Electrode

Swapan Photography/Shutterstock

Tewan Banditrukkanka/Shutterstock
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7.1 The Natural Response  
of an RL Circuit

We can describe the natural response of an RL circuit using the circuit 
shown in Fig. 7.3. We assume that the independent current source gener-
ates a constant current Is and that the switch has been in a closed position 
for a long time. We define the phrase a long time more accurately later in 
this section. For now it means that all currents and voltages have reached 
a constant value. Thus only constant, or dc, currents exist in the circuit 
just before the switch opens, and the voltage across the inductor is zero 
(Ldi>dt = 0). Therefore, before the stored energy is released,

• The inductor behaves like a short circuit;
• The entire source current Is appears in the inductive branch; and
• There is no current in either R0 or R.

To find the natural response, we find the voltage and current at the 
terminals of the resistor R after the switch has been opened—that is, after 
the source and its parallel resistor R0 have been disconnected and the in-
ductor begins releasing energy. If we let t = 0 denote the instant when 
the switch is opened, we find v(t) and i(t) for t Ú 0. For t Ú 0, the circuit 
shown in Fig. 7.3 reduces to the one shown in Fig. 7.4.

Deriving the Expression for the Current
To find i(t), we write an expression involving i, R, and L for the circuit in 
Fig. 7.4 using Kirchhoff’s voltage law. Summing the voltages around the 
closed loop gives

 L
di
dt

+ Ri = 0, (7.1)

where we used the passive sign convention. Equation 7.1 is a first-order 
ordinary differential equation because it involves the ordinary derivative 
of the unknown, di > dt, and the highest order derivative appearing in the 
equation is 1.

We can go one step further in describing this equation. The coeffi-
cients in the equation, R and L, are constants; that is, they are not func-
tions of either the dependent variable i or the independent variable t. 
Thus, the equation can also be described as an ordinary differential equa-
tion with constant coefficients.

(a)

Leq ReqI0

(b)

ReqCeq V0

1

2

Figure 7.1 ▲ The two forms of the circuits for 
 natural response. (a) RL circuit. (b) RC circuit.

(d)

RTh

i
VTh

RTh
C v

1

2

(c)

1

2
VTh

RTh

i
C v

1

2

(b)

LRTh v

1

2

i
VTh

RTh

(a)

L
i

1

2
VTh

RTh

v

1

2

Figure 7.2 ▲ Four possible first-order circuits.
 (a) An inductor connected to a Thévenin equivalent.
(b) An inductor connected to a Norton equivalent.
(c) A capacitor connected to a Thévenin equivalent.
(d) A capacitor connected to a Norton equivalent.

terminals of an equivalent inductor or capacitor, it is a first-order cir-
cuit. If the original circuit has two or more inductors or capacitors, 
they must be interconnected so that they can be replaced by a single 
equivalent element.

After introducing the techniques for analyzing the natural and 
step responses of first-order circuits, we will discuss three special 
cases:

• Sequential switching (circuits in which switching occurs at 
two or more instants in time);

• Circuits with an unbounded response;
• The integrating amplifier circuit (containing an ideal op amp).

R0Is R

i

L v

1

2

t 5 0

Figure 7.3 ▲ An RL circuit.

i

L

1

2

vRi(0) 5 Is

Figure 7.4 ▲ The circuit shown in Fig. 7.3, for t Ú 0.
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To solve Eq. 7.1, we divide by L, move the term involving i to the right-
hand side, and then multiply both sides by a differential time dt. The result is

di
dt

 dt = -
R
L

 i dt.

Next, we recognize the left-hand side of this equation simplifies to a differ-
ential change in the current i, that is, di. We now divide through by i, getting

di
i

= -
R
L

 dt.

We obtain an explicit expression for i as a function of t by integrating both 
sides. Using x and y as variables of integration yields

L
i(t)

i(t0)

dx
x

= -
R
L

 L
t

t0

dy,

where i(t0) is the current at time t0 and i(t) is the current at time t. Here, 
t0 = 0. Therefore, carrying out the indicated integration gives

 ln 
i(t)

i(0)
= -

R
L

 t.

Based on the definition of the natural logarithm, we can solve for the current 
to get

i(t) = i(0)e - (R>L)t.

Recall from Chapter 6 that the inductor current cannot change instan-
taneously. Therefore, in the first instant after the switch has been opened, 
the current in the inductor remains unchanged. If 0 -  is the time just prior 
to switching and 0 +  is the time immediately following switching, then

INITIAL INDUCTOR CURRENT

 i(0 - ) = i(0 + ) = I0. (7.2)

I0 is the inductor’s initial current, as in Fig. 7.1(a), and has the same direc-
tion as the reference direction of i. Hence, the equation for the current 
becomes

0

i(t)

t

I0

Figure 7.5 ▲ The current response for the circuit 
shown in Fig. 7.4.

i(t) = I0e
- (R>L)t, t Ú 0.

Figure 7.5 shows this response, where the current has an initial value I0 
and decreases exponentially toward zero as t increases.

Note that the expression for i(t) includes the term e - (R>L)t. The 
 coefficient of t—namely, R>L—determines the rate at which the current 
 approaches zero. The reciprocal of this coefficient is the time constant of 
the circuit, denoted

TIME CONSTANT FOR RL CIRCUIT

 t =
L
R

 . (7.3)



252 Response of First-Order RL and RC Circuits

Using the time constant, we write the expression for current as

NATURAL RESPONSE OF AN RL CIRCUIT

 i(t) = I0e
-t>t, t Ú 0. (7.4)

Now we have a step-by-step method for finding the natural response of an 
RL circuit.

Step 1:  Determine the initial current, I0, in the inductor. This usually in-
volves analyzing the circuit for t 6 0.

Step 2:  Calculate the time constant, t. To do this, you need to find the 
equivalent resistance attached to the inductor for t Ú 0.

Step 3:  Write the equation for the inductor current for t Ú 0 by substi-
tuting the values for the initial current and the time constant into 
Eq. 7.4.

Step 4:  Calculate any other quantities of interest, such as resistor current 
and voltage, using resistive circuit analysis techniques.

This method is summarized in Analysis Method 7.1 and is illustrated 
in Example 7.1.

RL NATURAL-RESPONSE 
METHOD

1. Determine the initial inductor current, 
I0, by analyzing the circuit for t 6 0.

2. Calculate the time constant, t = L>R,  
where R is the equivalent resistance 
connected to the inductor for t Ú 0.

3. Write the equation for the inductor 
current, i(t) = I0e

-t>t, for t Ú 0.
4. Calculate other quantities of interest 

using the inductor current.

Analysis Method 7.1 Finding the RL 
 natural response.

EXAMPLE 7.1 Determining the Natural Response of an RL Circuit

The switch in the circuit shown in Fig. 7.6 has been 
closed for a long time before it is opened at t = 0. 
Find

a) iL(t) for t Ú 0,

b) io(t) for t Ú 0 + ,

c) vo(t) for t Ú 0 + ,

d) the percentage of the total energy stored in the  
2 H inductor that is dissipated in the 10 Ω resistor.

Solution
Use Analysis Method 7.1.

a) Step 1: To determine the initial current in the in-
ductor, draw the circuit in Fig. 7.6 for t 6 0. The 
switch has been closed for a long time prior to 
t = 0, so we know the inductor voltage is zero 
at t = 0- and the inductor can be replaced by a 
short circuit. The result is shown in Fig. 7.7. The 
short circuit shunts all of the resistors, so it has 

all of the current from the source. Therefore, the 
current in the inductor at t = 0- is 20 A and

I0 = iL(0-) = iL(0+) = 20 A.

Step 2: To calculate the time constant, t, we 
need to find the equivalent resistance attached to 
the inductor when t Ú 0. To do this, draw the cir-
cuit in Fig. 7.6 for t Ú 0. Since the switch is now 
open, the current source and its parallel resistor 
are removed from the circuit, as shown in Fig. 7.8. 

2 V

0.1 V 10 V 40 V20 A 2 HiL

iot 5 0

1

2

vo

Figure 7.6 ▲ The circuit for Example 7.1.

2 V

0.1 V 10 V 40 V20 A I0

Figure 7.7 ▲ The circuit for Example 7.1 when t 6 0.

10 V 40 V

2

2 HiL

io2 V
1

vo

Figure 7.8 ▲ The circuit for Example 7.1 when t Ú 0.



From this circuit you can see that the equivalent 
resistance attached to the inductor is

Req = 2 + (40 }10) = 10 Ω

and the time constant of the circuit is

t =
L

Req
=

2
10

= 0.2 s.

Step 3: Write the equation for the inductor  current 
by substituting the values for the initial current and 
the time constant into Eq. 7.4 to give

iL(t) = I0e
-t>t = 20e-t>0.2 = 20e-5t A,  t Ú 0.

Step 4: We use resistive circuit analysis in the re-
maining parts of this problem to find additional 
currents and voltages.

b) We find the current in the 40 Ω resistor in Fig. 7.8 
using current division; that is,

io = - iL 
10

10 + 40
 .

Note that this expression is valid for t Ú 0+ 
 because io = 0 at t = 0-, so the resistor current 
io changes instantaneously. Thus,

io(t) = -0.25iL(t) = -4e-5t A, t Ú 0+.

c) We find the voltage vo in Fig. 7.8 by applying 
Ohm’s law:

vo(t) = 40io = -160e-5t V,  t Ú 0+.

d) The power dissipated in the 10 Ω resistor in  
Fig. 7.8 is

p10Ω(t) =
vo

2

10
= 2560e-10t W,  t Ú 0+.

The total energy dissipated in the 10 Ω resistor is

w10Ω(t) = L
∞

0
2560e-10t dt = 256 J.

The initial energy stored in the 2 H inductor is

w(0) =
1
2

 Li  L
2 (0) =

1
2

 (2)(20)2 = 400 J.

Therefore, the percentage of energy dissipated in 
the 10 Ω resistor is

256
400

 (100) = 64%.

Objective 1—Be able to determine the natural response of both RL and RC circuits

 7.1 The switch in the circuit shown has been closed 
for a long time and is opened at t = 0.
a) Calculate the initial value of i.
b) Calculate the initial energy stored in the 

inductor.
c) What is the time constant of the circuit for 

t 7 0?
d) What is the numerical expression for i(t) for 

t Ú 0?
e) What percentage of the initial energy stored 

has been dissipated in the 2 Ω resistor 5 ms 
after the switch has been opened?

Answer: a) -12.5 A;
b) 625 mJ;
c) 4 ms;
d) -12.5e-250tA,  t Ú 0;
e) 91.8%.

 7.2 At t = 0, the switch in the circuit shown moves 
instantaneously from position a to position b.
a) Calculate vo for t Ú 0+.
b) What percentage of the initial energy stored 

in the inductor is eventually dissipated in the 
4 Ω resistor?

6.4 A
t 5 0

a

b

vo 10 V 0.32 H 4 V

6 V
1

2

Answer: a) -8e-10t V, t Ú 0;
b) 80%.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 7.1, 7.2, and 7.4.

1

2
120 V 30 V 2 V8 mH

6 V
t 5 0

i

3 V
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Deriving the Expressions for Voltage,  
Power, and Energy
We derive the voltage across the resistor in Fig. 7.4 using Ohm’s law:

 v = iR = I0Re-t>t,  t Ú 0+. (7.5)

Note that while the current is defined for t Ú 0 (Eq. 7.4), the voltage is 
defined only for t Ú 0+, not at t = 0. At t = 0 a step change occurs in the 
voltage. For t 6 0, the derivative of the current is zero, so the voltage is 
also zero (v = Ldi>dt = 0). Thus

 v(0-) = 0,

 v(0+) = I0R,

where v(0+) is obtained from Eq. 7.5 with t = 0+1. The value of the voltage 
at t = 0 is undefined owing to the step change at t = 0. Thus, we use t Ú 0+ 
when defining the region of validity for the voltage in Eq. 7.5.

We derive the power dissipated in the resistor from any of the follow-
ing expressions:

p = vi, p = i2R, or p =
v

2

R
 .

Whichever form is used, the resulting expression can be reduced to

p = I 0
2 Re-2t>t,  t Ú 0+.

The energy delivered to the resistor during any interval of time after the 
switch has been opened is

 w = L
t

0
pdx = L

t

0
I 0

2 Re-2x>tdx

 =
t

2
 I 0

2 R(1 - e-2t>t)

 =
L
2R

 I  0
2 R(1 - e-2t>t)

 =
1
2

 LI  0
2(1 - e-2t>t), t Ú 0+.

Note from the energy equation that as t becomes infinite, the energy dis-
sipated in the resistor approaches the initial energy stored in the inductor.

The Significance of the Time Constant
The time constant is an important parameter for first-order circuits. You 
can express the time elapsed after switching as an integer multiple of t. 
For example, one time constant after the inductor begins releasing its 
stored energy to the resistor, the current has been reduced to e-1, or ap-
proximately 0.37 of its initial value.

Table 7.1 gives the value of e-t>t for integer multiples of t from 1 to 10. 
Note that the current is less than 1% of its initial value when the elapsed 

1We can define the expressions 0- and 0+ more formally. The expression x(0-) refers to the 
limit of the variable x as t S 0 from the left, or from negative time. The expression x(0+) re-
fers to the limit of the variable x as t S 0 from the right, or from positive time.

TABLE 7.1  Value of e-t>T For t Equal to 
Integral Multiples of T

t e-t>T t e-t>T

t 3.6788 * 10-1 6t 2.4788 * 10-3

2t 1.3534 * 10-1 7t 9.1188 * 10-4

3t 4.9787 * 10-2 8t 3.3546 * 10-4

4t 1.8316 * 10-2 9t 1.2341 * 10-4

5t 6.7379 * 10-3 10t 4.5400 * 10-5



time exceeds five time constants. So, five time constants after switching 
has occurred, the currents and voltages have essentially reached their final 
values. After switching, the changes to the currents and voltages are mo-
mentary events and represent the transient response of the circuit.

By contrast, the phrase a long time implies that five or more time con-
stants have elapsed, for first-order circuits. The response that exists a long 
time after switching is called the steady-state response. The phrase a long 
time then also means the time it takes the circuit to reach its steady-state 
value.

The time constant also represents the time required for the current  
to reach its final value if the current continues to change at its initial 
rate. To illustrate, we evaluate di>dt at 0+ and assume that the current 
 continues to change at this rate:

di
dt

 (0+) = -
I0

t
 e-0+>t = -

I0

t
.

Now, if i starts at I0 and decreases at a constant rate of I0>t amperes per 
second, the expression for i becomes

i = I0 -
I0

t
 t.

This expression indicates that i would reach its final value of zero in  
t seconds. Figure 7.9 shows how this graphic interpretation can be used to 
estimate a circuit’s time constant from a plot of its natural response. Such 
a plot could be generated on an oscilloscope measuring output  current. 
Drawing the tangent to the natural-response plot at t = 0 and reading the 
value at which the tangent intersects the time axis gives the value of t. This 
allows you to determine the time constant of a circuit even if you don’t 
know its component values.

Up to this point, we have dealt with circuits having a single inductor. But 
the techniques presented apply to circuits with multiple inductors if the in-
ductors can be combined into a single equivalent inductor. Example 7.2 finds 
the natural response of an RL circuit that contains two inductors.

0

i

I0

t
t

i 5 I02(I0>t)t

i 5 I0e
2t>t

Figure 7.9 ▲ A graphic interpretation of the time 
constant of the RL circuit shown in Fig. 7.4.

EXAMPLE 7.2  Determining the Natural Response of an RL Circuit with Parallel 
Inductors

In the circuit shown in Fig. 7.10, the initial currents 
in inductors L1 and L2 have been established by 
sources not shown. The switch is opened at t = 0.

a) Find i1, i2, and i3 for t Ú 0.

b) Calculate the initial energy stored in the parallel 
inductors.

c) Determine how much energy is stored in the in-
ductors as t S  ∞ .

d) Show that the total energy delivered to the resis-
tive network equals the difference between the 
results obtained in (b) and (c).

Solution

a) The key to finding currents i1, i2, and i3 lies in 
knowing the voltage v(t). We can easily find v(t) 
if we simplify the  circuit shown in Fig. 7.10 to the 
equivalent form shown in Fig. 7.11. The parallel 
inductors combine to give an equivalent induc-
tance of 4 H, carrying an initial current of 12 A. 
The resistive network reduces to a single resis-
tance of 40 }  [4 + (15 }  10)] = 8 Ω. We can 
now use Analysis Method 7.1.

i1

L1 (5 H)
40 V 15 V 10 V

4 V

8 A
i2 i3

L2 (20 H)
4 A

t 5 0
v(t)

1

2

Figure 7.10 ▲ The circuit for Example 7.2.

i

v(t)

1

2

4 H12 A 8 V

Figure 7.11 ▲ A simplification of the circuit shown 
in Fig. 7.10.
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7.2 The Natural Response  
of an RC Circuit

The form of an RC circuit’s natural response is analogous to that of an RL 
circuit. Consequently, we don’t treat the RC circuit in as much detail as we 
did the RL circuit.

We develop the natural response of an RC circuit using the circuit 
shown in Fig. 7.12. Begin by assuming that the switch has been in posi-
tion a for a long time, allowing the loop containing the dc voltage source 
Vg, the resistor R1, and the capacitor C to reach a steady-state condition. 
Recall from Chapter 6 that a capacitor behaves as an open circuit in the 

Step 1: The initial current in the inductor in  
Fig. 7.11 is I0 = 12 A.

Step 2: The equivalent resistance attached to the 
inductor in Fig. 7.11 is 8 Ω. Therefore, the time con-
stant is

t =
L
R

=
4
8

= 0.5 s.

Step 3: The inductor current in Fig. 7.11 is

i(t) = I0e
-t>t = 12e-t>0.5 = 12e-2t A,  t Ú 0.

Step 4: We will use additional circuit analysis tech-
niques to find the currents i1, i2, and i3. To begin, 
note that in Fig. 7.11, v(t) = 8i(t), so

v(t) = 96e-2t V,  t Ú 0+.

From the circuit in Fig. 7.10, we see that that v(t) = 0 
at t = 0-, so the expression for v(t) is valid for 
t Ú 0+. After obtaining v(t), we can calculate i1 and 
i2 using the relationship between current and volt-
age in inductors:

 i1 =
1
5

 L
t

0
96e-2x dx - 8

 = 1.6 - 9.6e-2t A,  t Ú 0,

 i2 =
1
20

 L
t

0
96e-2x dx - 4

 = -1.6 - 2.4e-2t A,  t Ú 0.

We will use two steps to find i3; in the first step, cal-
culate the voltage across the parallel 15 Ω and 10 Ω 
resistors using voltage division. Calling that voltage 
v15}10, positive at the top of the circuit, we get

v15}10 =
15 }10

4 + 15 }10
 v =

6
10

 (96e-2t) = 57.6e-2t V, t Ú 0+.

Now use Ohm’s law to calculate i3, giving

i3 =
v15}10

10
= 5.76e-2t A,  t Ú 0+.

Note that the expressions for the inductor currents 
i1 and i2 are valid for t Ú 0, whereas the expres-
sion for the resistor current i3 is valid for t Ú 0+.

b) The initial energy stored in the inductors is

w =
1
2

 (5)(8)2 +
1
2

 (20)(4)2 = 320 J.

c) As t S  ∞ , i1 S  1.6 A and i2 S  -1.6 A. There-
fore, a long time after the switch opens, the energy 
stored in the two inductors is

w =
1
2

 (5)(1.6)2 +
1
2

 (20)(-1.6)2 = 32 J.

d) We obtain the total energy delivered to the re-
sistive network by integrating the expression for 
the instantaneous power from zero to infinity:

 w = L
∞

0
pdt = L

∞

0
(96e-2t)(12e-2t)dt

 = 1152
e-4t

-4
`
0

∞
= 288 J.

This result is the difference between the initially 
stored energy (320 J) and the energy trapped 
in the parallel inductors (32 J). Also, note that 
the equivalent inductor for the parallel induc-
tors (which predicts the terminal behavior of the 
parallel combination) has an initial energy of  
1�2(4)(12)2 = 288 J; that is, the energy stored in 
the equivalent inductor represents the amount of 
energy that will be delivered to the resistive net-
work at the terminals of the original inductors.

SELF-CHECK: Also try Chapter Problem 7.19.



 7.2 The Natural Response of an RC Circuit  257

presence of a constant voltage, so the source voltage appears across the 
capacitor terminals. In Section 7.3, we will discuss how the capacitor volt-
age builds to the steady-state value of the dc voltage source. Here it is 
important to remember that when the switch is moved from position a to 
position b (at t = 0), the voltage on the capacitor is Vg. Because there can 
be no instantaneous change in the voltage at the terminals of a capacitor, 
the problem reduces to solving the circuit shown in Fig. 7.13.

Deriving the Expression for the Voltage
We can easily find the voltage v(t) by writing a KCL equation. Using the 
lower node between R and C as the reference node and summing the cur-
rents away from the upper node between R and C gives

 C  
dv

dt
+

v

R
= 0. (7.6)

Comparing Eq. 7.6 with Eq. 7.1, you should see that the mathematical 
techniques used to find i(t) in the RL circuit can be used to find v(t) in the 
RC circuit. We leave it to you to show that

v(t) = v(0)e-t>RC,  t Ú 0.

As we have already noted, the initial voltage on the capacitor equals 
the voltage source voltage Vg, or

1

2 C

a b

t 5 0
Vg R

R1

Figure 7.12 ▲ An RC circuit.

C iv RVg

1

2

1

2

Figure 7.13 ▲ The circuit shown in Fig. 7.12, after 
switching.

CAPACITOR VOLTAGE

 v(0-) = v(0) = v(0+) = Vg = V0, (7.7)

where V0 denotes the initial voltage on the capacitor. The time constant 
for the RC circuit equals the product of the resistance and capacitance, 
namely,

TIME CONSTANT FOR RC CIRCUIT

 t = RC. (7.8)

Therefore, the general expression for the voltage becomes

NATURAL RESPONSE OF AN RC CIRCUIT

 v(t) = V0e
-t>t,  t Ú 0, (7.9)

which indicates that the natural response of an RC circuit is an exponen-
tial decay of the initial voltage. The time constant RC governs the rate of 
decay. Figure 7.14 shows the plot of Eq. 7.9 and the graphic interpretation 
of the time constant.

Now we have a step-by-step method for finding the natural response 
of an RC circuit.

Step 1: Determine the initial voltage, V0, across the capacitor. This usually 
involves analyzing the circuit for t 6 0.

0 t

V0

v(t)

t

v(t) 5V0 2 tV0
T

v(t) 5 V0e
2t>T

Figure 7.14 ▲ The natural response of an RC 
circuit.
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Step 2: Calculate the time constant, t. To do this, you need to find the 
equivalent resistance attached to the capacitor for t Ú 0.

Step 3: Write the equation for the capacitor voltage for t Ú 0 by substi-
tuting the values for the initial voltage and the time constant into Eq. 7.9.

Step 4: Calculate any other quantities of interest, such as resistor current 
and voltage, using resistive circuit analysis techniques.

This method is summarized in Analysis Method 7.2.
After determining v(t), we can easily derive the expressions for i, p, 

and w:

 i(t) =
v(t)

R
=

V0

R
 e-t>t,  t Ú 0+,

 p = vi =
V0

2

R
 e-2t>t,  t Ú 0+,

 w = L
t

0
p dx = L

t

0

V0
2

R
  e-2x>t dx

 =
1
2

 CV0
2(1 - e-2t>t),  t Ú 0.

Example 7.3 uses Analysis Method 7.2 to determine the natural re-
sponse of an RC circuit. Analysis Method 7.2 applies to circuits with a 
single capacitor, but it can also be used to analyze circuits with multiple 
capacitors if they can all be combined into a single equivalent capacitor. 
Example 7.4 considers a circuit with two capacitors.

RC  NATURAL-RESPONSE 
METHOD

1. Determine the initial capacitor voltage, 
V0, by analyzing the circuit for t 6 0.

2. Calculate the time constant, t = RC, 
where R is the equivalent resistance 
connected to the capacitor for t Ú 0.

3. Write the equation for capacitor  
voltage, v(t) = V0e

-t>t, for t Ú 0.
4. Calculate other quantities of interest 

using the capacitor voltage.

Analysis Method 7.2 Finding the RC 
 natural response.

EXAMPLE 7.3 Determining the Natural Response of an RC Circuit

The switch in the circuit shown in Fig. 7.15 has been 
in position x for a long time. At t = 0, the switch 
moves instantaneously to position y. Find

a) vC(t) for t Ú 0,

b) vo(t) for t Ú 0+,

c) io(t) for t Ú 0+, and

d) the total energy dissipated in the 60 kΩ resistor.

Solution
Use Analysis Method 7.2.

a) Step 1: Determine the initial capacitor voltage 
V0 by drawing the circuit in Fig. 7.15 for t < 0.  
The result is shown in Fig. 7.16, and since the 
 capacitor behaves like an open circuit, its initial 
voltage equals the source voltage:

V0 = 100 V.

Step 2: Calculate the time constant. To do this, 
draw the circuit in Fig. 7.15 for t Ú 0, as shown 
in Fig. 7.17, and find the equivalent resistance at-
tached to the capacitor:

 Req = 32 * 103 + (240 * 103 }60 * 103)

= 80 kΩ,

 t = ReqC = (80 * 103)(0.5 * 10-6)

= 40 ms.

1

2

1

2

1

2
100 V vo

vC0.5 mF

io
x y

t 5 0

240 kV 60 kV

10 kV 32 kV

Figure 7.15 ▲ The circuit for Example 7.3.

1

2

10 kV

100 V V0

1

2

Figure 7.16 ▲ The circuit in Fig. 7.15 for t 6 0.

240 kV

32 kV

60 kV

1

2

1

2

0.5 mF

io

vC vo

Figure 7.17 ▲ The circuit in Fig. 7.15 for t Ú 0.



Step 3: Write the equation for the capacitor voltage 
by substituting the values for V0 and t into Eq. 7.9:

vC(t) = 100e-t>0.04 = 100e-25t V,  t Ú 0.

Step 4: Determine the remaining quantities us-
ing resistive circuit analysis techniques for the 
circuit in Fig. 7.17.

b) To find vo(t) in Fig. 7.17, note that the resistive 
 circuit forms a voltage divider across the termi-
nals of the capacitor. Thus

 vo(t) =
240 * 103 }60 * 103

32 * 103 + (240 * 103 }60 * 103)
 vC(t)

 = 0.6(100e-25t) = 60e-25t V,  t Ú 0+.

This expression for vo(t) is valid for t Ú 0+ because 
vo(0-) is zero. Thus, we have an instantaneous 
change in the voltage across the 240 kΩ resistor.

c) We find the current io(t) from Ohm’s law:

io1 t2 =
vo1 t2

60 *  103 = e-25t mA,  t Ú 0+.

d) The power dissipated in the 60 kΩ resistor is

p60kΩ (t) = io
2(t)(60 * 103) = 60e-50t mW,  t Ú 0+.

The total energy dissipated is

w60kΩ = L
∞

0
io
2(t)(60 * 103)dt = 1.2 mJ.

EXAMPLE 7.4  Determining the Natural Response of an RC Circuit with Series 
Capacitors

The initial voltages on capacitors C1 and C2 in the 
circuit shown in Fig. 7.18 have been established by 
sources not shown. The switch is closed at t = 0.

a) Find v1(t), v2(t), and v(t) for t Ú 0 and i(t) for 
t Ú 0+.

b) Calculate the initial energy stored in the capaci-
tors C1 and C2.

c) Determine how much energy is stored in the ca-
pacitors as t S  ∞ .

d) Show that the total energy delivered to the 
250 kΩ resistor is the difference between the re-
sults obtained in (b) and (c).

Solution

a) Once we know v(t), we can obtain the current i(t) 
from Ohm’s law. After determining i(t), we can 
calculate v1(t) and v2(t) because the voltage across 
a capacitor is a function of the capacitor current. 
To find v(t), we replace the series- connected 
 capacitors with an equivalent capacitor. It has a 

capacitance of 4mF and is charged to a voltage of 
20 V. Therefore, the circuit shown in Fig. 7.18 re-
duces to the one shown in Fig. 7.19. We can now 
use Analysis Method 7.2 to determine v(t).

Step 1:  The initial voltage across the capacitor in 
Fig. 7.19 is V0 = 20 V.

Step 2:  The resistance attached to the capacitor 
in Fig. 7.19 is 250 kΩ. Therefore, the time 
constant is

t = (250 * 103)(4 * 10-6) = 1 s.

Step 3:  Write the equation for the capacitor 
voltage by substituting the values for V0 
and t in Eq. 7.9 to give

v(t) = 20e-t V,  t Ú 0.

Step 4:  Determine the currents and voltages re-
quested using the techniques described 
at the start of the Solution.

For the circuit in Fig. 7.19, use Ohm’s law to find 
the current i(t):

i(t) =
v(t)

250,000
= 80e-t mA,  t Ú 0+.

t 5 0
C1 (5 mF) v1(t)

v(t)

v2(t)

i(t)

4 V

1

2

C2 (20 mF)24 V

250 kV

2

1

2

2

1

2

1

1

Figure 7.18 ▲ The circuit for Example 7.4.

1

2

4 mF
i(t)

t 5 0

v(t)
250 kV

20 V

1

2

Figure 7.19 ▲ A simplification of the circuit shown in Fig. 7.18.
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Knowing i(t), we calculate the expressions for 
v1(t) and v2(t) for the circuit in Fig. 7.18:

 v1(t) = -
1

5 * 10-6 L
t

0
80 * 10-6e-xdx - 4

 = (16e-t - 20) V, t Ú 0,

 v2(t) = -
1

20 * 10-6 L
t

0
80 * 10-6e-xdx + 24

 = (4e-t + 20) V,  t Ú 0.

b) The initial energy stored in C1 is

w1 =
1
2

 (5 * 10-6)(4)2 = 40 mJ.

The initial energy stored in C2 is

w2 =
1
2

 (20 * 10-6)(24)2 = 5760 mJ.

The total energy stored in the two capacitors is

wo = 40 + 5760 = 5800 mJ.

c) As t S  ∞ ,

v1 S  -20 V and v2 S  +20 V.

Therefore, the energy stored in the two capaci-
tors is

 w∞ =
1
2

 (5 * 10-6)(-20)2 +
1
2

 (20 * 10-6)(20)2

 = 5000 mJ.

d) The total energy delivered to the 250 kΩ resistor 
is

w = L
∞

0
pdt = L

∞

0
(20e-t)(80 * 10-6e-t)dt = 800mJ.

Comparing the results obtained in (b) and (c) 
shows that

800 mJ = (5800 - 5000) mJ.

The energy stored in the equivalent capacitor in 
Fig. 7.19 is 1�2(4 * 10-6)(20)2 = 800 mJ. Because 
this capacitor predicts the terminal behavior of the 
original series-connected capacitors, the energy 
stored in the equivalent capacitor is the energy de-
livered to the 250 kΩ resistor.

Objective 1—Be able to determine the natural response of both RL and RC circuits

 7.3 The switch in the circuit shown has been closed 
for a long time and is opened at t = 0. Find
a) the initial value of v(t),
b) the time constant for t 7 0,
c) the numerical expression for v(t) after the 

switch has been opened,
d) the initial energy stored in the capacitor, and
e) the length of time required to dissipate 75% 

of the initially stored energy.

1

2

7.5 mA v(t)0.4 mF80 kV 50 kV

20 kV t 5 0

Answer: a) 200 V;
b) 20 ms;
c) 200e-50t V,  t Ú 0;
d) 8 mJ;
e) 13.86 ms.

 7.4 The switch in the circuit shown has been closed 
for a long time before being opened at t = 0.
a) Find vo(t) for t Ú 0.
b) What percentage of the initial energy stored 

in the circuit has been dissipated after the 
switch has been open for 60 ms?

40 kVvo(t)

t 5 0

1

2

15 V

15 kV 20 kV

1

2
1 mF

5 mF

Answer: a) 8e-25t + 4e-10t V,  t Ú 0;
b) 81.05%.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 7.22 and 7.33.
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7.3 The Step Response of RL and RC 
Circuits

The response of a circuit to the sudden application of a constant voltage 
or current source is called the step response of the circuit. In this section, 
we find the step response of first-order RL and RC circuits by describ-
ing the currents and voltages generated when either dc voltage or cur-
rent sources are suddenly applied. We also show how the circuit responds 
when energy is being stored in the inductor or capacitor. We begin with 
the step response of an RL circuit.

The Step Response of an RL Circuit
We modify the first-order circuit shown in Fig. 7.2(a) by adding a switch 
and develop the step response of an RL circuit using the resulting circuit, 
shown in Fig. 7.20. We assume a nonzero initial current i(0), so the induc-
tor has stored energy at the time the switch is closed. We want to find the 
expressions for the current in the circuit and for the voltage across the 
inductor after the switch has been closed. We use circuit analysis to derive 
the differential equation that describes the circuit in terms of the variable 
of interest, and then we use elementary calculus to solve the equation, just 
as we did in Section 7.1.

After the switch in Fig. 7.20 has been closed, KVL requires that

 Vs = Ri + L
di
dt

, (7.10)

which can be solved for the current by separating the variables i and t and 
then integrating. We begin by solving Eq. 7.10 for the derivative di>dt:

di
dt

=
-Ri + Vs

L
=

-R
L

 a i -
Vs

R
b .

Next, we multiply both sides of the equation for di>dt by a differential 
time dt. This step reduces the left-hand side of the equation to a differen-
tial change in the current. Thus

di =
-R
L

 a i-  
Vs

R
bdt.

We now separate the variables in the equation for di to get

di
i - (Vs>R)

=
-R
L

 dt

and then integrate both sides. Using x and y as variables for the integra-
tion, we obtain

L
i(t)

I0

dx
x - (Vs>R)

=
-R
L

 L
t

0
dy,

where I0 is the current at t = 0 and i(t) is the current at any t 7 0. 
Evaluating the integrals gives

ln
i(t) - (Vs>R)

I0 - (Vs>R)
=

-R
L

 t,

1

2

Vs

1

2

R

t 5 0
i L v(t)

Figure 7.20 ▲ A circuit used to illustrate the step 
response of a first-order RL circuit.



262 Response of First-Order RL and RC Circuits

from which

i(t) - (Vs>R)

I0 - (Vs>R)
= e-(R>L)t,

or

 i(t) =
Vs

R
+ aI0-  

Vs

R
be-(R>L)t. (7.11)

Equation 7.11 indicates that after the switch is closed, the current 
changes exponentially from its initial value I0 to a final value If = Vs>R. 
The time constant of the circuit, t = L>R, determines the rate of change. 
We can determine the final value of the current by analyzing the circuit in   
Fig. 7.20 as t S ∞ , and we can calculate the time constant by finding the 
equivalent resistance attached to the inductor in the circuit shown in  
Fig. 7.20 for t Ú 0. Now express the equation for inductor current (Eq. 7.11) 
in terms of the initial value of the current, the final value of the current, and 
the time constant of the circuit to give

STEP RESPONSE OF AN RL CIRCUIT

 i(t) = If + (I0 - If)e-t>t. (7.12)

Using Eq. 7.12, we can construct a step-by-step procedure to calculate 
the step response of an RL circuit.

Step 1: Determine the initial current, I0, in the inductor. This usually in-
volves analyzing the circuit for t 6 0.

Step 2: Calculate the time constant, t. To do this, you need to find the 
equivalent resistance attached to the inductor for t Ú 0.

Step 3: Calculate the final value of the inductor current, If, by analyzing 
the circuit as t approaches infinity.

Step 4: Write the equation for the inductor current when t Ú 0 by sub-
stituting the values for the initial current, the time constant, and the final 
current into Eq. 7.12.

Step 5: Calculate any other quantities of interest, such as resistor current 
and voltage, using resistive circuit analysis techniques.

This method is summarized in Analysis Method 7.3 and is applied to a 
specific circuit in Example 7.5.

RL STEP-RESPONSE METHOD

1. Determine the initial inductor current, 
I0, by analyzing the circuit for t 6 0.

2. Calculate the time constant, t = L>R, 
where R is the equivalent resistance 
connected to the inductor for t Ú 0.

3. Find the final value for the inductor 
current, If, by analyzing the circuit as 
t S ∞ .

4. Write the equation for inductor cur-
rent, i(t) = If + (I0 - If) e-t>t, for t Ú 0.

5. Calculate other quantities of interest 
using the inductor current.

Analysis Method 7.3 Finding the RL step 
response.

EXAMPLE 7.5 Determining the Step Response of an RL Circuit

The switch in the circuit shown in Fig. 7.21 has been in 
position a for a long time. At t = 0, the switch moves 
from position a to position b. The switch is a make-
before-break type; that is, the connection at position 
b is established before the connection at position a is 
broken, so the inductor current is continuous.

a) Find the expression for i(t) for t Ú 0.

b) What is the initial voltage across the induc-
tor just after the switch has been moved to 
 position b?

2 V

10 V
200 mH

ab

8 A
i

1

2

v

t 5 0

24 V
1

2

Figure 7.21 ▲ The circuit for Example 7.5.



c) Does this initial voltage make sense in terms of 
circuit behavior?

d) How many milliseconds after the switch has been 
moved does the inductor voltage equal 24 V?

e) Plot both i(t) and v(t) versus t.

Solution
a) Use Analysis Method 7.3 to find the inductor current. 

Step 1: Determine the initial current in the in-
ductor. To do this, draw the circuit in Fig. 7.21 
when t 6 0 and the switch is in position a, as 
shown in Fig. 7.22. Note that since the switch has 
been in position a for a long time, the inductor 
behaves like a short circuit that carries all of the 
current from the 8 A current source. Therefore, 
I0 = -8 A because the inductor current and the 
source current are in opposite directions.

Step 2: Calculate the time constant for the cir-
cuit. Start by drawing the circuit in Fig. 7.21 when 
t Ú 0 and the switch is in position b, as shown in 
Fig. 7.23. Then determine the Thévenin equivalent 
resistance for the circuit attached to the inductor. 
Since the circuit attached to the inductor is already 
a Thévenin equivalent circuit, the Thévenin equiv-
alent resistance is 2 Ω and t = 0.2>2 = 0.1 s.

Step 3: Calculate the final value for the inductor 
current. To do this, draw the circuit in Fig. 7.21  
as t S ∞ , when the switch is in position b, as 
shown in Fig. 7.24. Since the switch has been in 
position b for a long time, the inductor behaves 
like a short circuit, as seen in Fig. 7.24, and the 
current can be found from Ohm’s law. Therefore, 
If = 24>2 = 12 A.

Step 4: Write the equation for the inductor cur-
rent when t Ú 0 by substituting the values for the 
initial current, the time constant, and the final 
current into Eq. 7.12 to give

 i = If + (I0 - If )e-t>t

 = 12 + (-8 - 12)e-t>0.1

 = 12 - 20e-10t A, t Ú 0.

Step 5: Calculate any other quantities of interest, 
which we do in the remainder of this example.

b) The voltage across the inductor is

 v = L
di
dt

 

 = 0.2(200e-10t)

 = 40e-10t V,  t Ú 0+.

The initial inductor voltage is

v(0+) = 40 V.

c) Yes. In the instant after the switch has been moved 
to position b, the inductor current is 8 A counter-
clockwise around the newly formed closed path. 
This current causes a 16 V drop across the 2 Ω 
resistor. This voltage drop adds to the 24 V drop 
across the source, producing a 40 V drop across 
the inductor.

d) We find the time at which the inductor voltage 
equals 24 V by solving the expression

24 = 40e-10t

for t:

 t =
1
10

  ln 
40
24

 

 = 51.08 ms.

e) Figure 7.25 shows the graphs of i(t) and v(t) ver-
sus t. Note that at the instant of time when the 
current equals zero, the inductor voltage equals 
the source voltage of 24 V, as predicted by Kirch-
hoff’s voltage law.

10 V 8 AI0

Figure 7.22 ▲ The circuit in Fig. 7.21 for t 6 0.

1

2

24 V 200 mH

2 V

Figure 7.23 ▲ The circuit in Fig. 7.21 for t Ú 0.

1

2

24 V

2 V

If

Figure 7.24 ▲ The circuit in Fig. 7.21 as t S ∞ .

28

i(A)v(V)

v i

100 200 300 400 500
t (ms)

8
16
24
32
40

24

4
8

12

Figure 7.25 ▲ The current and voltage waveforms for Example 7.5.
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Observations on the Step Response of an RL Circuit
Let’s take a closer look at the RL step response of the circuit shown in 
Fig. 7.20. If the initial energy in the inductor is zero, I0 is zero and Eq. 7.11 
reduces to

 i(t) =
Vs

R
-

Vs

R
 e-(R>L)t. (7.13)

One time constant after the switch has been closed, the current will 
have reached approximately 63% of its final value, or

i(t) =
Vs

R
-

Vs

R
 e-1 ≈ 0.6321

Vs

R
.

If the current were to continue to increase at its initial rate, it would reach 
its final value at t = t; that is, because

di
dt

=
-Vs

R
 a -1

t
be-t>t =

Vs

L
 e-t>t,

the initial rate at which i(t) increases is

di
dt

 (0) =
Vs

L
.

If the current were to continue to increase at this rate, the expression for 
i would be

 i =
Vs

L
 t, (7.14)

so at t = t,

i =
Vs

L
 
L
R

=
Vs

R
.

Equations 7.13 and 7.14 are plotted in Fig. 7.26. The values for i(t) and If 
are also shown in this figure.

The voltage across an inductor is Ldi>dt, so from Eq. 7.11, for t Ú 0+,

 v = La -R
L

b aI0 -
Vs

R
be-(R>L)t = (Vs - I0R)e-(R>L)t. (7.15)

The voltage across the inductor is zero before the switch is closed because 
the inductor is behaving like a short circuit. The voltage equation indi-
cates that the inductor voltage jumps to Vs - I0R at the instant the switch 
is closed and then decays exponentially to zero.

Objective 2—Be able to determine the step response of both RL and RC circuits

 7.5 Assume that the switch in the circuit shown in 
Fig. 7.21 has been in position b for a long time 
and that at t = 0 it moves to position a. Find 
(a) i(0+); (b) v(0+); (c) t, t 7 0; (d) i(t), t Ú 0; 
and (e) v(t), t Ú 0+.

Answer: a) 12 A;
b) -200 V;
c) 20 ms;
d) -8 + 20e-50t A,  t Ú 0;
e) -200e-50t V,  t Ú 0+.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 7.35, 7.36, and 7.38.

t
0

i

0.632

5t4t3t2t

i 5 t
Vs

L

i 5
Vs

R
Vs

R

Vs

R

Vs

R

2 e2t>T

t

Figure 7.26 ▲ The step response of the RL circuit 
shown in Fig. 7.20 when I0 = 0.



Does the value of v at t = 0+ make sense? Because the initial current 
is I0 and the inductor prevents an instantaneous change in current, the 
current is I0 in the instant after the switch has been closed. The voltage 
drop across the resistor is I0R, so the voltage across the inductor is the 
source voltage minus the resistor voltage, that is, Vs - I0R.

When the initial inductor current is zero, Eq. 7.15 simplifies to

v = Vse
-(R>L)t.

If the initial current is zero, the voltage across the inductor jumps to Vs 
when the switch closes. We also expect the inductor voltage to approach 
zero as t increases because the current in the circuit is approaching the 
constant value of Vs>R. Figure 7.27 shows the plot of the simplified  voltage 
equation and the relationship between the time constant and the initial 
rate at which the inductor voltage is decreasing.

We can also describe the voltage v(t) across the inductor in Fig. 7.20 
directly, without first calculating the circuit current. We begin by noting 
that the voltage across the resistor is the difference between the source 
voltage and the inductor voltage. Using Ohm’s law, we write

i =
Vs

R
-

v

R
,

where Vs is a constant. Differentiating both sides with respect to time 
yields

di
dt

= -
1
R

 
dv

dt
.

Then, if we multiply each side of this equation by the inductance L, we get 
an expression for the voltage across the inductor on the left-hand side, or

v = -
L
R

 
dv

dt
.

Putting this differential equation into standard form yields

 
dv

dt
+

R
L

 v = 0. (7.16)

You should verify (in Problem 7.43) that the solution to Eq. 7.16 is identi-
cal to that given in Eq. 7.15.

At this point, a general observation about the step response of an RL cir-
cuit is pertinent. (This observation will prove helpful later.) When we derived 
the differential equation for the inductor current, we obtained Eq. 7.10, which 
we can rewrite as

 
di
dt

+
R
L

 i =
Vs

L
. (7.17)

Observe that Eqs. 7.16 and 7.17 have the same form. Specifically, each 
equates the sum of the first derivative of the variable and a constant times 
the variable to a constant value. In Eq. 7.16, the constant on the right-hand 
side happens to be zero; hence, this equation takes on the same form as the 
natural-response equations in Section 7.1. In both Eq. 7.16 and Eq. 7.17, the 
constant multiplying the dependent variable is the reciprocal of the time 
constant; that is, R>L = 1>t. We will encounter a similar situation in the 
derivations for the step response of an RC circuit. In Section 7.4, we will use 
these observations to develop a general approach to finding the natural and 
step responses of RL and RC circuits.

R
L

t
0

v 5 Vs 2

v 5 Vse
2(R>L)t

Vs

v

0.368 Vs

5T4T3T2T

Vs t

T

Figure 7.27 ▲ Inductor voltage versus time.
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The Step Response of an RC Circuit
We can find the step response of a first-order RC circuit by analyzing the 
circuit shown in Fig. 7.28. For mathematical convenience, we choose the 
Norton equivalent of the network connected to the equivalent capacitor. 
Summing the currents away from the top node in Fig. 7.28 generates the 
differential equation

C
dv

dt
+

v

R
= Is.

Dividing both sides of the differential equation by C gives

 
dv

dt
+

v

RC
=

Is

C
. (7.18)

Comparing Eq. 7.18 with Eq. 7.17 reveals that the form of the solution 
for v is the same as that for the current in the inductive circuit, namely,  
Eq. 7.11. Therefore, by substituting the appropriate variables and coeffi-
cients, we can write the solution for v directly. The translation requires that 
Is replace Vs, C replace L, 1>R replace R, and V0 replace I0. We get

 v = Is R + (V0 - Is R)e-t>RC,  t Ú 0. (7.19)

Equation 7.19 indicates that after the switch has been closed, the 
voltage changes exponentially from its initial value V0 to a final value 
Vf = IsR. The time constant of the circuit, t = RC, determines the rate 
of change. We can determine the final value of the voltage by analyzing 
the circuit in Fig. 7.28 as t S 0, and we can calculate the time constant by 
finding the equivalent resistance attached to the capacitor in the circuit 
shown in Fig. 7.28 for t Ú 0. Now express the equation for capacitor volt-
age (Eq. 7.19) in terms of the initial value of the voltage, the final value of 
the voltage, and the time constant of the circuit to give

RIs

i
C v

1

2

t 5 0

Figure 7.28 ▲ A circuit used to illustrate the step 
response of a first-order RC circuit.

STEP RESPONSE OF AN RC CIRCUIT

 v(t) = Vf + (V0 - Vf 

)e-t>t. (7.20)

Using Eq. 7.20, we can construct a step-by-step procedure to calculate 
the step response of an RC circuit.

Step 1: Determine the initial voltage, V0, across the capacitor. This usually 
involves analyzing the circuit for t 6 0.

Step 2: Calculate the time constant, t. To do this, you need to find the 
equivalent resistance attached to the capacitor for t Ú 0.

Step 3: Calculate the final value of the capacitor voltage, Vf, by analyzing 
the circuit as t approaches infinity.

Step 4: Write the equation for the capacitor voltage when t Ú 0 by sub-
stituting the values for the initial voltage, the time constant, and the final 
voltage into Eq. 7.20.

Step 5: Calculate any other quantities of interest, such as resistor current 
and voltage, using resistive circuit analysis techniques.

This method is summarized in Analysis Method 7.4.

RC STEP-RESPONSE METHOD

1. Determine the initial capacitor voltage, 
V0, by analyzing the circuit for t 6 0.

2. Calculate the time constant, t = RC, 
where R is the equivalent resistance 
connected to the inductor for t Ú 0.

3. Calculate the final value for the ca-
pacitor voltage, Vf, by analyzing the 
circuit as t S ∞ .

4. Write the equation for the capacitor 
voltage, v(t) = Vf + (V0 - Vf) e-t>t, for 
t Ú 0.

5. Calculate other quantities of interest 
using the capacitor voltage.

Analysis Method 7.4 Finding the RC step 
response.



A similar derivation for the current in the capacitor yields the differ-
ential equation

 
di
dt

+
1

RC
 i = 0. (7.21)

Equation 7.21 has the same form as Eq. 7.16, so the solution for i is ob-
tained by using the same translations used for the solution of Eq. 7.18. 
Thus

 i = aIs -
V0

R
be-t>RC,  t Ú 0+, (7.22)

where V0 is the initial voltage across the capacitor.
We obtained Eqs. 7.19 and 7.22 by applying a mathematical analogy 

to the solution for the step response of the RL circuit. Let’s see whether 
these solutions for the RC circuit make sense in terms of known circuit be-
havior. From Eq. 7.19, we have already observed that the initial capacitor 
voltage is V0, the final capacitor voltage is IsR, and the time constant of the 
circuit is RC. Also note that the solution for v is valid for t Ú 0. These ob-
servations are consistent with the behavior of a capacitor in parallel with a 
resistor when driven by a constant current source.

Equation 7.22 predicts that the current in the capacitor at t = 0+ is 
Is - V0>R. This prediction makes sense because the capacitor voltage can-
not change instantaneously, and therefore the initial current in the resistor 
is V0>R. The capacitor branch current changes instantaneously from zero at 
t = 0- to Is - V0>R at t = 0+. The capacitor current is zero at t = ∞ .

Example 7.6 illustrates how to use Analysis Method 7.4 to find the 
step response of a first-order RC circuit.

EXAMPLE 7.6 Determining the Step Response of an RC Circuit

The switch in the circuit shown in Fig. 7.29 has been 
in position 1 for a long time. At t = 0, the switch 
moves to position 2. Find

a) vo(t) for t Ú 0 and

b) io(t) for t Ú 0+.

Solution

Use Analysis Method 7.4. 

a) Step 1: Determine the initial voltage across the 
capacitor by analyzing the circuit in Fig. 7.29 for 
t 6 0. Do this by redrawing the circuit with the 
switch in position 1, as shown in Fig. 7.30. Note 
that the capacitor behaves like an open circuit 
because the switch has been in position 1 for a 

long time. The capacitor’s initial voltage is the 
same as the voltage across the 60 kΩ resistor, 
which we can find using voltage division:

V0 =
60,000

60,000 + 20,000
 (40) = 30 V.

Step 2: Calculate the time constant by finding 
the equivalent resistance attached to the capac-
itor for t Ú 0 in the circuit of Fig. 7.29. Begin by 
drawing the circuit in Fig. 7.29 with the switch 
in position 2, as shown in Fig. 7.31(a). Then find 
the Norton equivalent with respect to the ter-
minals of the capacitor. Begin by computing the 
open-circuit voltage, which is given by the -75 V 

40 V 60 kV 160 kV 75 V
io

1

2
0.25 mF vo

t 5 0
20 kV 8 kV 40 kV

2

1

1

2

1 2

Figure 7.29 ▲ The circuit for Example 7.6.

60 kV

20 kV

40 V
1

2
V0

1

2

Figure 7.30 ▲ The circuit in Fig. 7.29 when t 6 0.
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source divided across the 40 kΩ and 160 kΩ 
 resistors:

Voc =
160 * 103

(40 + 160) * 103 (-75) = -60 V.

Next, calculate the Thévenin resistance, as seen 
to the right of the capacitor, by shorting the 75 V 
source and making series and parallel combina-
tions of the resistors:

RTh = 8000 + 40,000 }160,000 = 40 kΩ.

The value of the Norton current source is the 
ratio of the open-circuit voltage to the Thévenin 
resistance, or -60>(40 * 103) = -1.5 mA. The 
resulting Norton equivalent circuit is shown in 
Fig. 7.31(b). From Fig. 7.31(b) we see that the 
equivalent resistance attached to the capacitor is 
40 kΩ, so the time constant is

t = RC = (40 * 103)(0.25 * 10-6) = 10 ms.

Step 3: Calculate the final value of the capaci-
tor voltage by analyzing the circuit in Fig. 7.29 as 
t S ∞ . The circuit is shown in Fig. 7.32, and since 

the switch has been in position 2 for a long time, 
the capacitor behaves like an open circuit. The 
final capacitor voltage equals the voltage across 
the 40 kΩ resistor, so

Vf = -(40 * 103)(1.5 * 10-3) = -60 V.

Step 4: Write the equation for capacitor voltage 
by substituting the values for initial capacitor 
voltage, time constant, and final capacitor voltage 
into Eq. 7.20 to give

 vo = Vf + (V0 - Vf)e-t>t

 = -60 + 330 - (-60)4e-t>0.01

 = -60 + 90e-100t V,  t Ú 0.

Step 5: We calculate the other quantity of inter-
est, io, in part (b).

b) Write the solution for io using the relationship 
between current and voltage in a capacitor to 
give

 io = C  
dvo

dt
= (0.25 * 10-6)(-9000e-100t)

 = -2.25e-100t mA.

Because dvo(0-)>dt = 0, the expression for io 
clearly is valid only for t Ú 0+.

8 kV 40 kV

160 kV
75 V0.25 mF

1

2 40 kV 1.5 mA0.25 mF

Figure 7.31 ▲  (a) The circuit in Fig. 7.29 when t Ú 0; (b) replacing the circuit to the right of the 
 capacitor in part (a) with its Norton equivalent.

40 kV 1.5 mAVf

1

2

Figure 7.32 ▲ The circuit in Fig. 7.29 as t S ∞ .

Objective 2—Be able to determine the step response of both RL and RC circuits

 7.6 a) Find the expression for the voltage across 
the 160 kΩ resistor in the circuit shown in 
Fig. 7.29. Let this voltage be denoted vA, and 
assume that the reference polarity for the 
voltage is positive at the upper terminal of 
the 160 kΩ resistor.

b) Specify the interval of time for which the 
expression obtained in (a) is valid.

Answer: a) -60 + 72e-100t V;
b) t Ú 0+.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 7.52 and 7.55.
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7.4 A General Solution for Step  
and Natural Responses

We can construct a general approach to finding either the natural re-
sponse or the step response of the first-order RL and RC circuits because 
their differential equations all have the same form. To generalize the 
solution of these four possible circuits, we let x(t) represent the unknown 
quantity, where x(t) represents the circuit variable that is required to be 
continuous for all time. Thus, x(t) is the inductor current for RL natural- 
and step-response circuits and is the capacitor voltage for RC natural- and 
step-response circuits. From Eqs. 7.16, 7.17, 7.18, and 7.21, we know that 
the differential equation describing both the natural and step responses of 
the RL and RC circuits takes the form

dx
dt

+
x
t

= K,

where the value of the constant K is zero for the natural response and 
nonzero for the step response.

How are the natural and step responses of RL circuits different, and 
how are they the same? Compare the circuits we analyzed to determine 
the natural and step responses of RL circuits using Figs. 7.3 and 7.20. 
The step-response circuit contains an independent source for t Ú 0, but 
the natural-response circuit does not. Now compare the analysis of the 
RL natural response and the RL step response (Analysis Methods 7.1  
and 7.3). There is one extra calculation in the step-response analysis that 
computes the final value of the inductor current. We can make Analysis 
Methods 7.1 and 7.3 exactly the same by recognizing that the final value of 
the inductor current in the natural-response circuit is 0. These same obser-
vations hold when comparing both the natural and step responses of RC 
circuits (Figs. 7.12 and 7.28) and the natural-response analysis and step- 
response analysis of RC circuits (Analysis Methods 7.2 and 7.4). So we can 
make Analysis Methods 7.2 and 7.4 exactly the same by recognizing that 
the final value of the capacitor voltage in the natural-response circuit is 0.

Next, let’s look at how the step response of an RL circuit is similar to 
and different from the step response of an RC circuit. Comparing Analysis 
Methods 7.2 and 7.4, we identify four important differences:

• In the RL circuit, we find the inductor current for t Ú 0; in the RC 
circuit, we find the capacitor voltage for t Ú 0.

• We analyze the RL circuit when t 6 0 to find the initial inductor current; 
we analyze the RC circuit when t 6 0 to find the initial capacitor voltage.

• We analyze the RL circuit when t Ú 0 to find the equivalent resis-
tance attached to the inductor and use it to calculate the circuit’s time 
constant, t = L>R; we analyze the RC circuit when t Ú 0 to find the 
equivalent resistance attached to the capacitor and use it to calculate 
the circuit’s time constant, t = RC.

• We analyze the RL circuit as t S ∞  to find the final inductor current; 
we analyze the RC circuit as t S ∞  to find the final capacitor voltage. 
If the circuit exhibits a natural response instead of a step response, we 
know that the final values are zero without performing circuit analysis.

Based on these comparisons, we can create a general step-by-step method 
to calculate the natural and step responses of both RL and RC circuits.

Step 1: Identify the variable x(t), which is the quantity that is required to 
be continuous for all time. This is the inductor current in RL circuits and 
the capacitor voltage in RC circuits.
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Step 2: Calculate the initial value X0, by analyzing the circuit to find x(t) 
for t 6 0.

Step 3: Calculate the time constant, t, for the circuit by analyzing the cir-
cuit for t Ú 0 to find the equivalent resistance attached to the inductor or 
capacitor. For RL circuits, t = L>R, and for RC circuits, t = RC.

Step 4: Calculate the final value Xf, by analyzing the circuit to find x(t) as 
t S ∞ . If the circuit exhibits a natural response, Xf = 0, so no calculation 
is needed.

Step 5: Write the equation for x(t) by substituting the initial value X0, the 
time constant t, and the final value Xf, into the expression

GENERAL METHOD FOR NAT-
URAL AND STEP RESPONSE  
OF RL AND RC CIRCUITS

1. Identify the variable x(t), which is the in-
ductor current for RL circuits and capacitor 
voltage for RC circuits.
2. Calculate the initial value X0, by analyz-
ing the circuit to find x(t) for t 6 0.
3. Calculate the time constant T; for RL 
circuits t = L>R and for RC circuits t = RC, 
where R is the equivalent resistance con-
nected to the inductor or capacitor for t Ú 0.
4. Calculate the final value Xf, by analyzing 
the circuit to find x(t) as t S ∞ ; for the natu-
ral response, Xf = 0.
5. Write the equation for x(t), 
x(t) = Xf + (X0 - Xf) e-t>t, for t Ú 0.
6. Calculate other quantities of interest 
using x(t).

Analysis Method 7.5 Finding the RL and 
RC natural and step response.

GENERAL SOLUTION FOR NATURAL AND STEP 
RESPONSES OF RL AND RC CIRCUITS

 x(t) = Xf + (X0 - Xf)e-t>t, t Ú 0. (7.23)

Step 6: Use x(t) to find any other quantities of interest in the circuit.

These general steps are summarized in Analysis Method 7.5. 
Examples 7.7–7.9 illustrate how to use Analysis Method 7.5 to find the 
natural or step responses of RC or RL circuits.

EXAMPLE 7.7  Using the General Solution Method to Find an RL Circuit’s 
Natural Response

The switch in the circuit shown in Fig. 7.33 has been 
closed for a long time. At t = 0 the switch opens 
and remains open.

a) What is the initial value of io?

b) What is the time constant of the circuit when the 
switch is open?

c) What is the final value of io?

d) What is the expression for io(t) when t Ú 0?

e) What is the expression for vo(t) when t Ú 0?

f) Find vo(0-) and vo(0+).

Solution

Use Analysis Method 7.5. 

a) Step 1: Identify the inductor current, io, as the 
variable of interest, because this is an RL circuit.
Step 2: Calculate the initial value of io. The switch 
has been closed for a long time, so the inductor 
behaves like a short circuit. Therefore, the current 
through the inductor is the current in the 25 Ω 

resistor. Using current division, the current in the 
25 Ω resistor is [(100 }25)>25](0.075) = 60 mA, 
so I0 = io(0) = 60 mA.

b) Step 3: Calculate the time constant t = L>R. 
When t Ú 0, the equivalent resistance attached 
to the inductor is the series combination of the 
100 Ω and 25 Ω resistors, or 125 Ω and.  Therefore,

t =
0.05
125

= 0.4 ms.

c) Step 4: Calculate the final value for the inductor 
current, If. This is a natural-response problem be-
cause for t Ú 0 there is no source in the circuit. 
Eventually, all of the energy stored in the inductor 
before the switch opens is dissipated by the resis-
tors and the inductor current is zero, so If = 0.

d) Step 5: Write the equation for the inductor cur-
rent by substituting the values for Io, t, and If into 
Eq. 7.23 to give

 io(t) = If + (I0 - If)e-t>t = 0 + (0.06 - 0)e-t>0.4 * 10-3

 = 60e-2500t mA,  t Ú 0.

e) Step 6: Use the inductor current to find the voltage 
across the 100 Ω, using Ohm’s law. The result is

vo(t) = -100io = -6e-2500t V, t Ú 0+.

25 V

50 mH75 mA 100 V
iot 5 0 1

2

vo

Figure 7.33 ▲ The circuit for Example 7.7.
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f) From part (a), when t 6 0 the switch is closed, 
and the current divides between the 100 Ω and 
25 Ω resistors. We know that the current in the 
25 Ω is 60 mA, so the current in the 100 Ω must 
be 75 - 60 = 15 mA. Using Ohm’s law,

vo(0-) = 100(0.015) = 1.5 V.

From part (e)

vo(0+) = -6e-2500(0+) = -6 V.

There is a discontinuity in the voltage across the 
100 Ω resistor at t = 0.

EXAMPLE 7.8  Using the General Solution Method to Find an RC  
Circuit’s Step Response

The switch in the circuit shown in Fig. 7.34 has been 
in position a for a long time. At t = 0 the switch is 
moved to position b.

a) What is the expression for vC(t) when t Ú 0?

b) What is the expression for i(t) when t Ú 0+?

c) How long after the switch is in position b does 
the capacitor voltage equal zero?

d) Plot vC(t) and i(t) versus t.

Solution

Use Analysis Method 7.5.

a) Step 1: Identify the capacitor voltage, vC, as  
the variable of interest, because this is an RC 
 circuit.

Step 2: Calculate the initial value of vC. The 
switch has been in position a for a long time, so 
the capacitor looks like an open circuit. There-
fore, the voltage across the capacitor is the 
voltage across the 60 Ω resistor. Using voltage 
division, the voltage across the 60 Ω resistor 
is [60>(60 + 20)](40) = 30 V, positive at the 
lower terminal of the resistor. But vC is posi-
tive at the upper terminal of the capacitor, so 
V0 = vC(0) = -30 V.

Step 3: Calculate the time constant t = RC. 
When t Ú 0, the equivalent resistance attached 
to the capacitor has the value 400 kΩ. Therefore,

t = (400 * 103)(0.5 * 10-6) = 0.2 s.

Step 4: Calculate the final value for the capaci-
tor voltage, Vf. As t S ∞ , the switch has been in 
position b for a long time, and the capacitor be-
haves like an open circuit in the presence of the 

90 V source. Because of the open circuit, there is 
no current in the 400 kΩ resistor, so Vf = 90 V.

Step 5: Write the equation for capacitor voltage 
by substituting the values for Vo, t, and Vf into 
Eq. 7.23 to give

 vC(t) = Vf + (V0 - Vf)e-t>t = 90 + (-30 - 90)e-t>0.2

 = 90 - 120e-5t V,  t Ú 0.

b) Step 6: Use the relationship between voltage and 
current for capacitors to find the capacitor voltage. 
The result is

 i(t) = C
dvC

dt
= (0.5 * 10-6)3 -5(-120e-5t)4

 = 300e-5t mA,  t Ú 0+.

c) To find how long the switch must be in position 
b before the capacitor voltage becomes zero, we 
solve the equation derived in (a) for the time 
when vC(t) = 0:

120e-5t = 90 or e5t =
120
90

,

so

t =
1
5

  ln a 4
3
b = 57.54 ms.

Note that when vC = 0, the voltage drop across 
the 400 kΩ resistor is 90 V so i = 225 mA. 

d) Figure 7.35 shows the graphs of vC(t) and i(t) 
 versus t.

60 V
0.5 mF

t 5 0

400 kV 20 V

i
1

2

vC

b a

90 V

1

2

40 V

2

1

Figure 7.34 ▲ The circuit for Example 7.8.
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Figure 7.35 ▲ The current and voltage waveforms for Example 7.8.
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EXAMPLE 7.9  Using the General Solution Method to Find an RL  
Circuit’s Step Response

The switch in the circuit shown in Fig. 7.36 has been 
open for a long time. At t = 0 the switch is closed. 
Find the expression for

a) i(t) when t Ú 0 and

b) v(t) when t Ú 0+.

Solution
Use Analysis Method 7.5.

a) Step 1: Identify the inductor current, i, as the 
variable of interest, because this is an RL circuit.

Step 2: Calculate the initial value of i. The 
switch has been open for a long time, so from 
Ohm’s law, the initial current in the inductor is 
20>(1 + 3) = 5 A. Thus, I0 = i(0) = 5 A.

Step 3: Calculate the time constant t = L>R. 
When t Ú 0, the switch is closed, shunting the 

3 Ω resistor. The remaining resistance attached 
to the inductor has the value 1 Ω. Therefore,

t =
80 * 10-3

1
= 80 ms.

Step 4: Calculate the final value for the induc-
tor current. As t S ∞ , the switch has been closed 
for a long time, and the inductor behaves like a 
short circuit in the presence of the 20 V source. 
Using Ohm’s law, the current in the inductor is 
20>1 = 20 A, so If = 20 A.

Step 5: Write the equation for inductor current 
by substituting the values for Io, t, and If into 
Eq. 7.23 to give

 i(t) = If + (I0 - If)e-t>t = 20 + (5 - 20)e-t>0.08

 = 20 - 15e-12.5t A,  t Ú 0.

b) Step 6: Use the relationship between voltage 
and current for inductors to find the inductor 
voltage. The result is

 v(t) = L
di
dt

= (80 * 10-3)3 -12.5(-15e-12.5t)4

 = 15e-12.5t V,  t Ú 0+.

i(t)

1

2
20 V 80 mH

1 V

3 V

v(t)

1

2

t 5 0

Figure 7.36 ▲ The circuit for Example 7.9.

Objectives 1 and 2—Be able to determine the natural and step response of both RL and RC circuits

 7.7 The switch in the circuit has been closed for a 
long time. At t = 0 the switch opens and stays 
open. Find the expression for vo(t) for t Ú 0.

Answer: 15e-8000t V, t Ú 0.

 7.8 The switch in the circuit has been open for a 
long time. The initial charge on the capacitor 
is zero. At t = 0 the switch is closed. Find the 
expression for
a) i(t) for t Ú 0+ and
b) v(t) for t Ú 0+.

Answer: a) 3e-200t mA, t Ú 0+;
b) 150 - 60e-200t V, t Ú 0+.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 7.56 and 7.59.

20 kV7.5 mA 30 kV
i(t)

v(t)

1

2

t 5 0
0.1 mF

60 V 5 nF 25 kV

75 kV

vo

1

2

1

2

t � 0
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Example 7.10 shows that Eq. 7.23 can even be used to find the step 
response of some circuits containing magnetically coupled coils.

EXAMPLE 7.10  Determining the Step Response of a  
Circuit with Magnetically Coupled Coils

There is no energy stored in the circuit in Fig. 7.37 
at the time the switch is closed.

a) Find the solutions for io, vo, i1, and i2.

b) Show that the solutions obtained in (a) make 
sense in terms of known circuit behavior.

Solution
a) For the circuit in Fig. 7.37, the magnetically cou-

pled coils can be replaced by a single inductor 
having an inductance of

Leq =
L1L2 - M2

L1 + L2 - 2M
=

45 - 36
18 - 12

= 1.5 H.

(See Problem 6.41.) It follows that the circuit in 
Fig. 7.37 can be simplified, as shown in Fig. 7.38. 
We can apply Analysis Method 7.5 to the circuit 
in Fig. 7.38.

Step 1: Identify the inductor current, io, as the 
variable of interest, because this is an RL circuit.

Step 2: Calculate the initial value of i. By hy-
pothesis, there is no initial energy stored in the 
coils, so there is no initial current in the equiva-
lent 1.5 H inductor. Thus, I0 = i(0) = 0.

Step 3: Calculate the time constant t = L>R. 
When t Ú 0, the switch is closed and the resis-
tance attached to the inductor has the value 
7.5 Ω. Therefore,

t =
1.5
7.5

= 0.2 s.

Step 4: Calculate the final value for the induc-
tor current. As t S ∞ , the switch has been closed 
for a long time, and the inductor behaves like a 
short circuit in the presence of the 120 V source. 
Using Ohm’s law, the current in the inductor is 
120>7.5 = 16 A, so If = 16 A.

Step 5: Write the equation for inductor current 
by substituting the values for Io, t, and If into 
Eq. 7.23 to give

 io(t) = If + (I0 - If)e-t>t = 16 + (0 - 16)e-t>0.2

 = 16 - 16e-5t A, t Ú 0.

Step 6: Use the inductor current and the rela-
tionship between voltage and current for induc-
tors to find the inductor voltage. The result is

 vo(t) = L
di
dt

= (1.5)3 -5(-16e-5t)4

 = 120e-5t V, t Ú 0+.

To find i1 and i2 we use KVL for the mesh contain-
ing the coupled coils in Fig. 7.37 to see that

3 

di1

dt
+ 6 

di2

dt
= 6 

di1

dt
  + 15 

di2

dt
 

or

di1

dt
= -3 

di2

dt
.

It also follows from Fig. 7.37 and KCL that 
io = i1 + i2, so

dio

dt
=

di1

dt
+

di2

dt
= -3

di2

dt
+

di2

dt
= -2

di2

dt
.

Therefore

80e-5t = -2
di2

dt
.

Because i2(0) is zero, we have

 i2 = L
t

0
-40e-5x dx

 = -8 + 8e-5t A,  t Ú 0.

Using io = i1 + i2, we get

 i1 = (16 - 16e-5t) - (-8 + 8e-5t)

 = 24 - 24e-5t A,  t Ú 0.

1

2

7.5 V

3 H

6 H

120 V

t 5 0

i1
15 H

i2

1

2

vo

io

Figure 7.37 ▲ The circuit for Example 7.10.

1

2

t 5 0

1.5 H

io

120 V

7.5 V

vo

2

1

Figure 7.38 ▲ The circuit in Fig. 7.37 with the magnetically 
 coupled coils replaced by an equivalent coil.
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b) First, we observe that io(0), i1(0), and i2(0) are all 
zero, which is consistent with the statement that no 
energy is stored in the circuit at the instant the switch 
is closed. Then we observe that vo(0+) = 120 V, 
which is consistent with the fact that io(0) = 0. 
Now we see that the solutions for i1 and i2 are con-
sistent with the solution for vo by observing

 vo = 3 

di1

dt
+ 6 

di2

dt
 

 = 360e-5t - 240e-5t

 = 120e-5t V,  t Ú 0+,

or

 vo = 6 

di1

dt
+ 15 

di2

dt
 

 = 720e-5t - 600e-5t

 = 120e-5t V,  t Ú 0+.

The final values of i1 and i2 can be checked using 
flux linkages. The flux linking the 3 H coil (l1) 
must be equal to the flux linking the 15 H coil 
(l2) because

vo =
dl1

dt
=

dl2

dt
.

Now

l1 = 3i1 + 6i2  Wb@turns

and

l2 = 6i1 + 15i2 Wb@turns.

Regardless of which expression we use, we obtain

l1 = l2 = 24 - 24e-5t  Wb@turns.

Note the solution for l1 or l2 is consistent with 
the solution for vo.

The final value of the flux linking either coil 
1 or coil 2 is 24 Wb-turns; that is,

l1(∞) = l2(∞) = 24  Wb@turns.

The final value of i1 is

i1(∞) = 24 A

and the final value of i2 is

i2(∞) = -8 A.

The consistency between these final values for i1 
and i2 and the final value of the flux linkage can 
be seen from the expressions:

 l1(∞) = 3i1(∞) + 6i2(∞)

 = 3(24) + 6(-8) = 24  Wb@turns,

 l2(∞) = 6i1(∞) + 15i2(∞)

 = 6(24) + 15(-8) = 24 Wb@turns.

The final values of i1 and i2 can only be checked 
via flux linkage because at t = ∞  the two coils 
are ideal short circuits. We cannot use cur-
rent division when the two branches have no 
 resistance

7.5 Sequential Switching
Whenever switching occurs at two or more distinct times in a circuit, we 
have sequential switching. For example, a single, two-position switch may 
be in position 1 at t1 and in position 2 at t2, or multiple switches may be 
opened or closed in sequence. We determine the voltages and currents gen-
erated by a switching sequence using the techniques described previously 
in this chapter, primarily Analysis Method 7.5. We derive the expressions 
for v(t) and i(t) for a given position of the switch or switches and then use 
these solutions to determine the initial conditions for the next position of 
the switch or switches.

With sequential switching problems, a premium is placed on obtain-
ing the initial value x(t0). Recall that anything but inductive currents and 
capacitive voltages can change instantaneously at the time of switching. 
Thus, solving first for inductive currents and capacitive voltages is even 
more pertinent in sequential switching problems. Drawing the circuit that 

SELF-CHECK: Assess your understanding of this material by using the general solution method to solve Chapter 
Problems 7.68 and 7.69.
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pertains to each time interval in such a problem is often helpful in the 
solution process.

Examples 7.11 and 7.12 illustrate the analysis techniques for circuits 
with sequential switching. The first example is a natural-response problem 
with two switching times, and the second is a step-response problem.

EXAMPLE 7.11 Analyzing an RL Circuit that has Sequential Switching

The two switches in the circuit shown in Fig. 7.39 
have been closed for a long time. At t = 0, switch 
1 is opened. Then, 35 ms later, switch 2 is opened.

a) Find iL(t) for 0 … t … 35 ms.

b) Find iL for t Ú 35 ms.

c) What percentage of the initial energy stored in 
the 150 mH inductor is dissipated in the 18 Ω re-
sistor?

d) Repeat (c) for the 3 Ω resistor.

e) Repeat (c) for the 6 Ω resistor.

Solution
We use Analysis Method 7.5 to solve this  problem.

a) Step 1: Identify the inductor current, iL, as the 
variable of interest, because this is an RL circuit.

Step 2: Calculate the initial value of i. For t 6 0 
both switches are closed, causing the 150 mH 
inductor to short-circuit the 18 Ω resistor. The 
equivalent circuit is shown in Fig. 7.40. We deter-
mine the initial current in the inductor by solving 
for iL(0-) in the circuit shown in Fig. 7.40. After 
making several source transformations, we find 
iL(0-) to be 6 A, so I0 = 6 A.

Step 3: Calculate the time constant t = L>R. 
For 0 … t … 35 ms, switch 1 is open (switch 2 
is closed), which disconnects the 60 V voltage 

source and the 4 Ω and 12 Ω resistors from 
the circuit. The inductor is no longer behaving 
as a short circuit (because the dc source is no 
longer in the circuit), so the 18 Ω resistor is no 
longer short-circuited. The equivalent circuit 
is shown in Fig. 7.41. Note that the equivalent 
resistance across the terminals of the inductor 
is the parallel combination of 9 Ω and 18 Ω, or 
6 Ω. Therefore,

t =
0.15

6
= 25 ms.

Step 4: Calculate the final value for the inductor 
current. For 0 … t … 35 ms there is no source in 
the circuit, so during this time period we have a 
natural-response problem and the final value of 
the inductor current is zero. Thus, If = 0.

Step 5: Write the equation for the inductor cur-
rent for 0 … t … 35 ms by substituting the values 
for Io, t, and If into Eq. 7.23 to give

 iL(t) = If + (I0 - If)e-t>t = 0 + (6 - 0)e-t>0.025

 = 6e-40t A, 0 … t … 35 ms.

b) Now we repeat Steps 2–5 for t Ú 35 ms.

Step 2: Calculate the initial value of the inductor 
current for this time segment. When t = 35 ms, 
the value of the inductor current is determined 
from the inductor current equation for the pre-
vious time segment because the inductor current 
must be continuous for all time. So,

iL(35 * 10-3) = 6e-40(35 * 10-3) = 6e-1.4 = 1.48 A.

Thus, for t Ú 35 ms, I0 = 1.48 A.

Step 3: Calculate the time constant t = L>R. For 
t Ú 35 ms, both switches are open, and the circuit 
reduces to the one shown in Fig. 7.42. Note that the 

18 V60 V

t 5 0

6 V12 V

1 2

4 V
t 5 35 ms

3 V

150 mH
1

2

iL
vL

1

2

Figure 7.39 ▲ The circuit for Example 7.11.

60 V 6 V12 V

4 V 3 V

1

2
iL(02)

Figure 7.40 ▲ The circuit shown in Fig. 7.39, for t 6 0.

18 V6 V

1
3 V
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2

iL

iL(01) 5 6A
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1
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Figure 7.41 ▲ The circuit shown in Fig. 7.39, for 0 … t … 35 ms. 
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equivalent resistance across the terminals of the in-
ductor is the series combination of 3 Ω and 6 Ω or 
9 Ω. Therefore,

t =
0.15

9
= 16.67 ms.

Step 4: Calculate the final value for the induc-
tor current. For t Ú 35 ms there is no source in 
the circuit, so during this time period we have a 
 natural-response problem, and the final value of 
the inductor current is zero. Thus, If = 0.

Step 5: Write the equation for inductor current 
when t Ú 35 ms by substituting the values for Io, 
t, and If into Eq. 7.23 to give

 iL(t) = If + (I0 - If)e-(t - t0)>t

= 0 + (1.48 - 0)e-(t - 0.035)>0.01667

 = 1.48e-60(t - 0.035) A, t Ú 35 ms.

Note that when switch 2 is opened, the time con-
stant changes and the exponential function is 
shifted in time by 35 ms.

Step 6: Use the inductor current to solve the re-
maining parts of this problem.

c) The 18 Ω resistor is in the circuit only during the 
first 35 ms of the switching sequence. During this 
interval, the voltage across the resistor is

 vL = 0.15
d
dt

 (6e-40t)

 = -36e-40t V, 0 6 t 6 35 ms.

The power dissipated in the 18 Ω resistor is

p =
vL

2

18
= 72e-80t W, 0 6 t 6 35 ms.

Hence, the energy dissipated is

 w = L
0.035

0
72e-80t dt

 =
72

-80
 e-80t `

0

0.035

 = 0.9(1 - e-2.8) = 845.27 mJ.

The initial energy stored in the 150 mH inductor is

w0 =
1
2

 (0.15)(6)2 = 2.7 J = 2700 mJ.

Therefore, (845.27>2700) *  100, or 31.31% of 
the initial energy stored in the 150 mH inductor 
is dissipated in the 18 Ω resistor.

d) For 0 6 t 6 35 ms, the voltage across the 3 Ω 
resistor is

 v3Ω = avL

9
b(3)

 =
1
3

 vL

 = -12e-40t V.

Therefore, the energy dissipated in the 3 Ω resis-
tor in the first 35 ms is

 w3Ω = L
0.035

0

(-12e-40t)2

3
 dt

 = 0.6(1 - e-2.8)

 = 563.51 mJ.

For t 7 35 ms, the current in the 3 Ω resistor is

i3Ω = iL = (6e-1.4)e-60(t - 0.035) A.

Hence, the energy dissipated in the 3 Ω resistor 
for t 7 35 ms is

 w3Ω = L
∞

0.035
3i3Ω

2 dt

 = L
∞

0.035
3(6e-1.4)2(e-60(t - 0.035))2dt

 = 108e-2.8 *  
e-120(t - 0.035)

-120
 `

0.035

∞

 =
108
120

 e-2.8 = 54.73 mJ.

The total energy dissipated in the 3 Ω resistor is

 w3Ω(total) = 563.51 + 54.73

 = 618.24 mJ.

The percentage of the initial energy stored is

618.24
2700

 * 100 = 22.90%.

e) Because the 6 Ω resistor is in series with the 3 Ω 
resistor, the energy dissipated and the percentage 

3 V

6 V 150 mH

iL
vL

1

2
iL(0.035) � 1.48A

Figure 7.42 ▲ The circuit shown in Fig. 7.39, for t Ú 35 ms. 
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of the initial energy stored will be twice that of the 
3 Ω resistor:

w6Ω(total) = 1236.48 mJ,

and the percentage of the initial energy stored is 
45.80%. We check these calculations by observing that

1236.48 + 618.24 + 845.27 = 2699.99 mJ

and

31.31 + 22.90 + 45.80 = 100.01%.

The small discrepancies in the summations are 
the result of roundoff errors.

EXAMPLE 7.12 Analyzing an RC Circuit that Has Sequential Switching

The uncharged capacitor in the circuit shown in 
Fig. 7.43 is initially switched to terminal a of the 
three-position switch. At t = 0, the switch is moved 
to position b, where it remains for 15 ms. After 
the 15 ms delay, the switch is moved to position c, 
where it remains indefinitely.

a) Derive the numerical expression for the voltage 
across the capacitor.

b) Plot the capacitor voltage versus time.

c) When will the voltage on the capacitor equal 
200 V?

Solution
We use Analysis Method 7.5 to solve this problem.

a) Step 1: Identify the capacitor voltage, v, as the 
variable of interest, because this is an RC circuit.

Step 2: Calculate the initial value of v. For 
t 6 0, the capacitor is initially uncharged, so 
V0 = v(0) = 0 V.

Step 3: Calculate the time constant t = RC. 
When 0 … t … 15 ms, the equivalent resistance 
attached to the capacitor has the value 100 kΩ.  
Therefore,

t = (100 * 103)(0.1 * 10-6) = 10 ms.

Step 4: Calculate the final value for the capac-
itor voltage, Vf. If the switch were to remain in 
 position b for a long time, the capacitor would 
eventually behave like an open circuit in the pres-
ence of the 400 V source. Because of the open 

circuit, there would be no current in the 100 k Ω re-
sistor, so Vf = 400 V.

Step 5: Write the equation for capacitor voltage by 
substituting the values for Vo, t, and Vf into Eq. 7.23 
to give

 v(t) = Vf + (V0 - Vf)e-t>t = 400 + (0 - 400)e-t>0.01

 = 400 - 400e-100t V, 0 … t … 15 ms.

Now we repeat Steps 2–5 for the next time interval, 
t Ú 15 ms.

Step 2: Calculate the initial value of v. At t = 15 ms,  
the capacitor voltage is determined by the equation 
we derived for the previous time interval. So,

 v(0.015) = 400 - 400e-100(0.015) = 400 - 400e-1.5

 = 310.75 V.

Thus, V0 = v(0.015) = 310.75 V.

Step 3: Calculate the time constant t = RC.  
When t Ú 15 ms, the equivalent resistance attached 
to the capacitor has the value 50 kΩ. Therefore,

t = (50 * 103)(0.1 * 10-6) = 5 ms.

Step 4: Calculate the final value for the capacitor 
voltage, Vf. For t Ú 15 ms, the switch remains in po-
sition c for a long time, and there is no source in the 
circuit. During this time interval, the circuit exhibits 
a natural response, so Vf = 0.

Step 5: Write the equation for capacitor voltage by 
substituting the values for Vo, t, and Vf into Eq. 7.23 
to give

 v(t) = Vf + (V0 - Vf)e-(t - t0)>t

= 0 + (310.75 - 0)e-(t - 0.015)>0.005

 = 310.75e-200(t - 0.015) V,  t Ú 15 ms.

Step 6: Use the capacitor voltage to solve the re-
maining parts of this problem.

b) Figure 7.44 shows the plot of v versus t.

400 V
50 kV

100 kV

a

b

c
1

2

v(t) 0.1mF
1

2

Figure 7.43 ▲ The circuit for Example 7.12.
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c) The plot in Fig. 7.44 reveals that the capacitor 
voltage will equal 200 V at two different times: 
once in the interval between 0 and 15 ms and 

once after 15 ms. We find the first time by solving 
the expression

200 = 400 - 400e-100t1,

which yields t1 = 6.93 ms. We find the second 
time by solving the expression

200 = 310.75e-200(t2 - 0.015).

In this case, t2 = 17.20 ms.

50

100

200

300
v 5 400 2 400e2100t

v 5 310.75e2200(t 2 0.015)

v (V)

10 15 20 25
t (ms)

Figure 7.44 ▲ The capacitor voltage for Example 7.12.

40 kV 25 kV 100 kV

60 kV
t 5 0 t 5 10 ms

1

2

vc(t)10 mA 1mF

1 2

Objective 3—Know how to analyze circuits with sequential switching

 7.9 In the circuit shown, switch 1 has been closed, 
and switch 2 has been open for a long time. 
At t = 0, switch 1 is opened. Then 10 ms later, 
switch 2 is closed. Find
a) vc(t) for 0 … t … 0.01 s,
b) vc(t) for t Ú 0.01 s,
c) the total energy dissipated in the 25 kΩ 

resistor, and
d) the total energy dissipated in the 100 kΩ 

resistor.

Answer: a) 80e-40t V;
b) 53.63e-50(t - 0.01) V;
c) 2.91 mJ;
d) 0.29 mJ.

 7.10 Switch a in the circuit shown has been open for 
a long time, and switch b has been closed for a 
long time. Switch a is closed at t = 0 and, after 
remaining closed for 1 s, is opened again. Switch 
b is opened simultaneously, and both switches 
remain open indefinitely. Determine the expres-
sion for the inductor current i that is valid when 
(a) 0 … t … 1 s and (b) t Ú 1 s.

Answer: a) 3 - 3e-0.5t A; 
b) -4.8 + 5.98e-1.25(t - 1) A.  

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 7.73 and 7.78.

1

2

2 V 9 V0.8 V a

b

8 A

10 V

t 5 1 s

t 5 0

t 5 1 s

3 V 3 V 6 V2 H i

7.6 Unbounded Response
A circuit response may grow, rather than decay, exponentially with time. 
This type of response, called an unbounded response, is possible if the cir-
cuit contains dependent sources. In circuits with an unbounded response, 
the Thévenin equivalent resistance with respect to the terminals of either 
an inductor or a capacitor is negative. This negative resistance generates 
a negative time constant, and the resulting currents and voltages increase 
without limit. In an actual circuit, a component eventually breaks down or 
saturates, halting the unbounded response.

We cannot use Analysis Method 7.5 to analyze a circuit with an un-
bounded response because calculating a final value of voltage or current is 
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not possible. Instead, we must derive the differential equation describing 
the circuit’s response and then solve it using the separation of variables 
technique. Example 7.13 analyzes a circuit with an unbounded response to 
illustrate this technique.

As an engineer, you should be aware that interconnected circuit ele-
ments may create unbounded responses. If such interconnections are un-
intended, the resulting circuit may experience unexpected, and potentially 
dangerous, component failures.

EXAMPLE 7.13 Finding the Unbounded Response in an RC Circuit

a) When the switch is closed in the circuit shown in 
Fig. 7.45, the voltage on the capacitor is 10 V. Find 
the expression for vo for t Ú 0.

b) Assume that the capacitor short-circuits when 
its terminal voltage reaches 150 V. How many 
milliseconds elapse before the capacitor short- 
circuits?

Solution

a) We need to write the differential equation that 
describes the capacitor voltage, vo. To make this 
task easier, let’s simplify the circuit attached to the 
capacitor by replacing it with its Thévenin equiva-
lent. This subcircuit is shown in Fig. 7.46, and as you 
can see, it does not contain an independent source. 
Thus, the Thévenin equivalent consists of a single 
resistor. To find the Thévenin equivalent resistance 
for the circuit in Fig. 7.46, we use the test-source 
method (see Example 4.18, p. 152), where vT is the 
test voltage and iT is the test current. Writing a KCL 
equation at the top node, we get

iT =
vT

10 * 103 - 7a vT

20 * 103 b +
vT

20 * 103 

Solving for the ratio vT>iT yields the Thévenin 
resistance:

RTh =
vT

iT
= -5 kΩ.

We replace the two resistors and the dependent 
source in Fig. 7.45 with RTh to get the circuit 
shown in Fig. 7.47. For t Ú 0, write a KCL equa-
tion at the top node to construct the differential 
equation describing this circuit:

(5 * 10-6)
dvo

dt
+

vo

-5000
= 0

Dividing by the coefficient of the first derivative 
yields

dvo

dt
- 40vo = 0.

This equation has the same form as Eq. 7.1, 
so we can find vo(t) using the same separation 
of variables technique applied to Eq. 7.1 (see  
p. 250). Thus, the capacitor voltage is

vo(t) = 10e40t V, t Ú 0.

b) vo = 150 V when e40t = 15.  
Therefore, 40t =  ln  15, and t = 67.70 ms.

t 5 0
10 kV 20 kV7iDvo iD10 V 5 mF

1

2

1

2

Figure 7.45 ▲ The circuit for Example 7.13.

10 kV 20 kV7iD iD

iT

vT

1

2

Figure 7.46 ▲ The test-source method used to find RTh.

25 kV10 V
t 5 0

vo5 mF
1

2

1

2

Figure 7.47 ▲ A simplification of the circuit shown in Fig. 7.45.

SELF-CHECK: Assess your understanding of this material by trying Chapter Problems 7.87 and 7.88.
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7.7 The Integrating Amplifier
We are now ready to analyze an integrating-amplifier circuit, shown in 
Fig. 7.48, which is based on the op amp presented in Chapter 5. This 
circuit generates an output voltage proportional to the integral of the 
input voltage. In Fig. 7.48, we added the branch currents if and is, along 
with the node voltages vn and vp, to aid our analysis. We assume that the 
op amp is ideal. Write a KCL equation at the inverting input node, and 
remember that the current into the ideal op amp at its input terminals is 
zero, to get

if + is = 0.

Also, the ideal op amp constrains the voltages at its two input terminals 
to give

vn = vp.

In the integrating amplifier circuit, vp = 0, so using Ohm’s law

is =
vs

Rs
,

and using the relationship between voltage and current for a capacitor,

if = Cf  
dvo

dt
.

Substituting the expressions for is and if into the KCL equation and 
solving for dvo>dt, we get

dvo

dt
= -

1
RsCf

 vs.

Multiplying both sides of this equation by a differential time dt and then 
integrating from t0 to t generates the equation

 vo(t) = -
1

RsCf
 L

t

t0

vs dy + vo(t0). (7.24)

In Eq. 7.24, t0 represents the instant in time when we begin the integra-
tion. Thus, vo(t0) is the value of the output voltage at that time. Also, be-
cause vn = vp = 0, vo(t0) is identical to the initial voltage on the feedback 
capacitor Cf.

Equation 7.24 states that the output voltage of an integrating ampli-
fier equals the initial value of the voltage on the capacitor plus an inverted 
(minus sign), scaled (1>RsCf) replica of the integral of the input voltage. 
If no energy is stored in the capacitor when integration commences,  
Eq. 7.24 reduces to

vo(t) = -
1

RsCf
 L

t

t0

vs dy.

For example, assume that the input voltage is the rectangular voltage 
pulse shown in Fig. 7.49. Assume also that the initial value of vo(t) is zero 
at the instant vs steps from 0 to Vm. Using Eq. 7.24, we see that

vo = -
1

RsCf
 Vmt + 0, 0 … t … t1.

1

2

2

1

if

Cf

Rs VCC

2VCC
vs

vovp
vn

is 1

2

1

2

1

2

Figure 7.48 ▲ An integrating amplifier.

t1 2t1 t

Vm

vs

2Vm

0

Figure 7.49 ▲ An input voltage signal.
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When t lies between t1 and 2t1,

 vo = -
1

RsCf
 L

t

t1

 (-Vm) dy-  
1

RsCf
 Vmt1

 =
Vm

RsCf
 t -

2Vm

RsCf
 t1,  t1 … t … 2t1.

Figure 7.50 shows a plot of vo(t) versus t. Clearly, the output voltage is 
an inverted, scaled replica of the integral of the input voltage.

The output voltage is proportional to the integral of the input voltage 
only if the op amp operates within its linear range—that is, if it doesn’t 
saturate. Examples 7.14 and 7.15 further illustrate the analysis of the inte-
grating amplifier.

t1 t2t10

vo

Vmt1
RsCf

2

Figure 7.50 ▲ The output voltage of an integrating 
amplifier.

EXAMPLE 7.14 Analyzing an Integrating Amplifier

Assume that the numerical values for the voltage 
shown in Fig. 7.49 are Vm = 50 mV and t1 = 1 s. 
We apply this voltage to the integrating-amplifier 
circuit shown in Fig. 7.48. The circuit parameters of 
the amplifier are Rs = 100 kΩ, Cf = 0.1 mF, and 
VCC = 6 V. The capacitor’s initial voltage is zero.

a) Calculate vo(t).

b) Plot vo(t) versus t.

Solution

a) For 0 … t … 1 s,

 vo =
-1

(100 * 103)(0.1 * 10-6)
 50 * 10-3t + 0

 = -5t V, 0 … t … 1 s.

For 1 … t … 2 s,

vo = (5t - 10) V.

b) Figure 7.51 shows a plot of vo(t) versus t.

10

25

2 t (s)

vo (V)

Figure 7.51 ▲ The output voltage for Example 7.14.

EXAMPLE 7.15 Analyzing an Integrating Amplifier that Has Sequential Switching

At the instant the switch makes contact with ter-
minal a in the circuit shown in Fig. 7.52, the volt-
age on the 0.1 mF capacitor is 5 V. The switch 

1

2

1

2

2

1

100 kV 6 V

26 V
8 V

10 V

a

5 V

b

0.1 mF

21

1

2

vo

t 5 9 ms

Figure 7.52 ▲ The circuit for Example 7.15.

remains at terminal a for 9 ms and then 
moves instantaneously to terminal b. How 
many milliseconds after making contact 
with terminal b does the op  amp saturate?

Solution
The expression for the output voltage 
during the time the switch is at terminal a is

 vo =
-1

(100 * 103)(0.1 * 10-6)
 L

t

0
(-10)dy + (-5)

 = (1000t - 5) V.
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Thus, 9 ms after the switch makes contact with  
terminal a, the output voltage is 1000(9 * 10-3) - 5 
=  4 V. Note that the op amp does not saturate 
during its first 9 ms of operation.

The expression for the output voltage after the 
switch moves to terminal b is

vo =
-1

(100 * 103)(0.1 * 10-6)
 L

t

9 * 10-3
8dy + 4

 = -800(t - 9 * 10-3) + 4

 = (11.2 - 800t) V.

When the switch is at terminal b, the voltage is 
decreasing, and the op amp eventually saturates at 
-6 V. Therefore, we set the expression for vo equal 
to -6 V to obtain the saturation time ts:

11.2 - 800ts = -6,

or

ts = 21.5 ms.

Thus, the integrating amplifier saturates 21.5 ms af-
ter making contact with terminal b.

Objective 4—Be able to analyze op amp circuits containing resistors and a single capacitor

 7.11 There is no energy stored in the capacitor at the 
time the switch in the circuit makes contact with 
terminal a. The switch remains at position a for  
32 ms and then moves instantaneously to position 
b. How many milliseconds after making contact 
with terminal a does the op amp saturate?

Answer: 262 ms.

 7.12 a) When the switch closes in the circuit shown, 
there is no energy stored in the capacitor. How 
long does it take to saturate the op amp?

b) Repeat (a) with an initial voltage on the ca-
pacitor of 1 V, positive at the upper terminal.

Answer: a) 1.11 ms;
b) 1.76 ms.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 7.94 and 7.95.

2

1

10 V

1

2

vo

215 V

40 kV

90 kV

160 kV

1

2
5 V

2

1
10 V

0.2 mF

a

b t 5 32 ms
t 5 0

5 V

25 V
vo

1

2

2 V
2

1
0.01 mF

160 kV

40 kV10 kV

2

1

6.8 kV

From the examples, we see that the integrating amplifier can perform the 
integration function very well but only within specified limits that avoid satu-
rating the op amp. The op amp saturates because charge accumulates on the 
feedback capacitor. We can prevent saturation by placing a resistor in parallel 
with the feedback capacitor. We examine such a circuit in Chapter 8.

Note that we can convert the integrating amplifier to a differentiating 
amplifier by interchanging the input resistance Rs and the feedback capac-
itor Cf. Then

vo = -RsCf  
dvs

dt
.

We leave the derivation of this expression as an exercise for you. The dif-
ferentiating amplifier is seldom used because in practice it is a source of 
 unwanted or noisy signals.

Finally, we can use an inductor instead of a capacitor to create both in-
tegrating- and differentiating- amplifier circuits. Since it is easier to fabricate 
capacitors for integrated-circuit devices, inductors are rarely used in integrat-
ing amplifiers.
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Practical Perspective
Artificial Pacemaker
The RC circuit shown in Fig. 7.53 can be used in an artificial pacemaker 
to establish a normal heart rhythm by generating periodic electrical im-
pulses. The box labeled “controller” behaves as an open circuit until the 
voltage drop across the capacitor reaches a preset limit. Once that limit 
is reached, the capacitor discharges its stored energy in the form of an 
electrical impulse to the heart, starts to recharge, and then the process 
repeats.

Before we develop the analytical expressions that describe the cir-
cuit’s behavior, let’s get a feel for how the circuit works. First, when the 
controller behaves like an open circuit, the dc voltage source will charge 
the capacitor via the resistor R, toward a value of Vs volts. But once the 
capacitor voltage reaches Vmax, the controller behaves like a short cir-
cuit, enabling the capacitor to discharge. Once the capacitor discharge 
is complete, the controller again acts like an open circuit and the ca-
pacitor starts to recharge. This cycle of charging and discharging the 
capacitor establishes the desired heart rhythm, as shown in Fig. 7.54.

In drawing Fig. 7.54, we have chosen t = 0 at the instant the capac-
itor starts to charge. This plot also assumes that the circuit has reached 
the repetitive stage of its operation and that the time to discharge the 
capacitor is negligible when compared to the recharge time. We need 
an equation for vC(t) as a function of Vs, R, and C to design the artificial 
pacemaker circuit.

To begin the analysis, we assume that the circuit has been in opera-
tion for a long time. Let t = 0 at the instant when the capacitor has com-
pletely discharged and the controller is acting as an open circuit. From 
the circuit we find the initial and final values of the capacitor voltage and 
the circuit’s time constant:

 V0 = vC(0) = 0;

 Vf = vC(∞) = Vs; and t = RC.

To find the capacitor voltage while the capacitor is charging, substitute 
the initial and final values of the capacitor voltage and the circuit’s time 
constant into Eq. 7.23 and simplify to get

vC(t) = Vs (1 - e-t>RC).

Suppose the controller is programmed to generate an electrical 
pulse that stimulates the heart when vC = 0.75 Vs = V max . Given values 
of R and C, we can determine the resulting heart rate, H, in beats per 
minute as follows:

H =
60

-RC  ln  0.25
  [beats per minute]

A more realistic design problem requires you to calculate the value 
of resistance, R, given Vmax as a percentage of Vs , C, and the desired 
heart rate in beats per minute. Developing an equation for resistance, R, 
is the focus of Problem 7.106.

SELF-CHECK: Assess your understanding of the Practical Perspective 
by solving Chapter Problems 7.104–7.107.

Controller

R

Vs C vC

2

1

2

1

Figure 7.53 ▲ An artificial pacemaker circuit.

Vmax

etc.

tc t

vC(t)

Figure 7.54 ▲ Capacitor voltage versus time for the 
circuit in Fig. 7.55.

R

Vs C

1

2

vC

1

2

Figure 7.55 ▲ The artificial pacemaker circuit at 
t = 0, when the capacitor is charging.
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Summary

• A first-order circuit may be reduced to a Thévenin (or 
Norton) equivalent connected to either a single equiva-
lent inductor or capacitor. (See page 248.)

• The natural response is the currents and voltages that 
exist when stored energy is released to a circuit that con-
tains no independent sources. (See page 248.)

• The time constant of an RL circuit equals the equiva-
lent inductance divided by the Thévenin resistance as 
viewed from the terminals of the equivalent inductor. 
(See page 251.)

• The time constant of an RC circuit equals the equivalent 
capacitance times the Thévenin resistance as viewed from 
the terminals of the equivalent capacitor. (See page 257.)

• The step response is the currents and voltages that re-
sult from abrupt changes in dc sources connected to a 
circuit. Stored energy may or may not be present at the 
time the abrupt changes take place. (See page 261.)

• Analysis Method 7.5 can be used to find the solution for 
the natural and step responses of both RL and RC circuits:

Step 1: Identify the variable x(t), which is the quantity 
that is required to be continuous for all time. This is the 
inductor current in RL circuits and the capacitor voltage 
in RC circuits.

Step 2: Calculate the initial value X0, by analyzing the 
circuit to find x(t) for t 6 0.

Step 3: Calculate the time constant, t, for the circuit by 
analyzing the circuit for t Ú 0 to find the equivalent re-
sistance attached to the inductor or capacitor. For RL 
circuits, t = L>R, and for RC circuits, t = RC.

Step 4: Calculate the final value Xf, by analyzing the 
circuit to find x(t) as t S ∞ . If the circuit exhibits a natu-
ral response, Xf = 0, so no calculation is needed.

Step 5: Write the equation for x(t) by substituting the 
initial value X0, the time constant t, and the final value Xf, 
into the expression x(t) = Xf + (X0 - Xf)e-t>t, t Ú 0.

Step 6: Use x(t) to find any other quantities of interest 
in the circuit. (See page 270.)

• Sequential switching in first-order circuits is analyzed 
by dividing the analysis into time intervals corre-
sponding to specific switch positions. Initial values for 
a particular interval are determined from the solution 
corresponding to the immediately preceding interval. 
(See page 274.)

• An unbounded response occurs when the Thévenin 
resistance is negative, which is possible when the first- 
order circuit contains dependent sources. (See page 278.)

• An integrating amplifier consists of an ideal op amp, a 
capacitor in the negative feedback branch, and a resistor 
in series with the signal source. It outputs the integral of 
the signal source, within specified limits that avoid satu-
rating the op amp. (See page 280.)

Problems

Section 7.1

 7.1 The switch in the circuit in Fig. P7.1 has been open 
for a long time. At t = 0 the switch is closed.

a) Determine io(0) and io(∞).

b) Determine io(t) for t Ú 0.

c) How many milliseconds after the switch has 
been closed will io equal 5 A?

Figure P7.1

2 V 4 V

1 H12 V

io
t = 01

2

 7.2 The switch in the circuit in Fig. P7.2 has been closed 
for a long time. At t = 0 it is opened.

PSPICE

MULTISIM

PSPICE

MULTISIM

a) Write the expression for io(t) for t Ú 0.

b) Write the expression for vo(t) for t Ú 0+.

Figure P7.2

20 V

50 V

50 V
t 5 0

io
75 V 60 V 15 V0.02 H

3 V

1

2

1

2

vo

 7.3 In the circuit shown in Fig. P 7.3, the switch makes 
contact with position b just before breaking contact 
with position a. This is known as a make-before-
break switch and it ensures that the inductor current 
is continuous. The interval of time between “mak-
ing” and “breaking” is assumed to be negligible. 
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 7.7 In the circuit in Fig. P 7.7, the switch has been closed 
for a long time before opening at t = 0.

a) Find the value of L so that vo(t) equals 0.5 vo(0+) 
when t = 1 ms.

b) Find the percentage of the stored energy that has 
been dissipated in the 10 Ω resistor when t = 1 ms.

Figure P7.7

1 kV 10 V

t 5 0

9 kV

30 mA L

1

2

vo

 7.8 The switch in the circuit in Fig. P 7.8 has been closed 
for a long time before opening at t = 0.

a) Find i1(0-) and i2(0-).

b) Find i1(0+) and i2(0+).

c) Find i1(t) for t Ú 0.

d) Find i2(t) for t Ú 0+.

e) Explain why i2(0-) ≠ i2(0+).

Figure P7.8

1

2
80 V

t 5 0

5 kVi2 600 mH

2 kV 15 kV

i1

 7.9 The switch shown in Fig. P 7.9 has been open for a 
long time before closing at t = 0.

a) Find io(0-), iL(0-), and vL(0-).

b) Find io(0+), iL(0+), and vL(0+).

c) Find io(∞), iL(∞), and vL(∞).

d) Write the expression for iL(t) for t Ú 0.

e) Write the expression for io(t) for t Ú 0+.

f) Write the expression for vL(t) for t Ú 0+.

Figure P7.9

50 V

25 V

200 V

50 mH

io

iL
i = 0 

1

2

vL
1

2

 7.10 The switch in the circuit seen in Fig. P 7.10 has been 
in position 1 for a long time. At t = 0, the switch 
moves instantaneously to position 2. Find the value 
of R so that 10% of the initial energy stored in the 
10 mH inductor is dissipated in R in 10 ms.

PSPICE

MULTISIM

The switch has been in the a position for a long 
time. At t = 0 the switch is thrown from position a 
to  position b.

a) Determine the initial current in the inductor.

b) Determine the time constant of the circuit for 
t 7 0.

c) Find i, v1, and v2 for t Ú 0.

d) What percentage of the initial energy stored in 
the inductor is dissipated in the 90 Ω resistor 
1 ms after the switch is thrown from position a 
to position b?

Figure P7.3

1

2
100 V

90 V

30 V

i

70 V

0.32 H

1

2

v1
1

2

v2

t 5 0

a

b

 7.4 The switch in the circuit in Fig. P 7.4 has been in po-
sition 1 for a long time. At t = 0, the switch moves 
instantaneously to position 2. Find vo(t) for t Ú 0+.

Figure P7.4

15 V

5 V
40 V 8 V100 V

10 V

2

30 mH

vo

1

t 5 0
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1

 7.5 For the circuit of Fig. P 7.4, what percentage of the 
initial energy stored in the inductor is eventually 
dissipated in the 8 Ω resistor?

 7.6 The two switches in the circuit seen in Fig. P 7.6 are 
synchronized. The switches have been closed for a 
long time before opening at t = 0.

a) How many microseconds after the switches are 
open is the energy dissipated in the 4 kΩ resis-
tor 10% of the initial energy stored in the 6 H 
inductor?

b) At the time calculated in (a), what percentage of 
the total energy stored in the inductor has been 
dissipated?

Figure P7.6

6 H

180 kV105 mA

t 5 0

4 kV4 kV

t 5 0

20 kV
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Figure P7.14

10 V

75 V 25 mH3.5 vo vo

t 5 0

2

2

1

1

 7.15 The switch in Fig. P 7.15 has been closed for a long 
time before opening at t = 0. Find

a) iL(t), t Ú 0.

b) vL(t), t Ú 0+.

c) i∆(t), t Ú 0+.

Figure P7.15

2

1
120 V 60 V 100 V 60 V

t 5 0

iL iD

250 mH

40 V 6 V
1

2

vL
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 7.16 What percentage of the initial energy stored in the 
inductor in the circuit in Fig. P 7.15 is dissipated by 
the 60 Ω resistor?

 7.17 The two switches shown in the circuit in Fig. P 7.17 
operate simultaneously. Prior to t = 0, each switch 
has been in its indicated position for a long time. 
At t = 0 the two switches move instantaneously to 
their new positions. Find

a) vo(t), t Ú 0 +.

b) io(t), t Ú 0.

Figure P7.17

2 A

7.5 kV

10 V

t 5 0

t 5 0

15 H io 5 H

1.25 H

1

2

vo

 7.18 For the circuit seen in Fig. P 7.17, find

a) the total energy dissipated in the 7.5 k resistor.

b) the energy trapped in the ideal inductors.

 7.19 In the circuit shown in Fig. P 7.19, the switch has 
been in position a for a long time. At t = 0, it moves 
instantaneously from a to b.
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Figure P7.10

100 V R

t 5 0

10 mH

21

5 A

 7.11 In the circuit in Fig. P 7.10, let Ig represent the dc 
current source, s represent the fraction of initial  
energy stored in the inductor that is dissipated in to 
seconds, and L represent the inductance.

a) Show that

R =
L ln [1>(1 - s)]

2to
.

b) Test the expression derived in (a) by using it to 
find the value of R in Problem 7.10.

 7.12 In the circuit in Fig. P 7.12, the voltage and current 
expressions are

 v = 400e-5t  V, t Ú 0+;

 i = 10e-5t A,    t Ú 0. 

Find

a) R.

b) t (in milliseconds).

c) L.

d) the initial energy stored in the inductor.

e) the time (in milliseconds) it takes to dissipate 
80% of the initial stored energy.

Figure P7.12

L Rv

1

2

i

 7.13 a) Use component values from Appendix H to cre-
ate a first-order RL circuit (see Fig. 7.4) with a 
time constant of 1 ms. Use a single inductor and 
a network of resistors, if necessary. Draw your 
circuit.

b) Suppose the inductor you chose in part (a) has 
an initial current of 10 mA. Write an expression 
for the current through the inductor for t Ú 0.

c) Using your result from part (b), calculate the 
time at which half of the initial energy stored in 
the inductor has been dissipated by the resistor.

 7.14 A switch in the circuit in Fig. P 7.14 has been closed 
for a long time before opening at t = 0. Find vo(t) 
for t Ú 0+.
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Figure P7.21

10 kV

10 mA 20 kV 50 kV 75 kV

t 5 0

400 nFv

10 kV

2

1

 7.22 The switch shown in Fig. P 7.22 has been open for a 
long time before closing at t = 0. Write the expres-
sion for the capacitor voltage, v(t), for t Ú 0.

Figure P7.22

20 mA 20 kV 60 kV 40 nF

10 kV

t 5 0

1

2

v

 7.23 The switch in the circuit in Fig. P 7.23 has been in the 
left position for a long time. At t = 0 it moves to the 
right position and stays there.

a) Write the expression for the capacitor voltage, 
v(t), for t Ú 0.

b) Write the expression for the current through the 
2.4 kΩ resistor, i(t), for t Ú 0+.

Figure P7.23

40 mA 3.3 kV2.7 kV 0.5 mF
t = 0

2.4 kV

3.6 kV3 kV

i
1

2

v

 7.24 What percentage of the initial energy stored in the 
capacitor in Fig. P 7.22 is dissipated by the 3 kΩ re-
sistor 500 ms after the switch is thrown?

 7.25 The switch in the circuit in Fig. P 7.25 has been in 
position a for a long time and v2 = 0 V. At t = 0, 
the switch is thrown to position b. Calculate:

a) i, v1, and v2 for t Ú 0+.

b) the energy stored in the 40 mF capacitor at t = 0.

c) the energy trapped in the circuit and the total 
energy dissipated in the 3.5 kΩ resistor if the 
switch remains in position b indefinitely.

a) Find io(t) for t Ú 0.

b) What is the total energy delivered to the 8 Ω 
resistor?

c) How many time constants does it take to deliver 
95% of the energy found in (b)?

Figure P7.19

10 A 200 V 8 V

t 5 0

10 mH
5 mH

25 V ba
io

 7.20 The 240 V, 2 Ω source in the circuit in Fig. P 7.20 is 
inadvertently short-circuited at its terminals a, b. At 
the time the fault occurs, the circuit has been in op-
eration for a long time.

a) What is the initial value of the current iab in the 
short-circuit connection between terminals a, b?

b) What is the final value of the current iab?

c) How many microseconds after the short circuit 
has occurred is the current in the short equal to 
114 A?

Figure P7.20

1

2
240 V

10 V

2 mH

15 V

6 mH

2 V a

b

Section 7.2

 7.21 The switch in the circuit in Fig. P 7.21 has been in the 
left position for a long time. At t = 0 it moves to the 
right position and stays there.

a) Find the initial voltage drop across the capacitor.

b) Find the initial energy stored by the capacitor.

c) Find the time constant of this circuit for t 7 0.

d) Write the expression for the capacitor voltage 
v(t) for t Ú 0.
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Figure P7.28

1

2
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17 V

3 io

15 V

t 5 0

1

2
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 7.29 In the circuit in Fig. P 7.29 the voltage and current 
expressions are

v = 72e-500t V, t Ú 0;

 i = 9e-500t mA,  t Ú 0+.
Find

a) R.

b) C.

c) t (in milliseconds).

d) the initial energy stored in the capacitor.

e) how many microseconds it takes to dissipate 
68% of the initial energy stored in the capacitor.

Figure P7.29

1

2

v RC

i

 7.30 a) Use component values from Appendix H to cre-
ate a first-order RC circuit (see Fig. 7.13) with 
a time constant of 50 ms. Use a single capacitor 
and a network of resistors, if necessary. Draw 
your circuit.

b) Suppose the capacitor you chose in part (a) has 
an initial voltage drop of 50 V. Write an expres-
sion for the voltage drop across the capacitor for 
t Ú 0.

c) Using you result from part (b), calculate the time 
at which the voltage drop across the capacitor 
has reached 10 V.

 7.31 The switch in the circuit seen in Fig. P 7.31 has been 
in position x for a long time. At t = 0, the switch 
moves instantaneously to position y.

a) Find a so that the time constant for t 7 0 is 
40 ms.

b) For the a found in (a), find v∆.

Figure P7.25

a

10 mA

b 3.5 kV

6 kV
40 mF

t 5 0
v1

v2

i
70 mF

22

1 1

 7.26 In the circuit shown in Fig. P 7.26, both switches  
operate together; that is, they either open or close at 
the same time. The switches are closed a long time 
before opening at t = 0.

a) How many microjoules of energy have been 
dissipated in the 12 k resistor 12 ms after the 
switches open?

b) How long does it take to dissipate 75% of the 
initially stored energy?

Figure P7.26

1
2

mF120 V

t 5 0t 5 0

12 kV

4.2 kV

108 kV
10
3

 7.27 The switch in the circuit in Fig. P 7.27 is closed at 
t = 0 after being open for a long time.

a) Find i1(0-) and i2(0-).

b) Find i1(0 + ) and i2(0 + ).

c) Explain why i1(0-) = i1(0 + ).

d) Explain why i2(0-) ≠ i2(0 + ).

e) Find i1(t) for t Ú 0.

f) Find i2(t) for t Ú 0 + .

Figure P7.27

t 5 0

20 V 10 V 7 V

100 mA 2 mF

2 V
1

2

i2 i1
3 V

 7.28 The switch in the circuit in Fig. P 7.28 has been in 
position 1 for a long time before moving to position 
2 at t = 0. Find io(t) for t Ú 0 +.
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Section 7.3

 7.35 After the switch in the circuit of Fig. P 7.35 has been 
open for a long time, it is closed at t = 0.  Calculate 
(a) the initial value of i; (b) the final value of i;  
(c) the time constant for t Ú 0; and (d) the numeri-
cal expression for i(t) when t Ú 0.

Figure P7.35

250 V
t 5 0

i

100 mH

50 kV 1 mA
1

2

50 kV

 7.36 The switch in the circuit shown in Fig. P 7.36 has 
been in position a for a long time before moving to 
position b at t = 0.

a) Find the numerical expressions for iL and vo(t) 
for t Ú 0.

b) Find the numerical values of vL(0 + ) and vo(0 + ).

Figure P7.36

32 V 10 mH b a

40 V 8 V 5 A

t 5 0
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 7.37 The switch in the circuit shown in Fig. P 7.37 has 
been in position a for a long time. At t = 0, the 
switch moves instantaneously to position b.

a) Find the numerical expression for io(t) when 
t Ú 0.

b) Find the numerical expression for vo(t) for 
t Ú 0+.

Figure P7.37

50 A

b a
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t 5 0
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800 V
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 7.38 Repeat Problem 7.37 assuming that the switch in 
the circuit in Fig. P 7.37 has been in position b for a 
long time and then moves to position a at t = 0 and 
stays there.
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Figure P7.31
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20 kV
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 7.32 a) In Problem 7.31, how many microjoules of energy 
are generated by the dependent current source 
during the time the capacitor discharges to 0 V?

b) Show that for t Ú 0 the total energy stored and 
generated in the capacitive circuit equals the to-
tal energy dissipated.

 7.33 After the circuit in Fig. P 7.33 has been in operation 
for a long time, a screwdriver is inadvertently con-
nected across the terminals a, b. Assume the resis-
tance of the screwdriver is negligible.

a) Find the current in the screwdriver at t = 0+ and 
t = ∞ .

b) Derive the expression for the current in the 
screwdriver for t Ú 0+.

Figure P7.33

75 mA 80 V

a

b

200 V

400 V

50 mF

25 mF

 7.34 At the time the switch is closed in the circuit in 
Fig. P 7.34, the voltage across the parallel capacitors is 
50 V and the voltage on the 250 nF capacitor is 40 V.

a) What percentage of the initial energy stored in 
the three capacitors is dissipated in the 24 kΩ 
resistor?

b) Repeat (a) for the 400 Ω and 16 kΩ resistors.

c) What percentage of the initial energy is trapped 
in the capacitors?

Figure P7.34
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16 kV

400 V
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Figure P7.42
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Vbb Ld'Arsonval
voltmeter
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 7.43 a) Derive Eq. 7. 16 by first converting the Thévenin 
equivalent in Fig. 7. 20 to a Norton equivalent 
and then summing the currents away from the 
upper node, using the inductor voltage v as the 
variable of interest.

b) Use the separation of variables technique to find 
the solution to Eq. 7. 16. Verify that your solution 
agrees with the solution given in Eq. 7. 15.

 7.44 The switch in the circuit in Fig. P 7.44 has been 
open a long time before closing at t = 0. Find io(t) 
for t Ú 0.

Figure P7.44
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0.1vf
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 7.45 The switch in the circuit in Fig. P 7.45 has been 
open a long time before closing at t = 0. Find vo(t) 
for t Ú 0+.

Figure P7.45

15 V20 mA 4 mH 9iD

1

2

vo 50 mA

t 5 010 V 5 V
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 7.46 The switch in the circuit in Fig. P 7.46 has been 
open a long time before closing at t = 0. Find vo(t) 
for t Ú 0+.

Figure P7.46
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3 kV
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 7.39 The current and voltage at the terminals of the 
 inductor in the circuit in Fig. 7.20 are

 i(t) = (4 + 4e-40t) A,  t Ú 0;

 v(t) = -80e-40t V,        t Ú 0+.  

a) Specify the numerical values of Vs, R, Io, and L.

b) How many milliseconds after the switch has 
been closed does the energy stored in the induc-
tor reach 9 J?

 7.40 a) Use component values from Appendix H to cre-
ate a first-order RL circuit (see Fig. 7.20) with a 
time constant of 8 ms. Use a single inductor and 
a network of resistors, if necessary. Draw your 
circuit.

b) Suppose the inductor you chose in part (a) has 
no initial stored energy. At t = 0, a switch con-
nects a voltage source with a value of 25 V in se-
ries with the inductor and equivalent resistance. 
Write an expression for the current through the 
inductor for t Ú 0.

c) Using your result from part (b), calculate the 
time at which the current through the inductor 
reaches 75% of its final value.

 7.41 The switch in the circuit shown in Fig. P 7.41 has 
been closed for a long time. The switch opens at 
t = 0. For t Ú 0+:

a) Find vo(t) as a function of Ig, R1, R2, and L.

b) Explain what happens to vo(t) as R2 gets larger 
and larger.

c) Find vSW as a function of Ig, R1, R2, and L.

d) Explain what happens to vSW as R2 gets larger 
and larger.

Figure P7.41
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vo(t)R1 LIg
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 7.42 The switch in the circuit in Fig. P 7.42 has been 
closed for a long time. A student abruptly opens 
the switch and reports to her instructor that when 
the switch opened, an electric arc with noticeable 
persistence was established across the switch, and at 
the same time the voltmeter placed across the coil 
was damaged. On the basis of your analysis of the 
circuit in Problem 7.41, can you explain to the stu-
dent why this happened?
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t = 0 it is moved to position b. Find (a) vC(0+); (b) t 
for t 7 0; (c) vC(∞); (d) i(0+); (e) vC, t Ú 0; and (f) 
i, t Ú 0+.

Figure P7.51
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 7.52 a) The switch in the circuit in Fig. P 7.52 has been 
in position a for a long time. At t = 0, the switch 
moves instantaneously to position b and stays 
there. Find the initial and final values of the 
capacitor voltage, the time constant for t Ú 0, 
and the expression for the capacitor voltage for 
t Ú 0.

b) Now suppose the switch in the circuit in 
Fig. P 7.52 has been in position b for a long time. 
At t = 0, the switch moves instantaneously to 
position a and stays there. Find the initial and 
final values of the capacitor voltage, the time 
constant for t Ú 0, and the expression for the  
capacitor voltage for t Ú 0.

Figure P7.52
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 7.53 The switch in the circuit of Fig. P 7.53 has been in po-
sition a for a long time. At t = 0 the switch is moved 
to position b. Calculate (a) the initial  voltage on the 
capacitor; (b) the final voltage on the capacitor; (c) 
the time constant (in microseconds) for t = 0; and 
(d) the length of time (in microseconds) required 
for the capacitor voltage to reach zero after the 
switch is moved to position b.

Figure P7.53
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 7.47 The switch in the circuit in Fig. P 7.47 has been in 
position 1 for a long time. At t = 0 it moves instan-
taneously to position 2. How many milliseconds 
 after the switch moves does vo equal 100 V?

Figure P7.47
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 7.48 For the circuit in Fig. P 7.46, find (in joules):

a) the total energy dissipated in the 20 Ω resistor,

b) the energy trapped in the inductors, and

c) the initial energy stored in the inductors.

 7.49 The make-before-break switch in the circuit of  
Fig. P 7.49 has been in position a for a long time. At 
t = 0, the switch moves instantaneously to position 
b. Find

a) vo(t), t Ú 0 + .

b) i1(t), t Ú 0.

c) i2(t), t Ú 0.

Figure P7.49

5 V 40 V

ba

10 mH100 mA
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t 5 0
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 7.50 There is no energy stored in the inductors L1 and L2 
at the time the switch is opened in the circuit shown 
in Fig. P 7.50.

a) Derive the expressions for the currents i1(t) and 
i2(t) for t Ú 0.

b) Use the expressions derived in (a) to find i1(∞) 
and i2(∞).

Figure P7.50

Ig L1 L2Rg i1(t) i2(t)
t 5 0

 7.51 Assume that the switch in the circuit of Fig. P 7.51 
has been in position a for a long time and that at 
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 7.58 The current and voltage at the terminals of the ca-
pacitor in the circuit in Fig. 7.28 are

 i(t) = 3e-2500t mA,  t Ú 0+;

 v(t) = (40 - 24e-2500t) V,  t Ú 0.

a) Specify the numerical values of Is , Vo , R, C, and t.

b) How many microseconds after the switch has 
been closed does the energy stored in the capac-
itor reach 81% of its final value?

 7.59 a) Use component values from Appendix H to cre-
ate a first-order RC circuit (see Fig. 7.28) with a 
time constant of 250 ms. Use a single capacitor 
and a network of resistors, if necessary. Draw 
your circuit.

b) Suppose the capacitor you chose in part (a) 
has an initial voltage drop of 100 V. At t = 0, a 
switch connects a current source with a value of 
1 mA in parallel with the capacitor and equiva-
lent resistance. Write an expression for the volt-
age drop across the capacitor for t Ú 0.

c) Using your result from part (b), calculate the 
time at which the voltage drop across the capici-
tor reaches 50 V.

 7.60 The switch in the circuit shown in Fig. P 7.60 opens 
at t = 0 after being closed for a long time. How 
many milliseconds after the switch opens is the en-
ergy stored in the capacitor 36% of its final value?

Figure P7.60

33 kV 47 kV 16 kV25ib

ib

t 5 0
0.25 mF120 mA

 7.61 The switch in the circuit shown in Fig. P 7.61 has 
been in the off position for a long time. At t = 0, 
the switch moves instantaneously to the on  position. 
Find vo(t) for t Ú 0.

Figure P7.61

25 kV 90 kV

30 kV 300 V15 kV
25 nF

OFF ON

10 3 103iD
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t 5 0
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 7.62 Assume that the switch in the circuit of Fig. P 7.61 
has been in the on position for a long time before 
switching instantaneously to the off position at 
t = 0. Find vo(t) for t Ú 0.

PSPICE

MULTISIM

PSPICE

MULTISIM

PSPICE

MULTISIM

 7.54 The switch in the circuit seen in Fig. P 7.54 has been in 
position a for a long time. At t = 0, the switch moves 
instantaneously to position b. For t Ú 0 + , find

a) vo(t).

b) io(t).

Figure P7.54
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100 kV150 V
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 7.55 The switch in the circuit seen in Fig. P 7.55 has been 
in position a for a long time. At t = 0, the switch 
moves instantaneously to position b. Find vo(t) and 
io(t) for t Ú 0+.

Figure P7.55

10 mA 20 kV 15 mA

30 kV

50 kV 16 nFvo(t)

io(t)

ab
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1

2

 7.56 The circuit in Fig. P 7.56 has been in operation for 
a long time. At t = 0, the voltage source reverses 
polarity and the current source drops from 3 mA to 
2 mA. Find vo(t) for t Ú 0.

Figure P7.56
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10 kV 4 kV
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 7.57 The switch in the circuit in Fig. P 7.57 has been 
in position a for a long time. At t = 0, the switch 
moves instantaneously to position b. At the instant 
the switch makes contact with terminal b, switch 2 
opens. Find vo(t) for t Ú 0.

Figure P7.57
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Figure P7.66
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Section 7.4

 7.67 Repeat (a) and (b) in Example 7.10 if the mutual 
inductance is reduced to zero.

 7.68 There is no energy stored in the circuit in Fig. P 7.68 
at the time the switch is closed.

a) Find io(t) for t Ú 0.

b) Find vo(t) for t Ú 0+.

c) Find i1(t) for t Ú 0.

d) Find i2(t) for t Ú 0.

e) Do your answers make sense in terms of known 
circuit behavior?

Figure P7.68
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 7.69 There is no energy stored in the circuit in Fig. P 7.69 
at the time the switch is closed.

a) Find i(t) for t Ú 0.

b) Find v1(t) for t Ú 0+.

c) Find v2(t) for t Ú 0.

d) Do your answers make sense in terms of known 
circuit behavior?

Figure P7.69
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 7.70 Repeat Problem 7.69 if the dot on the 40 mH coil is 
at the bottom of the coil.

 7.71 There is no energy stored in the circuit of Fig. P 7.71 
at the time the switch is closed.

a) Find io(t) for t Ú 0.

b) Find vo(t) for t Ú 0+.
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 7.63 a) Derive Eq. 7.17 by first converting the Nor-
ton equivalent circuit shown in Fig. 7.28 to a 
Thévenin equivalent and then summing the volt-
ages around the closed loop, using the capacitor 
current i as the relevant variable.

b) Use the separation of variables technique to find 
the solution to Eq. 7.17. Verify that your solution 
agrees with that of Eq. 7.22.

 7.64 The switch in the circuit in Fig. P 7.64 has been in 
position x for a long time. The initial charge on the 
60 nF capacitor is zero. At t = 0, the switch moves 
instantaneously to position y.

a) Find vo(t) for t Ú 0 + .

b) Find v1(t) for t Ú 0.

Figure P7.64
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 7.65 The switch in Fig. P 7.65 has been position a for a 
long time. At t = 0, it moves instantaneously to 
 position b. For t Ú 0+, find:

a) vo(t).

b) io(t).

c) v1(t).

d) v2(t).

e) the energy trapped in the capacitors as t S ∞ .

Figure P7.65
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 7.66 There is no energy stored in the capacitors C1 and C2 
at the time the switch is closed in the circuit seen in 
Fig. P 7.66. Assume C1 = 0.1 mF and C2 = 0.2 mF.

a) Derive the expressions for v1(t) and v2(t) for 
t Ú 0.

b) Use the expressions in (a) to find v1(∞) and 
v2(∞).
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The switch is then moved to position c, where it  
remains indefinitely. Find

a) i(0+).

b) i(200 ms).

c) i(6 ms).

d) v(1-1 ms).

e) v(1+ ms).

Figure P7.75
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 7.76 The capacitor in the circuit seen in Fig. P 7.76 has 
been charged to 300 V. At t = 0, switch 1 closes, 
causing the capacitor to discharge into the resistive 
network. Switch 2 closes 200 ms after switch 1 closes. 
Find the magnitude and direction of the current in 
the second switch 300 ms after switch 1 closes.

Figure P7.76
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 7.77 There is no energy stored in the capacitor in the 
circuit in Fig. P 7.77 when switch 1 closes at t = 0. 
Switch 2 closes 2.5 milliseconds later. Find vo(t) for 
t Ú 0.

Figure P7.77
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 7.78 In the circuit in Fig. P 7.78, switch 1 has been in 
position a and switch 2 has been closed for a long 
time. At t = 0, switch 1 moves instantaneously to 
position b. Two hundred microseconds later, switch 
2 opens, remains open for 600 ms, and then reclos-
es. Find vo 1 ms after switch 1 makes contact with  
terminal b.
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c) Find i1(t) for t Ú 0.

d) Find i2(t) for t Ú 0.

e) Do your answers make sense in terms of known 
circuit behavior?

Figure P7.71
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 7.72 The action of the two switches in the circuit seen 
in Fig. P 7.72 is as follows. For t 6 0, switch 1 is 
in position a and switch 2 is open. This state has  
existed for a long time. At t = 0, switch 1 moves  
instantaneously from position a to position b, while 
switch 2 remains open. Ten milliseconds after switch 
1 operates, switch 2 closes, remains closed for 10 ms 
and then opens. Find vo 25 ms after switch 1 moves 
to position b.

Figure P7.72
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 7.73 For the circuit in Fig. P 7.72, how many milliseconds 
after switch 1 moves to position b is the energy 
stored in the inductor 4% of its initial value?

 7.74 In the circuit in Fig. P 7.74, switch A has been open 
and switch B has been closed for a long time. At 
t = 0, switch A closes. Twenty-five milliseconds  
after switch A closes, switch B opens. Find iL(t) for 
t Ú 0.

Figure P7.74
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 7.75 The switch in the circuit shown in Fig. P 7.75 has been 
in position a for a long time. At t = 0, the switch 
is moved to position b, where it remains for 1 ms.  
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Figure P7.82
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 7.83 The voltage signal source in the circuit in 
Fig.  P 7.83(a) is generating the signal shown in 
Fig. P 7.83(b). There is no stored energy at t = 0.

a) Derive the expressions for vo(t) that apply in the 
intervals t 6 0; 0 … t … 4 ms; 4 ms … t … 8 ms; 
and 8 ms … t 6 ∞ .

b) Sketch vo and vs on the same coordinate axes.

c) Repeat (a) and (b) with R reduced to 50 kΩ.

Figure P7.83
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 7.84 The voltage waveform shown in Fig. P 7.84(a) is 
 applied to the circuit of Fig. P 7.84(b). The initial 
voltage on the capacitor is zero.

a) Calculate vo(t).

b) Make a sketch of vo(t) versus t.

Figure P7.84
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Figure P7.78
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 7.79 For the circuit in Fig. P 7.78, what percentage of the 
initial energy stored in the 25 nF capacitor is dissi-
pated in the 30 kΩ resistor?

 7.80 The switch in the circuit in Fig. P 7.80 has been in 
position a for a long time. At t = 0, it moves instan-
taneously to position b, where it remains for five 
seconds before moving instantaneously to position 
c. Find vo for t Ú 0.

Figure P7.80
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 7.81 The current source in the circuit in Fig. P 7.81(a) 
generates the current pulse shown in Fig. P 7.81(b). 
There is no energy stored at t = 0.

a) Derive the numerical expressions for vo(t) for 
the time intervals t 6 0, 0 … t … 25 ms, and 
25 ms … t … ∞ .

b) Calculate vo (25- ms) and vo (25+ ms).

c) Calculate io (25- ms) and io (25+ ms).

Figure P7.81
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 7.82 The voltage waveform shown in Fig. P 7.82(a) is 
 applied to the circuit of Fig. P 7.82(b). The initial 
current in the inductor is zero.

a) Calculate vo(t).

b) Make a sketch of vo(t) versus t.

c) Find io at t = 5 ms.

PSPICE

MULTISIM

PSPICE

MULTISIM

PSPICE

MULTISIM

PSPICE

MULTISIM



296 Response of First-Order RL and RC Circuits

Figure P7.88
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 7.89 The circuit shown in Fig. P 7.89 is used to close 
the switch between a and b for a predetermined 
length of time. The electric relay holds its contact 
arms down as long as the voltage across the relay 
coil exceeds 5 V. When the coil voltage equals 5 V, 
the relay contacts return to their initial position by 
a mechanical spring action. The switch between a 
and b is initially closed by momentarily pressing 
the push button. Assume that the capacitor is fully 
charged when the push button is first pushed down. 
The resistance of the relay coil is 25 kΩ, and the in-
ductance of the coil is negligible.

a) How long will the switch between a and b re-
main closed?

b) Write the numerical expression for i from the 
time the relay contacts first open to the time the 
capacitor is completely charged.

c) How many milliseconds (after the circuit be-
tween a and b is interrupted) does it take the 
 capacitor to reach 85% of its final value?

Figure P7.89
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80 V
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Section 7.7

 7.90 The energy stored in the capacitor in the circuit 
shown in Fig. P 7.90 is zero at the instant the 
switch is closed. The ideal operational amplifier 
reaches saturation in 15 ms.What is the numerical 
value of R?

Section 7.6

 7.85 The inductor current in the circuit in Fig. P 7.85 
in 25 mA at the instant the switch is opened. The 
 inductor will malfunction whenever the magnitude 
of the inductor current equals or exceeds 5A. How 
long after the switch is opened does the inductor 
malfunction?

Figure P7.85

111 H 25 mA

4 kV

t 5 0
6 3 1023 vf

1 vf 2
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 7.86 The gap in the circuit seen in Fig. P 7.86 will arc over 
whenever the voltage across the gap reaches 30 kV. 
The initial current in the inductor is zero. The value 
of b is adjusted so the Thévenin resistance with re-
spect to the terminals of the inductor is -4 kΩ.

a) What is the value of b?

b) How many microseconds after the switch has 
been closed will the gap arc over?

Figure P7.86
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bis30 V
t 5 0 is
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 7.87 The capacitor in the circuit shown in Fig. P 7.87 is 
charged to 20 V at the time the switch is closed. If 
the capacitor ruptures when its terminal voltage 
equals or exceeds 20 kV, how long does it take to 
rupture the capacitor?

Figure P7.87
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 7.88 The switch in the circuit in Fig. P 7.88 has been 
closed for a long time. The maximum voltage rating 
of the 1.6 mF capacitor is 14.4 kV. How long after 
the switch is opened does the voltage across the  
capacitor reach the maximum voltage rating?
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 7.94 There is no energy stored in the capacitors in the 
circuit shown in Fig. P 7.94 at the instant the two 
switches close. Assume the op amp is ideal.

a) Find vo as a function of va, vb, R, and C.

b) On the basis of the result obtained in (a), de-
scribe the operation of the circuit.

c) How long will it take to saturate the amplifi-
er if va = 40 mV; vb = 15 mV; R = 50 kΩ; 
C = 10 nF; and VCC = 6 V?

Figure P7.94
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 7.95 At the instant the switch of Fig. P 7.95 is closed, the 
voltage on the capacitor is 56 V. Assume an ideal 
op amp. How many milliseconds after the switch is 
closed will the output voltage vo equal zero?

Figure P7.95
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 7.96 The voltage source in the circuit in Fig. P 7.96(a) 
is generating the triangular waveform shown in  
Fig. P 7.96(b). Assume the energy stored in the ca-
pacitor is zero at t = 0 and the op amp is ideal.

a) Derive the numerical expressions for vo(t) 
for the following time intervals: 0 … t … 1 ms; 
1 ms … t … 3 ms; and 3 ms … t … 4 ms.

b) Sketch the output waveform between 0 and 4 ms.

c) If the triangular input voltage continues to re-
peat itself for t 7 4 ms, what would you expect 
the output voltage to be? Explain.
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Figure P7.90
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 7.91 At the instant the switch is closed in the circuit of 
Fig. P 7.90, the capacitor is charged to 6 V, positive 
at the right-hand terminal. If the ideal operational 
amplifier saturates in 40 ms, what is the value of R?

 7.92 The voltage pulse shown in Fig. P 7.92(a) is ap-
plied to the ideal integrating amplifier shown in  
Fig. P 7.92(b). Derive the numerical expression for 
vo(t) when vo(0) = 0 for the time intervals

a) t 6 0.

b) 0 … t … 250 ms.

c) 250 ms … t … 500 ms.

d) 500 ms … t.

Figure P7.92
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 7.93 Repeat Problem 7.92 with a 5 MΩ resistor placed 
across the 400 nF feedback capacitor.
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 7.98 The parameter values in the circuit in Fig. P 7.97 are 
VCC = 6 V; R1 = 5.0 kΩ; RL = 20 kΩ; C = 250 pF; 
and R = 23,083 Ω.

a) Sketch vce2 versus t, assuming that after S is 
momentarily closed, it remains open until the 
circuit has reached its stable state. Assume S is 
closed at t = 0. Make your sketch for the inter-
val -5 … t … 10 ms.

b) Repeat (a) for ib2 versus t.

 7.99 The circuit shown in Fig. P 7.99 is known as an as-
table multivibrator and finds wide application in 
pulse circuits. The purpose of this problem is to 
relate the charging and discharging of the capaci-
tors to the operation of the circuit. The key to an-
alyzing the circuit is to understand the behavior of 
the ideal transistor switches T1 and T2. The circuit 
is designed so that the switches automatically alter-
nate between on and off. When T1 is off, T2 is on 
and vice versa. Thus in the analysis of this circuit, 
we assume a switch is either on or off. We also as-
sume that the ideal transistor switch can change its 
state instantaneously. In other words, it can snap 
from off to on and vice versa. When a transistor 
switch is on, (1) the base current ib is greater than 
zero, (2) the terminal voltage vbe is zero, and (3) the 
terminal voltage vce is zero. Thus, when a transistor 
switch is on, it presents a short circuit between the 
terminals b,e and c,e. When a transistor switch is 
off, (1) the terminal voltage vbe is negative, (2) the 
base current is zero, and (3) there is an open circuit 
between the terminals c,e. Thus when a transistor 
switch is off, it presents an open circuit between the 
terminals b,e and c,e. Assume that T2 has been on 
and has just snapped off, while T1 has been off and 
has just snapped on. You may assume that at this 
instance, C2 is charged to the supply voltage VCC, 
and the charge on C1 is zero. Also assume C1 = C2 
and R1 = R2 = 10RL.

a) Derive the expression for vbe2 during the inter-
val that T2 is off.

b) Derive the expression for vce2 during the inter-
val that T2 is off.

c) Find the length of time T2 is off.

d) Find the value of vce2 at the end of the interval 
that T2 is off.

e) Derive the expression for ib1 during the interval 
that T2 is off.

f) Find the value of ib1 at the end of the interval 
that T2 is off.

g) Sketch vce2 versus t during the interval that T2 
is off.

h) Sketch ib1 versus t during the interval that T2 
is off.
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 7.97 The circuit shown in Fig. P 7.97 is known as a 
monostable multivibrator. The adjective monostable 
is used to describe the fact that the circuit has one 
stable state. That is, if left alone, the electronic switch 
T2 will be on, and T1 will be off. (The operation of 
the ideal transistor switch is described in detail in 
Problem 7.99.) T2 can be turned off by momentar-
ily closing the switch S. After S returns to its open 
position, T2 will return to its on state.

a) Show that if T2 is on, T1 is off and will stay off.

b) Explain why T2 is turned off when S is momen-
tarily closed.

c) Show that T2 will stay off for RC ln 2 s.

Figure P7.97
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value of L will assure that the standby battery 
will be connected to the dc bus in 0.5 seconds?

b) Using the value of L determined in (a), state 
how long it will take the relay to operate if the 
generated voltage suddenly drops to zero.

Figure P7.103
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 7.104 Derive the expression for heart rate in beats per 
minute given the values of R and C and assum-
ing that the capacitor discharges when its voltage 
reaches 75% of the source voltage Vs. The expres-
sion, given in the Practical Perspective, is repeated 
here for convenience:

H =
60

-RC  ln  0.25
  [beats per minute].

 7.105 Use an expression similar to the one derived in 
Problem 7.104 to calculate the heart rate in beats 
per minute for R = 150 kΩ, C = 6 mF, if the capac-
itor discharges when its voltage reaches 60% of the 
source voltage Vs.

 7.106 Show that the resistance required to achieve a heart 
rate H, in beats per minute, is given by the equation

R =
-60

HC  ln a1-  
V max 

Vs
b

,

where C is the capacitance, Vs. is the source voltage, 
and Vmax is the capacitor voltage at which discharge 
occurs.

 7.107 Use the expression derived in Problem 7.106 to 
calculate the resistance required to achieve a heart 
rate of 70 beats per minute using a capacitance of 
2.5 mF and assuming that the capacitor discharges 
when its voltage reaches 68% of the source voltage.
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Figure P7.99
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 7.100 The component values in the circuit of Fig. P 7.99 
are VCC = 9 V; RL = 3 kΩ; C1 = C2 = 2 nF; and 
R1 = R2 = 18 kΩ.

a) How long is T2 in the off state during one cycle 
of operation?

b) How long is T2 in the on state during one cycle 
of operation?

c) Repeat (a) for T1.

d) Repeat (b) for T1.

e) At the first instant after T1 turns on, what is the 
value of ib1?

f) At the instant just before T1 turns off, what is the 
value of ib1?

g) What is the value of vce2 at the instant just before 
T2 turns on?

 7.101 Repeat Problem 7.100 with C1 = 3 nF and 
C2 = 2.8 nF. All other component values are 
unchanged.

 7.102 The astable multivibrator circuit in Fig. P 7.99 is 
to satisfy the following criteria: (1) One transis-
tor switch is to be on for 48 ms and off for 36 ms 
for each cycle; (2) RL = 2 kΩ; (3) VCC = 5 V; (4) 
R1 = R2; and (5) 6RL … R1 … 50 RL. What are the 
limiting values for the capacitors C1 and C2?

 7.103 The relay shown in Fig. P 7.103 connects the 30 V dc 
generator to the dc bus as long as the relay current 
is greater than 0.4 A. If the relay current drops to 
0.4 A or less, the spring-loaded relay immediately 
connects the dc bus to the 30 V standby battery. The 
resistance of the relay winding is 60 Ω. The induc-
tance of the relay winding is to be determined.

a) Assume the prime motor driving the 30 V dc 
generator abruptly slows down, causing the gen-
erated voltage to drop suddenly to 21 V. What 



300

CHAPTER CONTENTS

8
CHAPTER Natural and Step 

Responses of RLC 
Circuits
In this chapter, we discuss the natural response and step  response 
of circuits containing a resistor, an inductor, and a  capacitor, known 
as RLC circuits. We limit our analysis to two simple structures: the 
parallel RLC circuit and the series RLC circuit.

We begin with the natural response of a parallel RLC circuit and 
cover this material in two sections: one section discusses the solution 
of the second-order differential equation that describes the circuit, 
and the other presents the three distinct forms that the solution can 
take. After introducing these three forms, we show that the same 
forms apply to the step response of a parallel RLC circuit as well as 
to the natural and step responses of series RLC circuits. The chapter 
concludes with an introduction to an op-amp-based circuit whose 
output is also characterized by a second-order differential equation.

Parallel RLC Circuits
We characterize the natural response of a parallel RLC circuit 
by finding the voltage across the parallel branches created by 
the release of energy stored in the inductor or capacitor, or both.  
The circuit is shown in Fig. 8.1 on page 302. The initial voltage on 
the capacitor, V0, represents the initial energy stored in the capac-
itor. The initial current in the inductor, I0, represents the initial 
energy stored in the inductor. You can find the individual branch 
currents after determining the voltage.

We derive the step response of a parallel RLC circuit by using 
Fig. 8.2 on page 302. We determine the circuit’s response when a 
dc current source is applied suddenly. Energy may or may not be 
stored in the circuit when the current source is applied.

Series RLC Circuits
We characterize the natural response of a series RLC circuit by 
finding the current generated in the series-connected elements by 
the release of initially stored energy in the inductor, capacitor, or 
both. The circuit is shown in Fig. 8.3 on page 302. As before, the 
initial inductor current, I0, and the initial capacitor voltage, V0, 
represent the initially stored energy. You can find the individual 
element voltages after determining the current.

8.1 Introduction to the Natural Response of 
a Parallel RLC Circuit p. 302

8.2 The Forms of the Natural Response of a 
Parallel RLC Circuit p. 306

8.3 The Step Response of a Parallel RLC 
Circuit p. 317

8.4 The Natural and Step Response of a 
Series RLC Circuit p. 324

8.5 A Circuit with Two Integrating  
Amplifiers p. 331

1 Be able to determine the natural response 
and the step response of parallel RLC 
circuits.

2 Be able to determine the natural response 
and the step response of series RLC 
circuits.

CHAPTER OBJECTIVES



Practical Perspective
Clock for Computer Timing
The digital circuits found in most computers require 
a  timing signal that synchronizes the operation of the 
 circuits. Consider a laptop computer whose processor 
speed is 2 GHz. This means that the central processing 
unit for this computer can perform about 2 * 109 simple 
operations every second.

The timing signal, produced by a clock generator 
chip, is typically a square wave with the required clock 
frequency. The square wave is obtained from a sinusoi-
dal wave with the required clock frequency. Typically, 

the sinusoidal wave is generated by a precisely cut 
quartz crystal with an applied voltage. The crystal 
 produces a stable frequency suitable for synchronizing 
digital circuits.

We can also generate a sinusoidal wave using a 
 circuit with an inductor and a capacitor. By choosing the 
values of inductance and capacitance, we can create a 
sinusoid with a specific frequency. We will examine such 
a design once we have presented the fundamental con-
cepts of second-order circuits.

analog to digital
conversion

quartz crystal
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David J. Green/Alamy Stock Photo
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8.1 Introduction to the Natural 
Response of a Parallel RLC 
Circuit

To find the natural response of the circuit shown in Fig. 8.1, we begin by 
deriving the differential equation that the voltage v satisfies. We choose to 
find the voltage because it is the same for each component. Once we know 
the voltage, we can find every branch current by using the current–voltage 
relationship for the branch component. We write the differential equation 
for the voltage using KCL to sum the currents leaving the top node, where 
each current is expressed as a function of the unknown voltage v:

v

R
+

1
L

 L
t

0
v dt + I0 + C 

dv

dt
= 0.

We eliminate the integral in the KCL equation by differentiating once 
with respect to t, and because I0 is a constant, we get

1
R

 
dv

dt
+

v

L
+ C 

d2
v

dt2 = 0.

We now divide the equation by the capacitance C and arrange the deriva-
tives in descending order:

 
d2

v

dt2 +
1

RC
 
dv

dt
 +  

v

LC
= 0. (8.1)

Equation 8.1 is an ordinary, second-order differential equation with con-
stant coefficients because it describes a circuit with both an inductor and a 
capacitor. Therefore, we also call RLC circuits second-order circuits.

The General Solution of the Second-Order 
Differential Equation
We can’t solve Eq. 8.1 by separating the variables and integrating, as we 
were able to do with the first-order equations in Chapter 7. Instead, we 
solve Eq. 8.1 by assuming that the voltage is of the form

 v = Aest, (8.2)

where A and s are unknown constants.
Why did we choose an exponential form for v, given in Eq. 8.2? The 

reason is that Eq. 8.1 requires the sum of the second derivative of v, and 
the first derivative of v times a constant, and v times a constant equal 
zero for all values of t. This can occur only if higher-order derivatives of 
v have the same form as v. The exponential function satisfies this crite-
rion. Furthermore, note that the solutions of the first-order equations we 

R

iL iRiC
LV0C vI0

1

2

1

2

Figure 8.1 ▲ A circuit used to illustrate the natural 
response of a parallel RLC circuit.

RLC
t 5 0

vI

1

2

Figure 8.2 ▲ A circuit used to illustrate the step 
 response of a parallel RLC circuit.

We describe the step response of a series RLC circuit using the 
circuit shown in Fig. 8.4. We determine the circuit’s response to the 
sudden application of the dc voltage source. Energy may or may 
not be stored in the circuit when the switch is closed.

R

i

L

V0C

I0 1

2

Figure 8.3 ▲ A circuit used to illustrate the  
natural response of a series RLC circuit.

1

2

R

i
t 5 0

L

CV

Figure 8.4 ▲ A circuit used to illustrate the step 
 response of a series RLC circuit.
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derived in Chapter 7 were all exponential; thus, it seems reasonable to 
assume that the solution of the second-order equation is also exponential.

If Eq. 8.2 is a solution of Eq. 8.1, it must satisfy Eq. 8.1 for all values of t.  
Substituting Eq. 8.2 into Eq. 8.1 generates the expression

As2est +
As
RC

 est +
Aest

LC
= 0,

or

Aestas2 +
s

RC
+

1
LC

 b = 0,

which can be satisfied for all values of t only if A is zero or the parenthet-
ical term is zero because est ≠ 0 for any finite values of st. We cannot use 
A = 0 as a general solution because to do so implies that the voltage is 
zero for all time—a physical impossibility if energy is stored in either the 
inductor or capacitor. Therefore, in order for Eq. 8.2 to be a solution of 
Eq. 8.1, the parenthetical term must be zero, or

CHARACTERISTIC EQUATION, PARALLEL RLC CIRCUIT

 s2 +
s

RC
+

1
LC

= 0. (8.3)

Equation 8.3 is called the characteristic equation of the differential equation 
because the roots of this quadratic equation determine the mathematical 
character of v(t).

The two roots of Eq. 8.3 are

 s1 = -
1

2RC
+ B a 1

2RC
b

2

-
1

LC
,

 s2 = -
1

2RC
- B a 1

2RC
b

2

-
1

LC
.

If either root is substituted into Eq. 8.2, v satisfies the differential equa-
tion in Eq. 8.1, regardless of the value of A. Therefore, both

 v = A1e
s1t and

 v = A2e
s2t

satisfy Eq. 8.1. Denoting these two solutions v1 and v2, respectively, we 
can show that their sum also is a solution. Specifically, if we let

v = v1 + v2 = A1e
s1t + A2e

s2t,

then

 
dv

dt
= A1s1e

s1t +  A2 

s  2e
s2t,

 
d2

v

dt2 = A1s  1
2es1t + A2 

s  2
2es2t.
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Substituting these expressions for v and its first and second derivatives 
into Eq. 8.1 gives

A1e
s1tas1

2 +
1

RC
 s1 +

1
LC

b + A  2e
s2tas  2

2 +
1

RC
 s2 +

1
LC

b = 0.

But each parenthetical term is zero because by definition s1 and s2 are 
roots of the characteristic equation. Hence, the natural response of the 
parallel RLC circuit shown in Fig. 8.1 is

 v = A1e
s1t + A2e

s2t. (8.4)

In Eq. 8.4, the constants s1 and s2, which are the roots of the characteristic 
equation, are determined by the circuit parameters R, L, and C. The con-
stants A1 and A2 are determined by the initial conditions for the inductor 
and the capacitor.

To find the natural response (Eq. 8.4), we begin by finding the roots 
of the characteristic equation, s1 and s2, which we first wrote in terms of 
the circuit parameters. We now rewrite them as follows:

 s1 = -a + 2a2 - v0
2, (8.5)

 s2 = -a - 2a2 - v0
2, (8.6)

where

NEPER FREQUENCY, PARALLEL RLC CIRCUIT

 a =
1

2RC
, (8.7)

RESONANT RADIAN FREQUENCY,  
PARALLEL RLC CIRCUIT

 v0 =
11LC

 . (8.8)

These results are summarized in Table 8.1.

TABLE 8.1 Natural-Response Parameters of the Parallel RLC Circuit

 
Parameter

 
Terminology

Value in  
Natural Response

s1, s2 Characteristic roots s1 = -a + 2a  

2 - v 

0
2

s2 = -a - 2a  

2 - v0
2

a Neper frequency
a =

1
2RC

 

v0 Resonant radian frequency
v0 =

11LC
 



The exponent of e must be dimensionless, so both s1 and s2 (and hence 
a and v0) must have the dimension of the inverse of time, or frequency. 
To distinguish among the frequencies s1, s2, a, and v0, we use the follow-
ing terminology: s1 and s2 are the complex frequencies, a is the neper fre-
quency, and v0 is the resonant radian frequency. The full significance of 
this terminology unfolds as we move through the remaining chapters of 
this book. These frequencies all have the dimension of angular frequency 
per time. For the complex frequencies, the neper frequency, and the reso-
nant radian frequency, we specify values using the unit radians per second 
(rad>s).

The form of the roots s1 and s2 depends on the values of a and v0. 
There are three possibilities.

• If v0
2 6 a  

2, both roots will be real and distinct. For reasons to be dis-
cussed later, we call the voltage response overdamped.

• If v0
2 7 a 2, both s1 and s2 will be complex and, in addition, will be 

conjugates of each other. In this situation, we call the voltage re-
sponse underdamped.

• If v0
2 = a 2, s1 and s2 will be real and equal. Here, we call the voltage 

response critically damped.

As we shall see, damping affects the way the voltage response reaches its 
final (or steady-state) value. We discuss each case separately in Section 8.2.

Example 8.1 illustrates how the values of R, L, and C determine the 
numerical values of s1 and s2.

R

iL iRiC
LC V0 vI0

1

2

1

2

Figure 8.5 ▲ A circuit used to illustrate the natural 
response of a parallel RLC circuit.

EXAMPLE 8.1  Finding the Roots of the Characteristic  
Equation of a Parallel RLC Circuit

a) Find the roots of the characteristic equation that 
governs the transient behavior of the voltage 
shown in Fig. 8.5 if R = 200 Ω, L = 50 mH, and 
C = 0.2 mF.

b) Will the response be overdamped, underdamped, 
or critically damped?

c) Repeat (a) and (b) for R = 312.5 Ω.

d) What value of R causes the response to be criti-
cally damped?

Solution
a) For the given values of R, L, and C,

 a =
1

2RC
=

1

212002 10.2 * 10-62 = 12,500 rad>s,

 v0
2 =

1
LC

=
1

150 * 10 - 32 10.2 * 10-62 = 108 rad 

2>s 

2.

From Eqs. 8.5 and 8.6,

 s1 = -12,500 + 2112,5002 2 - 108

 = -12,500 + 7500 = -5000 rad>s,

 s1 = -12,500 - 2112,5002 2 - 108

 = -12,500 - 7500 = -20,000 rad>s.

b) The voltage response is overdamped because 
v0

2 6 a 2.

c) For R = 312.5 Ω,

a =
1

2RC
=

1

21312.52 10.2 * 10-62 = 8000 rad>s.

Since v0
2 remains at 108 rad 

2>s 

2,

 s1 = -8000 + 2180002 2 - 108

 = -8000 + j  6000 rad>s,

 s2 = -8000 - 2180002 2 - 108

 = -8000 - j  6000 rad>s.
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(In electrical engineering, the imaginary number 1-1 is represented by the letter j because the 
letter i represents current.)

In this case, the voltage response is under-
damped since v0

2 7 a 2.

d) For critical damping, a  

2 = v0
2, so

a 1
2RC

b
2

=
1

LC
= 108,

or

1
2RC

= 104,

and

R =
1

211042 10.2 * 10-62 = 250 Ω.

Objective 1—Be able to determine the natural response and the step response of parallel RLC circuits

 8.1 The resistance and inductance of the circuit in 
Fig. 8.5 are 100 Ω and 20 mH, respectively.
a) Find the value of C that makes the voltage 

response critically damped.
b) If C is adjusted to give a neper frequency of 

5 krad>s, find the value of C and the roots of 
the characteristic equation.

c) If C is adjusted to give a resonant frequen-
cy of 20 krad>s, find the value of C and the 
roots of the characteristic equation.

Answer: (a) 500 nF;

(b) C = 1 mF, 
s1 = -5000 + j5000 rad>s, 
s2 = -5000 - j5000 rad>s;

(c) C = 125 nF, 
s1 = -5359 rad>s, 
s2 = -74,641 rad>s.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 8.3.

8.2 The Forms of the Natural 
Response of a Parallel RLC 
Circuit

In this section, we find the natural response for each of the three types of 
damping: overdamped, underdamped, and critically damped. As we have 
already seen, the values of s1 and s2 determine the type of damping. We 
need to find values for the two coefficients A1 and A2 so that we can com-
pletely characterize the natural response given in Eq. 8.4. This requires 
two equations based on the following observations:

• The initial value of the voltage in Eq. 8.4 must be the same as the 
initial value of the voltage in the circuit.

• The initial value of the first derivative of the voltage in Eq. 8.4 must 
be the same as the initial value of the first derivative of the voltage 
in the circuit.

As we will see, the natural-response equations, as well as the equations 
for evaluating the unknown coefficients, are slightly different for each of 
the three types of damping. This is why the first task that presents itself 
when finding the natural response is to determine whether the response is 
overdamped, underdamped, or critically damped.
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The Overdamped Response
When the roots of the characteristic equation are real and distinct, the 
response of a parallel RLC circuit is overdamped. The solution for the 
voltage is

PARALLEL RLC NATURAL RESPONSE: OVERDAMPED

 v = A1e
s1t +  A2e

s 2 t, (8.9)

where s1 and s2 are the roots of the characteristic equation. The constants 
A1 and A2 are determined by the initial conditions, specifically from the 
values of v(0 + ) and dv(0 + )>dt, which in turn are determined from the ini-
tial voltage on the capacitor, V0, and the initial current in the inductor, I0.

To determine the values of A1 and A2, we need two independent 
equations. The first equation sets the initial value v from Eq. 8.9 equal to 
the initial value of v in the circuit, which is the initial voltage for the capac-
itor, V0. The resulting equation is

 v10 +2 = A1 + A2 = V0. (8.10)

The second equation sets the initial value of dv>dt from Eq. 8.9 equal 
to the initial value of dv>dt in the circuit. The initial value of dv>dt from 
Eq. 8.9 is

dv10+2
dt

= s1A1 + s2A2.

But how do we find the initial value of dv>dt from the circuit? Remember 
that dv>dt appears in the equation relating voltage and current for a 
capacitor,

iC = C 
dv

dt
 .

We can solve the capacitor equation for dv>dt and find its initial value in 
terms of the initial current in the capacitor:

dv10+2
dt

=
iC10+2

C
.

Now we use KCL to find the initial current in the capacitor. We know 
that the sum of the three branch currents at t = 0+ must be zero. The 
initial current in the resistive branch is the initial voltage V0 divided by the 
resistance, and the initial current in the inductive branch is I0. Using the 
reference system depicted in Fig. 8.5, we obtain

iC10+2 =
-V0

R
- I0.

Now we have the second equation needed to find the values of A1 and A2 
in Eq. 8.9:

 
dv10+2

dt
= A1s1 + A2 

s2 =
1
C

 a -V0

R
- I0b . (8.11)
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The method for finding the voltage for the parallel RLC circuit in 
Fig. 8.5 is as follows:

Step 1: Determine the initial values of capacitor voltage, V0, and inductor 
current, I0, by analyzing the parallel RLC circuit for t 6 0.

Step 2: Determine the values of the neper frequency, a, and the resonant 
radian frequency, v0, using the values of R, L, and C and the equations in 
Table 8.1.

Step 3: Compare a2 and v0
2. If a2 7 v0

2, the response is overdamped:

v(t) = A1e
s1t + A2e

s2t, t Ú 0.

Step 4: If the response is overdamped, calculate the values of s1 and s2 
from a and v0, using the equations in Table 8.1.

Step 5: If the response is overdamped, calculate the values of A1 and A2 
by solving Eqs. 8.10 and 8.11 simultaneously:

 A1 + A2 = V0;

 A1s1 + A2s2 =
1
C

 a -V0

R
- I0b .

Step 6: Write the equation for v(t) from Step 3 using the results from 
Steps 4 and 5. Find any desired branch current using the relationship be-
tween voltage and current for the component in the branch.

A condensed version of this method is given in Analysis Method 8.1. 
Examples 8.2 and 8.3 use this method to find the overdamped response of 
a parallel RLC circuit.

1. Determine the initial capacitor volt-
age (V0) and inductor current (I0) from 
the circuit.
2. Determine the values of A and V0 
using the equations in Table 8.1.
3. If A2 7 V0

2, the response is over-
damped and v(t) = A1e

s1t + A2e
s2t, t Ú 0.

4. If the response is overdamped, cal-
culate s1 and s2 using the equations in 
Table 8.1.
5. If the response is overdamped, 
calculate A1 and A2 by simultaneously 
solving Eqs. 8.10 and 8.11.
6. Write the equation for v(t) from Step 3 
using the results from Steps 4 and 5; find 
any desired branch currents.

Analysis Method 8.1 The natural response 
of an overdamped parallel RLC circuit.

EXAMPLE 8.2  Finding the Overdamped Natural Response of a  
Parallel RLC Circuit

For the circuit in Fig. 8.6, v10+2 = 12 V, and 
iL10+2 = 30 mA.

a) Find the expression for v(t).

b) Sketch v(t) in the interval 0 … t … 250 ms.

Solution

a) We use Analysis Method 8.1 to find the voltage.

Step 1: Determine the initial values of capacitor 
voltage, V0, and inductor current, I0; since these 
values are given in the problem statement, no cir-
cuit analysis is required.

Step 2: Determine the values of a and v0 using the 
equations in Table 8.1:

 a =
1

2RC
=

1

212002 10.2 * 10-62 = 12,500 rad>s,

 v0
2 =

1
LC

=
1

150 * 10-32 10.2 * 10-62 = 108 rad2>s2.

Step 3: Compare a  

2 and v0
2; since a  

2 7 v0
2, the re-

sponse is overdamped and

v(t) = A1e
s1t + A2e

s2t, t Ú 0.

Step 4: Since the response is overdamped, calculate 
the values of s1 and s2:

 s1 = -a + 2a  

2 - v0
2 = -12,500 + 2112,5002 2 - 108

 = -12,500 + 7500 = -5000 rad>s;

 s2 = -a - 2a  

2 - v0
2 = -12,500 - 2112,5002 2 - 108

 = -12,500 - 7500 = -20,000 rad>s.

200 V

iL iRiC

50 mH0.2 mF V0 vI0

1

2

1

2

Figure 8.6 ▲ The circuit for Example 8.2.

NATURAL RESPONSE OF A 
PARALLEL RLC CIRCUIT



Step 5: Since the response is overdamped, calcu-
late the values of A1 and A2 by simultaneously 
solving

A1 + A2 = V0 = 12;

A1s1 + A2s2 =
1
C

 a -V0

R
- I0b so

 -5000A1 - 20,000A2 =
1

0.2 * 10-6 a -12
200

- 0.03b

 = -450,000.

Solving,

A1 = -14 V and A2 = 26 V.

Step 6: Write the equation for v(t) using the re-
sults from Steps 4 and 5:

v(t) = 1 -14e-5000t + 26e-20,000t2  V, t Ú 0.

b) Figure 8.7 shows a plot of v(t) versus t over the 
interval 0 … t … 250 ms.

0
50 100 150 200 250

22

24

26

2

4

6

8

10

12

v(t) (V)

t (ms)

Figure 8.7 ▲ The voltage response for Example 8.2.

EXAMPLE 8.3  Calculating Branch Currents in the Natural Response of a 
Parallel RLC Circuit

Derive the expressions for the three branch cur-
rents iR, iL, and iC in Example 8.2 (Fig. 8.6) during 
the time the stored energy is being released.

Solution
We know the voltage across the three branches 
from the solution in Example 8.2 is

v(t) = 1 -14e-5000t + 26e-20,000t2  V, t Ú 0.

The current in the resistive branch is then

iR(t) =
v(t)

200
= 1 -70e-5000t + 130e-20,000t2  mA, t Ú 0.

There are two ways to find the current in the induc-
tive branch. One way is to use the integral relation-
ship that exists between the current and the voltage 
at the terminals of an inductor:

iL(t) =
1
L

 L
t

0
vL(x) dx + I0.

A second approach is to find the current in the 
capacitive branch first and then use the fact that 

iR + iL + iC = 0. Let’s use this approach. The cur-
rent in the capacitive branch is

 iC(t) = C 
dv

dt

 = 0.2 * 10-6170,000e-5000t - 520,000e-20,000t2

 = 114e-5000t - 104e-20,000t2  mA, t Ú 0+.

Now find the inductive branch current from the re-
lationship

 iL(t) = - iR(t) - iC(t)

 = 156e-5000t - 26e-20,000t2  mA, t Ú 0.

We leave it to you, in Assessment Problem 8.2, to 
show that the integral relationship between voltage 
and current in an inductor leads to the same result. 
Note that the expression for iL agrees with the ini-
tial inductor current, as it must.
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The Underdamped Voltage Response
When v0

2 7 a 2, the roots of the characteristic equation are complex num-
bers, and the response is underdamped. For convenience, we express the 
roots s1 and s2 as

 s1 = -a + 2- 1v0
2 - a 22

 = -a + j2v0
2 - a 2

  = -a + jvd  (8.12)

  s2 = -a - jvd,  (8.13)

where

Objective 1—Be able to determine the natural response and the step response of parallel RLC circuits

 8.2 Use the integral relationship between iL and v 
to find the expression for iL in Fig. 8.6.

Answer: iL(t) = 156e-5000t - 26e-20,000t2  mA, t Ú 0.

 8.3 The element values in the circuit shown are 
R = 2 kΩ, L = 250 mH, and C = 10 nF. The 
initial current I0 in the inductor is -4 A, and 
the initial voltage on the capacitor is 0 V. The 
output signal is the voltage v. Find (a) iR10+2 ;  
(b) iC10+2 ; (c) dv10+2 >dt; (d) A1; (e) A2; and  
(f) v(t) when t Ú 0.

R

iL iRiC
LC V0 vI0

1

2

1

2

Answer: (a) 0;
(b) 4 A;
(c) 4 * 108 V>s;
(d) 13,333 V;
(e) -13,333 V;
(f) 13,3331e-10,000t - e-40,000t2  V.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 8.6 and 8.16.

DAMPED RADIAN FREQUENCY

 vd = 2v0
2 - a 2. (8.14)

The term vd is called the damped radian frequency. Later we explain the 
reason for this terminology.

The underdamped voltage response of a parallel RLC circuit is

PARALLEL RLC NATURAL RESPONSE

 v(t) = B1e
-at  cos vdt + B2e

-at  sin vdt, (8.15)

which follows from Eq. 8.9. In making the transition from Eq. 8.9 to Eq. 8.15, 
we use the Euler identity:

e { ju = cos u { j sin u.



Thus,

 v(t) = A1e
1-a + jvd2t + A2e

-1a + jvd2t

 = A1e
-atejvdt + A2e

-ate-jvdt

 = e-at(A1 cos vdt + jA1 sin vdt + A2 cos vdt - jA2 sin vdt)

 = e-at3 1A1 + A22cos vdt + j1A1 - A22sin vdt4 .

At this point in the transition from Eq. 8.9 to Eq. 8.15, replace the ar-
bitrary constants A1 + A2 and j1A1 - A22  with new arbitrary constants 
denoted B1 and B2 to get

 v = e-at1B1cos vdt + B2sin vdt2

 = B1e
-atcos vdt + B2e

-atsin vdt.

The constants B1 and B2 are real, not complex, because the voltage 
is a real function. Don’t be misled by the fact that B2 = j1A1 - A22 . 
In this underdamped case, A1 and A2 are complex conjugates, and thus 
B1 and B2 are real. (See Problems 8.22 and 8.23.) Defining the under-
damped response in terms of the coefficients B1 and B2 yields a simple 
expression for the voltage, v. We determine B1 and B2 in the same way 
that we found A1 and A2 for the overdamped response—by solving two 
simultaneous equations. The first equation sets the initial value v from 
Eq. 8.15 equal to the initial value of v in the circuit. The second equa-
tion sets the initial value of dv>dt from Eq. 8.15 equal to the initial value 
of dv>dt in the circuit. Note that the initial values of v and dv>dt in the 
circuit are the same in both the underdamped and overdamped cases. 
For the underdamped response, the two simultaneous equations that 
determine B1 and B2 are

  v10+2 = B1 = V0, (8.16)

  
dv10+2

dt
= -aB1 + vdB2 =

1
C

 a -V0

R
- I0b . (8.17)

The overall process for finding the underdamped response is the same 
as that for the overdamped response, although the response equations and 
the simultaneous equations used to find the constants are slightly differ-
ent. We can modify Steps 3, 4, and 5 in the method for finding the voltage 
for the parallel RLC circuit to accommodate the differences.

Step 3: Compare a  

2 and v0
2. If a  

2 7 v0
2, the response is overdamped:

v(t) = A1e  

s1t + A2e  

s2t, t Ú 0.

If a  

2 6 v0
2, the response is overdamped:

v(t) = B1e
-at cos vdt + B2e

-at sin vdt, t Ú 0.

Step 4: If the response is overdamped, calculate the values of s1 and s2 
from a and v0, using the equations in Table 8.1. If the response is under-
damped, calculate the value of vd from

vd = 2v0
2 - a 2.
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1. Determine the initial capacitor volt-
age (V0) and inductor current (I0) from 
the circuit.
2. Determine the values of A and V0 
using the equations in Table 8.1.
3. If A2 7 V0

2, the response is over-
damped and v(t) = A1e

s1t + A2e
s2t, t Ú 0;

If A2 6 V0
2, the response 

is underdamped and 
v(t) = B1e

-at  cos  vdt + B2e
-at  sin  vdt, t Ú 0.

4. If the response is overdamped, 
 calculate s1 and s2 using the equations 
in Table 8.1;
If the response is underdamped, 
 calculate Vd using vd = 2v0

2 - a2.
5. If the response is overdamped, 
calculate A1 and A2 by simultaneously 
solving Eqs. 8.10 and 8.11;
If the response is underdamped, calcu-
late B1 and B2 by simultaneously solving 
Eqs. 8.16 and 8.17.
6. Write the equation for v(t) from Step 3 
using the results from Steps 4 and 5; find 
any desired branch currents.

Analysis Method 8.2 The natural response 
of an overdamped or underdamped parallel 
RLC circuit.

NATURAL RESPONSE OF A 
PARALLEL RLC CIRCUIT
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Step 5: If the response is overdamped, calculate the values of A1 and A2 
by solving Eqs. 8.10 and 8.11 simultaneously:

 A1 + A2 = V0;

 A1s1 + A2s2 =
1
C

 a -V0

R
- I0b .

If the response is underdamped, calculate the values of B1 and B2 by solving 
Eqs. 8.16 and 8.17 simultaneously:

 B1 = V0;

 -aB1 + vdB2 =
1
C

 a -V0

R
- I0b .

These modified steps are condensed in Analysis Method 8.2. We 
examine the characteristics of the underdamped response following 
Example 8.4, which analyzes a circuit whose response is underdamped.

EXAMPLE 8.4  Finding the Underdamped Natural Response of a  
Parallel RLC Circuit

In the circuit shown in Fig. 8.8, V0 = 0, and 
I0 = -12.25 mA.

a) Calculate the voltage response for t Ú 0.

b) Plot v(t) versus t for the time interval 
0 … t … 11 ms.

Solution
Use Analysis Method 8.2.

a) Step 1: Determine the initial values of capacitor 
voltage, V0, and inductor current, I0; since these 
values are given in the problem statement, no cir-
cuit analysis is required.

Step 2: Determine the values of a and v0 using 
the equations in Table 8.1:

 a =
1

2RC
=

1
2120,0002 1125 * 10-92 = 200 rad>s,

 v0
2 =

1
LC

=
1

182 1125 * 10-92 = 106 rad2>s 

2.

Step 3: Compare a 2 and v0
2; since a  

2 6 v0
2, the 

response is underdamped and

v(t) = B1e
-at cos vdt + B2e

-at sin vdt, t Ú 0.

Step 4: Since the response is underdamped, 
 calculate the value of vd:

vd = 2v0
2 - a 2 = 2106 - 12002 2 = 979.80 rad>s.

Step 5: Since the response is underdamped, 
 calculate the values of B1 and B2 by simultane-
ously solving

20 kV

iL iRiC

8 H125 nF V0 vI0

1

2

1

2

Figure 8.8 ▲ The circuit for Example 8.4.

 B1 = V0 = 0;

 -aB1 + vdB2 =
1
C

 a -V0

R
- I0b so

 -200B1 - 979.80B2 =
1

125 * 10-9 a -0
20,000

- 1 -12.25 * 10-32 b

 = 98,000.

Solving,

B1 = 0 V and B2 = 100 V.

Step 6: Write the equation for v(t) using the 
 results from Steps 4 and 5:

v(t) = 100e-200t  sin  979.80t V, t Ú 0.



Characteristics of the Underdamped Response
Let’s look at the general nature of the underdamped response. From  
Eq. 8.15 and the plot in Fig. 8.9 we know that the voltage alternates, or os-
cillates between positive and negative values. The voltage oscillates because 
there are two types of energy-storage elements in the circuit: the inductor and 
the capacitor. (A mechanical analogy of this electric circuit is that of a mass 
suspended on a spring, where oscillation is possible because energy can be 
stored in both the spring and the moving mass.) The oscillation rate is fixed 
by vd and the oscillation amplitude decreases exponentially at a rate deter-
mined by a, so a is also called the damping factor or damping coefficient.  
That explains why vd is called the damped radian frequency.

If there is no damping, a = 0 and the frequency of oscillation is v0. 
Whenever there is a dissipative element, R, in the circuit, a is not zero 
and the frequency of oscillation, vd, is less than v0. Thus, when a is not 
zero, the frequency of oscillation is said to be damped. As the dissipative 
losses in the circuit decrease, the persistence of the oscillations increases, 
and the frequency of the oscillations approaches v0. In other words, as 
R S ∞ , the energy dissipation in the circuit in Fig. 8.8 approaches zero 
because p = v  

2>R S 0. As R S ∞ , a S 0 and vd S v0; thus, the voltage 
oscillates and its amplitude does not decay.

In Example 8.4, if R is increased to infinity, the solution for v(t) becomes

v(t) = 98 sin 1000t V, t Ú 0.

b) Figure 8.9 shows the plot of v(t) versus t for the 
first 11 ms after the stored energy is released. It 
clearly indicates that the underdamped response is 
a damped oscillation. The voltage v(t) approaches 
its final value, alternating between values that are 
greater than and less than the final value. Further-
more, these swings about the final value decrease 
exponentially with time.

1 2 3 4 5 6 7 8 9 11
0

220
240

20
40
60
80

v(t) (V)

t(ms)

Figure 8.9 ▲ The voltage response for Example 8.4.

Objective 1—Be able to determine the natural and the step response of parallel RLC circuits

 8.4 A 10 mH inductor, a 1 mF capacitor, and a 
variable resistor are connected in parallel in 
the circuit shown. The resistor is adjusted so 
that the roots of the characteristic equation are 
-8000 { j  6000 rad>s. The initial voltage on 
the capacitor is 10 V, and the initial current in 
the inductor is 80 mA. Find

a) R;

b) dv10+ 2 >dt;

c) B1 and B2 in the solution for v; and

d) iL(t).

iL iRiC
L RC I0V0

1

2

v

1

2

Answer: (a) 62.5 Ω;
(b) -240,000 V>s;
(c) B1 = 10 V, B2 = -80>3 V;
(d) 10e-8000t[8 cos 6000t +(82>3) sin 6000t] mA 

when t Ú 0.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 8.8 and 8.14.
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In this case, the oscillation is sustained at a frequency of 1000 rad/s and the 
maximum amplitude of the voltage is 98 V.

Let’s examine the qualitative differences between an underdamped 
and an overdamped response. In an underdamped system, the response 
oscillates, or “bounces,” about its final value. This oscillation is also called 
ringing. In an overdamped system, the response approaches its final value 
without ringing or in what is sometimes described as a “sluggish” manner. 
When specifying the desired response of a second-order system, you have 
two options:

• Reach the final value in the shortest time possible, without concern 
for the small oscillations about that final value that will eventually 
cease. Therefore, design the system components to achieve an under-
damped response.

• Do not allow the response to exceed its final value, perhaps to ensure 
that components are not damaged. Therefore, design the system com-
ponents to achieve an overdamped response, and accept a relatively 
slow rise to the final value.

The Critically Damped Voltage Response
The response of a parallel RLC circuit is critically damped when v0

2 = a 2, 
or v0 = a. When a circuit is critically damped, the response is on the verge 
of oscillating, and the roots of the characteristic equation are real and equal:

 s1 = s2 = -a = -
1

2RC
 . (8.18)

If we substitute s1 = s2 = -a, into the voltage equation (Eq. 8.9), the 
equation becomes

v = 1A1 + A22e-at = A0e
-at,

where A0 is an arbitrary constant. But this expression for v cannot satisfy 
two independent initial conditions (V0, I0) with only one constant, A0.

Thus, when the roots of the characteristic equation are equal, the 
solution for the differential equation (Eq. 8.1) must take a different form, 
namely,

PARALLEL RLC NATURAL RESPONSE–CRITICALLY 
DAMPED

 v(t) = D1te
-at + D  2e

-at. (8.19)

This solution involves a simple exponential term plus the product of a lin-
ear term and an exponential term. The justification of Eq. 8.19 is left for 
an introductory course in differential equations.

There are only two unknowns in Eq. 8.19, D1 and D2. We find their 
values in the same way we found A1 and A2 for the overdamped response 
and B1 and B2 for the underdamped response—by solving two simultane-
ous equations.

One equation sets the initial value v from Eq. 8.19 equal to the ini-
tial value of v in the circuit. The second equation sets the initial value of 
dv>dt from Eq. 8.19 equal to the initial value of dv>dt in the circuit. Note 
that the initial values of v and dv>dt in the circuit are the same in the un-
derdamped, overdamped, and critically damped cases. For the critically 



damped response, the two simultaneous equations that determine D1 and 
D2 are

  v10+ 2 = D2 = V0,  (8.20)

  
dv10+ 2

dt
= D1 - aD2 =

1
C

 a -V0

R
- I0b . (8.21)

The overall process for finding the critically damped response is the 
same as that for the overdamped and underdamped responses, but again, 
the response equation and the simultaneous equations used to find the 
constants are slightly different. We can modify Steps 3, 4, and 5 in the 
method for finding the voltage for the parallel RLC circuit to accommo-
date the differences.

Step 3: Compare a  

2 and v0
2. If a  

2 7 v0
2, the response is overdamped:

v(t) = A1e
 s1t + A2e  

s2t, t Ú 0.

If a  

2 6 v0
2, the response is overdamped:

v(t) = B1e
-at  cos vdt + B2e

-at sin vdt, t Ú 0.

If a  

2 = v0
2, the response is critically damped:

v(t) = D1te
-at + D2e

-at, t Ú 0.

Step 4: If the response is overdamped, calculate the values of s1 and s2 
from a and v0, using the equations in Table 8.1. If the response is under-
damped, calculate the value of vd from

vd = 2v0
2 - a 2.

If the response is critically damped, you can skip this step.

Step 5: If the response is overdamped, calculate the values of A1 and A2 
by solving Eqs. 8.10 and 8.11 simultaneously:

 A1 + A2 = V0;

 A1s1 + A2s2 =
1
C

 a -V0

R
- I0b .

If the response is underdamped, calculate the values of B1 and B2 by solving 
Eqs. 8.16 and 8.17 simultaneously:

 B1 = V0;

 -aB1 + vdB2 =
1
C

 a -V0

R
- I0b .

If the response is critically damped, calculate the values of D1 and D2 by 
solving Eqs. 8.20 and 8.21 simultaneously:

 D2 = V0;

 D1 - aD2 =
1
C

 a -V0

R
- I0b .

These modified steps are condensed in Analysis Method 8.3, while Table 8.2 
collects all of the equations needed to find the natural response of any par-
allel RLC circuit.
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1. Determine the initial capacitor voltage 
(V0) and inductor current (I0) from the 
circuit.
2. Determine the values of A and V0 using 
the equations in Table 8.2.
3. If A2 7 V0

2, the response is overdamped 
and v(t) = A1e

s1t + A2e
s2t, t Ú 0;

If A2 6 V0
2, the response is underdamped 

and v(t) = B1e
-at cos vdt + B2e

-at sin vdt,
t Ú 0;
If A2 = v0

2 the response is critically  
damped and v(t) = D1te

-at +  D2e
-at, 

t Ú 0.
4. If the response is overdamped, calculate 
s1 and s2 using the equations in Table 8.2;
If the response is underdamped, calcu-
late Vd using the equation in Table 8.2.
5. If the response is overdamped, calcu-
late A1 and A2 by simultaneously solving the 
equations in Table 8.2;
If the response is underdamped, calcu-
late B1 and B2 by simultaneously solving 
the equations in Table 8.2;
If the response is critically damped, 
 calculate D1 and D2 by simultaneously 
 solving the equations in Table 8.2.
6. Write the equation for v(t) from Step 3 
using the results from Steps 4 and 5; find 
any desired branch currents.

Analysis Method 8.3 The natural response 
of parallel RLC circuits.

NATURAL RESPONSE OF A 
PARALLEL RLC CIRCUIT
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You will rarely encounter critically damped systems in practice, 
largely because v0 must equal a exactly. Both of these quantities depend 
on circuit parameters, and in a real circuit it is very difficult to choose 
component values that satisfy an exact equality relationship. Even so, 
Example 8.5 illustrates the approach for finding the critically damped re-
sponse of a parallel RLC circuit.

TABLE 8.2 Equations for analyzing the natural response of parallel RLC circuits

Characteristic equation s  

2 +
1

RC
 s +

1
LC

= 0

Neper, resonant, and damped frequencies a =
1

2RC
  v0 = A 1

LC
  vd = 2v0

2 - a 2

Roots of the characteristic equation s1 = -a + 2a  

2 - v0
2, s2 = -a - 2a  

2 - v0
2

a2 7 v0
2 : overdamped  v(t) = A1e  

s1t + A2e  

s2t, t Ú 0

 v(0+) = A1 + A2 = V0

 
dv(0+)

dt
= s1A1 + s2A2 =

1
C

 a -V0

R
- I0b

a2 6 v0
2 : underdamped  v(t) = B1e

-at cos vdt + B2e
-at sin vd  

t, t Ú 0

 v(0+) = B1 = V0

 
dv(0+)

dt
= -aB1 + vdB2 =

1
C

 a -V0

R
- I0b

a2 = v0
2 : critically damped  v(t) = D1te

-at + D2e
-at, t Ú 0

 v(0+) = D2 = V0

 
dv(0+)

dt
= D1 - aD2 =

1
C

 a -V0

R
- I0b

EXAMPLE 8.5  Finding the Critically Damped Natural Response of a Parallel 
RLC Circuit

a) For the circuit in Example 8.4 (Fig. 8.8), find the value 
of R that results in a critically damped voltage response.

b) Calculate v(t) for t Ú 0.

c) Plot v(t) versus t for 0 … t … 7 ms.

Solution
a) From Example 8.4, we know that v0

2 = 106. There-
fore, for critical damping,

a = 103 =
1

2RC
,

or

R =
1

2110002 1125 * 10 - 92 = 4000 Ω.

b) Follow the steps in Analysis Method 8.3 to find the 
voltage v.

Step 1: Determine the initial values of capacitor 
voltage, V0, and inductor current, I0; since these 

 values are given in Example 8.4, no circuit analysis 
is required.

Step 2: From part (a), we know that 

a = v0 =  1000 rad>s.

Step 3: Compare a  

2 and v0
2; since a  

2 = v0
2, the re-

sponse is critically damped and

v(t) = D1te
-at + D2e

-at, t Ú 0.

Step 4: Since the response is critically damped, this 
step is not needed.

Step 5: Since the response is critically damped, calcu-
late the values of D1 and D2:

 D2 = V0 = 0;

 D1 - aD2 =
1
C

 a -V0

R
- I0b so

 D1 - 1000D2 =
1

125 * 10-9 a -0
4000

- 1 -12.25 * 10-32 b

 = 98,000.

(Note that the equations in the last three rows assume that the reference direction for the current in every 
component is in the direction of the reference voltage drop across that component.)
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8.3 The Step Response of a Parallel 
RLC Circuit

Now we find the step response of a parallel RLC circuit, represented by 
the circuit shown in Fig. 8.11. The step response results from the sudden 
application of a dc current source. Energy may or may not be stored in the 
circuit when the current source is applied. We develop a general approach 
to the step response by finding the current in the inductive branch (iL).

Why do we find the inductor current? Remember that for the nat-
ural response, we found the voltage because it was the same for all of 
the parallel-connected components, and we could use the voltage to find 
the current in any branch. But to find the step response, we need to sat-
isfy three constraints. Two of the constraints are established by the ini-
tial values of the capacitor voltage and the inductor current, just as in 
the  natural-response problem. For the step-response problem, a third 
constraint arises from a nonzero final value that exists because there is a 
source in the circuit for t Ú 0.

We draw the circuit in Fig. 8.11 as t S ∞ . In the presence of the dc 
current source, the capacitor behaves like an open circuit, and the induc-
tor behaves like a short circuit, which shunts the resistor. The resulting 
circuit is shown in Fig. 8.12, where we see that the only nonzero final value 
is the inductor current. This explains why we find the inductor current and 
not the voltage in the parallel RLC step response.

Therefore,

D1 = 98,000 V>s and D2 = 0 V.

Step 6: Write the equation for v(t) using the re-
sults from Steps 4 and 5:

v(t) = 98,000te-1000t V, t Ú 0.

c) Figure 8.10 shows a plot of v(t) versus t in the 
interval 0 … t … 7 ms.

0

8

16

24

32

40

v(t) (V)

1 2 3 4 5 6 7
t (ms)

Figure 8.10 ▲ The voltage response for Example 8.5.

Objective 1—Be able to determine the natural and the step response of parallel RLC circuits

 8.5 The resistor in the circuit in Assessment Prob-
lem 8.4 is adjusted for critical damping. The in-
ductance and capacitance values are 0.4 H and 
10 mF, respectively. The initial energy stored in 
the circuit is 25 mJ and is distributed equally 
between the inductor and capacitor. Find (a) R; 
(b) V0; (c) I0; (d) D1 and D2 in the solution for 
v; and (e) iR, t Ú 0+.

Answer: (a) 100 Ω;

(b) 50 V;

(c) 250 mA;

(d) -50,000 V>s, 50 V;

(e) iR(t) = 1 -500te-500t + 0.50e-500t2  A, 
t Ú 0+.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 8.9 and 8.15.

RLC
t 5 0

vI

1

2

iC iL iR

Figure 8.11 ▲ A circuit used to describe the step 
response of a parallel RLC circuit.

RI

1

2

Vf  5 0

If  5 I

Figure 8.12 ▲ The circuit in Fig. 8.11 as t S ∞ .
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To find the inductor current iL in the circuit in Fig. 8.11, we begin with 
a KCL equation for the circuit’s top node:

iL + iR +  iC = I,

or

 iL +
v

R
+ C 

dv

dt
= I. (8.22)

Because

v = L
diL

dt
,

we get

dv

dt
= L

d2iL

dt2  .

Now we can write Eq. 8.22 using only the inductor current and its first and 
second derivatives, to give

iL +
L
R

 
diL

dt
+ LC 

d2iL

dt2 = I.

For convenience, we divide through by LC and rearrange terms:

 
d2iL

dt2 +
1

RC
 
diL

dt
+

iL

LC
=

I
LC

 . (8.23)

Compare Eq. 8.23 with Eq. 8.1—they have the same form, but note the 
nonzero constant on the right-hand side of Eq. 8.23. Before showing how 
to solve Eq. 8.23 directly, we find its solution indirectly. When we know 
the solution of Eq. 8.23, explaining the direct approach will be easier.

The Indirect Approach
We can solve for iL indirectly by first finding the voltage v. We use the 
techniques introduced in Section 8.2 because the differential equation 
that v must satisfy is identical to Eq. 8.1. To see this, we simply return to 
Eq. 8.22 and express iL as a function of v; thus

1
L

 L
t

0
vdt + I0 +

v

R
+ C 

dv

dt
= I,

where I0 is the initial current in the inductor. Differentiating once with 
respect to t reduces the right-hand side to zero because I is a constant and 
eliminates I0 from the left-hand side for the same reason. Thus

v

L
+

1
R

 
dv

dt
+ C 

d  

2
v

dt2 = 0,

or

d  

2
v

dt2 +
1

RC
 
dv

dt
+

v

LC
= 0.



As discussed in Section 8.2, the solution for v depends on the roots of the 
characteristic equation. Thus, the three possible solutions are

 v = A1e
s1t +  A2e

s2t,

 v = B1e
-at cos vdt + B2e

-at sin vdt,

 v = D1te
-at +  D2e

-at.

A word of caution: Because there is a source in the circuit for t 7 0, you 
must take into account the value of the source current at t = 0+ when you 
evaluate the coefficients in the three expressions for v.

To find the three possible solutions for iL, we substitute the three ex-
pressions for v into Eq. 8.22. When this has been done, you should be able 
to verify that the three solutions for iL will be

PARALLEL RLC STEP-RESPONSE FORMS

  iL = I + A′1es1t + A′2es2t (overdamped) (8.24)

  iL = I + B′1e-at cos vdt + B′2e-at sin vdt (underdamped) (8.25)

  iL = I + D′1te-at + D′2e-at (critically damped) (8.26)

where A′1, A′2, B′1, B′2, D′1, and D′2, are arbitrary constants. In each case, 
the primed constants can be found indirectly in terms of the arbitrary 
constants associated with the voltage solution. However, this approach is 
cumbersome.

The Direct Approach
As we have just seen, the solution for a second-order differential equa-
tion with a constant forcing function equals the forced response, plus a 
response function identical in form to the natural response. Thus, we can 
always write the solution for the step response in the form

i = If + e function of the same form
as the natural response

f ,

or

v = Vf + e function of the same form
as the natural response

f ,

where If and Vf represent the final value of the response function. The final 
value may be zero, as we saw for the voltage v in the circuit in Fig. 8.12.

As we have already noted, the only quantity with a nonzero final 
value in the circuit of Fig. 8.11 is the inductor current. Let’s look at how to 
alter the parallel RLC natural-response method to construct a method for 
finding the parallel RLC step response for the inductor current.

Step 1: Determine the initial values of capacitor voltage, V0, and induc-
tor current, I0, by analyzing the parallel RLC circuit for t 6 0. In this 
step, we also need to find the final value of the inductor current, If, by 
analyzing the circuit as t S ∞ .
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Step 2: Determine the values of the neper frequency, a, and the resonant 
radian frequency, v0, using the values of R, L, and C. No modifications are 
needed for this step.

Step 3: Compare a  

2 and v0
2. Here we replace the natural response for the 

voltage with the step response for the inductor current, given in Eqs. 8.24–8.26.

Step 4: If the response is overdamped, calculate the values of s1 and s2. If 
the response is underdamped, calculate the value of vd. If the response is 
critically damped, you can skip this step. No changes are needed in this step.

Step 5: Calculate the values of the A′, B′, and D′ coefficients by simul-
taneously solving two equations. To construct the first equation, we eval-
uate the expression for iL(t) from Step 3 at t = 0+ and set it equal to the 
initial inductor current, I0. For example, in the overdamped case the first 
 equation is

If + A′1 + A′2 = I0;

in the underdamped case, the first equation is

If + B′1 = I0;

and in the critically damped case, the first equation is

If + D′2 = I0.

To construct the second equation, we find the diL>dt from the induc-
tor current in Step 3, evaluate it at t = 0+, and set it equal to the initial 
value of diL>dt from the circuit. How do we find diL>dt from the circuit? 
We use the relationship between voltage and current in an inductor to get

diL10+2
dt

=
vL10+2

L
=

V0

L
 .

In the overdamped case, the second equation is

A′1s1 + A′2 

s2 =
V0

L
;

in the underdamped case, the second equation is

-aB′1 + vdB′2 =
V0

L
;

and in the critically damped case, the second equation is

D′1 - aD′2 =
V0

L
 .

Step 6: Write the equation for iL(t) from Step 3 using the results from 
Steps 4 and 5. Find the voltage v and the remaining branch currents using 
the relationship between voltage and current for the component in each 
branch.

The steps for finding the step response of a parallel RLC circuit are 
condensed into Analysis Method 8.4. All of the equations you will need 
are collected in Table 8.3. Examples 8.6–8.10 illustrate how to use Table 8.3 
and Analysis Method 8.4 when finding the step response of a parallel RLC 
circuit.

STEP RESPONSE OF A 
PARALLEL RLC CIRCUIT

1. Determine the initial capacitor volt-
age (V0), the initial inductor current (I0), 
and the final inductor current (If) from 
the circuit.
2. Determine the values of A and V0 
using the equations in Table 8.3.
3. If A2 7 V0

2, the response is overdamped  
and iL(t) = If + A′1es1t + A′2es2t, t Ú 0+;
If A2 7 V0

2 the response is underdamped  
and iL(t) = If + B′1e-at cos vdt 
+  B′2e-at sin vdt, t Ú 0+;
If A2 = V0

2, the response is critically 
damped and iL(t) = If + D′1te-at 
+  D′2e-at, t Ú 0+.
4. If the response is overdamped, cal-
culate s1 and s2 using the equations in 
Table 8.3;
If the response is underdamped, calcu-
late Vd using the equation in Table 8.3.
5. If the response is overdamped, 
 calculate A1′ and A2′ by simultaneously 
solving the equations in Table 8.3;
If the response is underdamped, calcu-
late B1′ and B2′ by simultaneously solving 
the equations in Table 8.3;
If the response is critically damped, 
 calculate D1′ and D2′ by simultaneously 
solving the equations in Table 8.3.
6. Write the equation for iL(t) from Step 
3 using the results from Steps 4 and 5; 
find the inductor voltage and any desired 
branch currents.

Analysis Method 8.4 The step response 
of parallel RLC circuits.



TABLE 8.3 Equations for analyzing the step response of parallel RLC circuits

Characteristic equation s  

2 +
1

RC
 s +

1
LC

=
I

LC
 

Neper, resonant, and damped frequencies a =
1

2RC
  v0 = A 1

LC
  vd = 2v0

2 - a 2

Roots of the characteristic equation s1 = -a + 2a  

2 - v0
2, s2 = -a - 2a  

2 - v0
2

a  

2 7 v0
2 : overdamped  iL(t) = If + A′1e  s1t + A′2e  s2t, t Ú 0

 iL(0+) = If + A′1 + A′2 = I0

 
diL(0+)

dt
= s1A′1 + s2A′2 =

V0

L
 

a 2 6 v0
2 : underdamped  iL(t) = If + B′1e-at cos vdt + B′2e-at sin vdt, t Ú 0

 iL(0+) = If + B′1 = I0 

 
diL(0+)

dt
= -aB′1 + vdB′2 =

V0

L
 

a 2 = v0
2 : critically damped  iL(t) = If + D′1te-at + D′2e-at, t Ú 0

 iL(0+) = If + D′2 = I0

 
diL(0+)

dt
= D′1 - aD′2 =

V0

L
 

EXAMPLE 8.6  Finding the Overdamped Step Response of a  
Parallel RLC Circuit

The initial energy stored in the circuit in Fig. 8.13 is 
zero. At t = 0, a dc current source of 24 mA is applied 
to the circuit. The value of the resistor is 400 Ω. Find 
iL(t) for t Ú 0.

Solution
Follow the steps in Analysis Method 8.4.

Step 1: The initial values of capacitor voltage, V0, and in-
ductor current, I0 are both zero because the initial stored 
energy is zero. As t S ∞ , the capacitor behaves like an 
open circuit and the inductor behaves like a short cir-
cuit that shunts the resistor, so all of the current from the 
source is in the inductor. Thus, If = 24 mA.

Step 2: Using the equations in the second row of 
 Table 8.3,

 a =
1

2RC
=

1
214002 125 * 10-92 = 50,000 rad>s;

 v0 = A 1
LC

 = A 1
10.0252 125 * 10-92  = 40,000 rad>s.

Step 3: Compare a  

2 and v0
2; since a  

2 7 v0
2, the re-

sponse is overdamped and from Table 8.3,

iL(t) = If + A′1e  s1t + A′2e  s2t, t Ú 0.

Step 4: Calculate s1 and s2 using the equations in the 
third row of Table 8.3:

 s1 = -a + 2a  

2 - v0
2 = -50,000 + 250,0002 - 40,0002

 = -50,000 + 30,000 = -20,000 rad>s;

 s2 = -a - 2a  

2 - v0
2 = -50,000 - 250,0002 - 40,0002

 = -50,000 - 30,000 = -80,000 rad>s.

Step 5: Calculate the values of A1′ and A2′ by simulta-
neously solving the equations from row 4 in Table 8.3:

 If + A′1 + A′2 = I0 so 0.024 + A′1 + A′2 = 0;

 s1A′1 + s  2A′2 =
V0

L
 so -20,000A′1 - 80,000A′2 = 0.

Solving,

A′1 = -32 mA and A′2 = 8 mA.

Step 6: Write the equation from Step 3 using the re-
sults from Steps 4 and 5 to give

iL(t) = 124 - 32-20,000t + 8e-80,000t2  mA, t Ú 0.

R25 mH25 nFt 5 0
I v

1

2

iC iL iR

Figure 8.13 ▲ The circuit for Example 8.6.

(Note that the equations in the last three rows assume that the reference direction for the current in every component 
is in the direction of the reference voltage drop across that component.)
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EXAMPLE 8.7  Finding the Underdamped Step Response of a  
Parallel RLC Circuit

The resistor in the circuit in Example 8.6 (Fig. 8.13) 
is increased to 625 Ω. Find iL(t) for t Ú 0.

Solution
Follow the steps in Analysis Method 8.4.

Step 1: From Step 1 of Example 8.6, V0 = 0, I0 = 0, 
If = 24 mA.

Step 2: Since only R has changed,  v0 = 40,000 rad>s 
from Example 8.6 and

a =
1

2RC
=

1
216252 125 * 10-92 = 32,000 rad>s.

Step 3: Compare a  

2 and v0
2; since a 2 6 v0

2, the re-
sponse is underdamped and from Table 8.3,

iL(t) = If + B′1e-at cos vdt + B′2e-at sin vdt, t Ú 0.

Step 4: Calculate vd using the equation in the sec-
ond row of Table 8.3:

vd = 2v0
2 - a

 2 = 240,0002 - 32,0002 = 24,000 rad>s.

Step 5: Calculate the values of B1′ and B2′ by simulta-
neously solving the equations from row 5 in Table 8.3:

 If + B′1 = I0 so 0.024 + B′1 = 0;

 -aB′1 + vdB′2 =
V0

L
  so   -32,000B′1 + 24,000B′2 = 0.

Solving,

B′1 = -24 mA and B′2 = -32 mA.

Step 6: Write the equation from Step 3 using the re-
sults from Steps 4 and 5 to give

iL(t) = 124 - 24e-32,000t cos 24,000t

- 32e-32,000t sin 24,000t2  mA, t Ú 0.

EXAMPLE 8.8  Finding the Critically Damped Step Response of a  
Parallel RLC Circuit

The resistor in the circuit in Example 8.6 (Fig. 8.13) 
is set at 500 Ω. Find iL for t Ú 0.

Solution
Follow the steps in Analysis Method 8.4.

Step 1: From Step 1 of Example 8.6, 

V0 = 0, I0 = 0, If = 24 mA.

Step 2: Since only R has changed, 

v0 = 40,000 rad>s, 

and from the second row of Table 8.3

a =
1

2RC
=

1
215002 125 * 10-92 = 40,000 rad>s.

Step 3: Compare a 2 and v0
2; since a  

2 = v0
2, the re-

sponse is critically damped and from Table 8.3,

iL(t) = If + D′1te-at + D′2e-at, t Ú 0.

Step 4: The response is critically damped, so this 
step is not needed.

Step 5: Calculate the values of D1′ and D2′ by si-
multaneously solving the equations from row 6 in 
Table 8.3:

 If + D′2 = I0 so 0.024 + D′2 = 0;

 D′1 - aD′2 =
V0

L
  so D′1 - 40,000D′2 = 0.

Solving,

D′1 = -960,000 mA>s and D′2 = -24 mA.

Step 6: Write the equation from Step 3 using the 
results from Steps 4 and 5 to give

iL(t) = 124 - 960,000te-40,000t - 24e-40,000t2  mA, t Ú 0.



EXAMPLE 8.9 Comparing the Three-Step Response Forms

a) Plot on a single graph, over a range from 0 to 
220 ms, the overdamped, underdamped, and  
critically damped responses derived in  
Examples 8.6–8.8.

b) Use the plots of (a) to find the time required for 
iL to reach 90% of its final value.

c) On the basis of the results obtained in (b), which 
response would you specify in a design that puts 
a premium on reaching 90% of the final value of 
the output in the shortest time?

d) Which response would you specify in a design 
that must ensure that the final value of the cur-
rent is never exceeded?

Solution

a) See Fig. 8.14.

b) The final value of iL is 24 mA, so we can read 
the times off the plots corresponding to 
iL = 21.6 mA. Thus, tod = 130 ms, tcd = 97 ms, 
and tud = 74 ms.

c) The underdamped response reaches 90% of the 
final value in the fastest time, so it is the desired 
response type when speed is the most important 
design specification.

d) From the plot, you can see that the underdamped 
response overshoots the final value of current, 
whereas neither the critically damped nor the 
overdamped response produces currents in ex-
cess of 24 mA. Although specifying either of 
the latter two responses would meet the design 
specification, it is best to use the overdamped re-
sponse. It would be impractical to require a de-
sign to achieve the exact component values that 
ensure a critically damped response.

Underdamped (R 5 625 V)

Overdamped (R 5 400 V)
Critically damped (R 5 500 V)

2
0

6

10

14

18

22

26

iL (mA)

20 60 100 140 180
t (ms)

Figure 8.14 ▲ The current plots for Example 8.9.

EXAMPLE 8.10  Finding Step Response of a Parallel RLC Circuit with Initial 
Stored Energy

Energy is stored in the circuit in Example 8.8  
(Fig. 8.13, with R = 500 Ω) at the instant the dc 
current source is applied. The initial current in the 
inductor is 29 mA, and the initial voltage across the 
capacitor is 50 V. Find iL(t) for t Ú 0 and v(t) for 
t Ú 0.

Solution
Follow Analysis Method 8.4.

Step 1: From the problem statement, V0 = 50 V 
and I0 = 29 mA. The final value of the inductor cur-
rent is unchanged from the problem in Example 8.8, 
so If = 24 mA.

Step 2: From Example 8.8, a = 40,000 rad>s and 
v0 = 40,000 rad>s.

Step 3: Compare a 2 and v0
2; since a 2 = v0

2, the response 
is critically damped and from Table 8.3,

iL(t) = If + D′1te-at + D′2e-at, t Ú 0.

Step 4: The response is critically damped, so this step is 
not needed.

Step 5: Calculate the values of D1′ and D2′ by simultane-
ously solving the equations from row 6 in Table 8.3:

 If + D′2 = I0 so 0.024 + D′2 = 0.029;

 D′1 - aD′2 =
V0

L
  so D′1 - 40,000D′2 =

50
0.025

= 2000.
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Solving,

D′1 = 2.2 * 106 mA>s and D′2 = 5 mA.

Step 6: Write the equation from Step 3 using the 
results from Steps 4 and 5 to give

iL(t) = 124 - 2.2 * 106te-40,000t + 5e-40,000t2mA, t Ú 0.

We can get the expression for v(t), t Ú 0 by using 
the relationship between the voltage and current in 
an inductor:

  v1t2 = L 
diL

dt
 

 = (25 * 10-3)[(2.2 * 106) (-40,000)te-40,000t

+  2.2 *  106e-40,000t

+  (5) (-40,000)e-40,000t] * 10-3

 = 1 -2.2 * 106te-40,000t + 50e-40,000t2  V, t Ú 0.

To check this result, let’s verify that the initial 
voltage across the inductor is 50 V:

v102 = -2.2 *  106102 112  +  50112 = 50 V.

Objective 1—Be able to determine the natural response and the step response of parallel RLC circuits

 8.6 In the circuit shown, R = 500 Ω, L = 0.64 H, 
C = 1 mF, and I = -1 A. The initial voltage 
drop across the capacitor is 40 V and the initial 
inductor current is 0.5 A. Find (a) iR10+ 2 ;  
(b) iC10+ 2 ; (c) diL10+ 2 >dt; (d) s1, s2; (e) iL(t) 
for t Ú 0; and (f) v(t) for t Ú 0+.

Answer: (a) 80 mA;

(b) -1.58 A;

(c) 62.5 A>s;

(d) 1 -1000 +  j 7502  rad>s, 
1 -1000 -  j 7502  rad>s;

(e) -1 + e-1000t[1.5 cos 750t
+  2.0833 sin 750t] A, for t Ú 0;

(f) e-1000t140 cos 750t - 2053.33 sin 750t2  V, 
for t Ú 0+.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 8.32–8.34.

RLC
t 5 0

vI

1

2

iC iL iR

8.4 The Natural and Step Response 
of a Series RLC Circuit

The procedures for finding the natural or step responses of a series RLC 
circuit are the same as those used to find the natural or step responses of 
a parallel RLC circuit because both circuits are described by differential 
equations that have the same form. For the natural-response problem, we 
solve for the current because it is the same for all circuit components. We 
begin by summing the voltages, expressed in terms of the current, around 
the closed path in the circuit shown in Fig. 8.15. Thus

Ri + L
di
dt

+
1
C

 L
t

0
idt +  V0 = 0.

We now differentiate once with respect to t to get

R
di
dt

 +  L
d  

2i

dt2 +
i
C

= 0,

R

i

L

C

I0

V0

1

2

Figure 8.15 ▲ A circuit used to illustrate the natural 
response of a series RLC circuit.
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which we can rearrange as

 
d  

2i

dt2 +
R
L

 
di
dt

+
i

LC
= 0. (8.27)

Comparing Eq. 8.27 with Eq. 8.1 reveals that they have the same form. 
Therefore, to find the solution of Eq. 8.27, we follow the same process 
that led us to the solution of Eq. 8.1.

From Eq. 8.27, the characteristic equation for the series RLC circuit is

CHARACTERISTIC EQUATION, SERIES RLC CIRCUIT

 s2 +
R
L

 s +
1

LC
= 0. (8.28)

The roots of the characteristic equation are

s1,2 = -
R
2L

{ B a R
2L

b
2

-
1

LC
,

or

 s1,2 = -a { 2a 2 -  v0
2.

The neper frequency (a) for the series RLC circuit is

NEPER FREQUENCY, SERIES RLC CIRCUIT

 a =
R

2L
 rad>s, (8.29)

and the expression for the resonant radian frequency is

RESONANT RADIAN FREQUENCY, SERIES RLC CIRCUIT

 v0 =
11LC

 rad>s. (8.30)

Note that the equation for the neper frequency of the series RLC circuit 
differs from that of the parallel RLC circuit, but the equations for the res-
onant radian frequencies are the same.

The current response will be overdamped, underdamped, or critically 
damped according to whether v0

2 6  a2, v0
2 7  a2, or v0

2 = a2, respec-
tively. Thus, the three possible solutions for the current are as follows:

SERIES RLC NATURAL-RESPONSE FORMS

  i(t) = A1e
s1t +  A2e

s2t 1overdamped2 , (8.31)

  i(t) = B1e
-at cos vdt  

    + B2e
-at sin vdt 1underdamped2 , (8.32)

  i(t) = D1te
-at +  D  2e

-at  1critically damped2 . (8.33)
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Once you know the current you can find the voltage across any circuit 
element.

Let’s look at how to alter the parallel RLC natural-response method 
to construct a method for finding the series RLC natural response for the 
circuit’s current.

Step 1: Determine the initial values of capacitor voltage, V0, and inductor 
current, I0, by analyzing the RLC circuit. This step is unchanged.

Step 2: Determine the values of the neper frequency, a, and the resonant 
radian frequency, v0, using the values of R, L, and C. While the equation 
for v0 is the same for both circuits, the equation for a is different: for the 
parallel RLC, a = 1>(2RC), and for the series RLC, a = R>(2L).

Step 3: Compare a 2 and v0
2 to determine the response form. Use the ap-

propriate equation for the circuit current from Eqs. 8.31–8.33.

Step 4: If the response is overdamped, calculate the values of s1 and s2. If 
the response is underdamped, calculate the value of vd. If the response is 
critically damped, you can skip this step. No changes are needed in this step.

Step 5: Calculate the values of the A, B, and D coefficients by simulta-
neously solving two equations. To construct the first equation, we eval-
uate the expression for i(t) from Step 3 at t = 0+ and set it equal to the 
initial inductor current, I0. For example, in the overdamped case the first 
 equation is

A′1 + A′2 = I0;

in the underdamped case, the first equation is

B′1 = I0;

and in the critically damped case, the first equation is

D′2 = I0.

To construct the second equation, we find di>dt from the circuit current 
in Step 3, evaluate it at t = 0+ and set it equal to the initial value of di>dt 
from the circuit. How do we find the initial value of di>dt from the circuit? 
We use the relationship between voltage and current in an inductor to get

di10+2
dt

=
vL10+2

L
 .

But we don’t know the initial voltage across the inductor, so we use KVL 
to find it. We know that the sum of the three component voltages at t = 0+ 
must be zero. The voltage across the resistor at t = 0+ is the product of 
the initial current (I0) and the resistance, and the voltage across the ca-
pacitor at t = 0+ is V0. Using the reference system in Fig. 8.15, we obtain

vL10+2 = -RI0 - V0.

So the initial value of di>dt from the circuit is

di10+2
dt

=
1
L

 1 -RI0 - V02 .

Thus, in the overdamped case, the second equation is

A′1s1 + A′2s2 =
1
L

 (-RI0 - V0)



in the underdamped case, the second equation is

-aB′1 + vdB′2 =
1
L

 (-RI0 - V0);

and in the critically damped case, the second equation is

D′1 - aD′2 =
1
L

 (-RI0 - V0).

Step 6: Write the equation for i(t) from Step 3 using the results from 
Steps 4 and 5. Find the voltage for any component using its relationship 
between voltage and current.

The steps for finding the natural response for a parallel RLC circuit 
are condensed into Analysis Method 8.5. All of the equations you will 
need are collected in Table 8.4.

To verify that the procedure for finding the step response of a series 
RLC circuit is similar to that for a parallel RLC circuit, we show that the 
differential equation that describes the capacitor voltage in Fig. 8.16 has 
the same form as the differential equation that describes the inductor cur-
rent in Fig. 8.11. Applying KVL to the circuit shown in Fig. 8.16 gives

V = Ri + L
di
dt

+  vC.

The current (i) is related to the capacitor voltage (vC) by the expression

i = C 
dvC

dt
,

from which

di
dt

= C 
d2

vC

dt2  .

TABLE 8.4
  Equations for analyzing the natural response of  

series RLC circuits

Characteristic equation s2 +
R
L

 s +
1

LC
= 0

Neper, resonant, and  
damped frequencies a =

R
2L

  v0 = A 1
LC

  vd = 2v0
2 - a 2

Roots of the characteristic  
equation

s1 = -a + 2a  

2 - v0
2, s2 = -a - 2a  

2 - v0
2

a  

2 7 v0
2 : overdamped  i(t) = A1e  

s1t + A2e  

s2t, t Ú 0

 i(0+) = A1 + A2 = I0

 
di(0+)

dt
= s1A1 + s2A2 =

1
L

 1 -RI0 - V02

a  

2 6 v0
2 : underdamped  i(t) = B1e

-at cos vdt + B2e
-at sin vdt, t Ú 0

 i(0+) = B1 = I0

 
di(0+)

dt
= -aB1 + vdB2 =

1
L

 1 -RI0 - V02

a  

2 = v0
2 : critically damped  i(t) = D1te

-at + D2e
-at, t Ú 0

 i(0+) = D2 = I0

 
di(0+)

dt
= D1 - aD2 =

1
L

 1 -RI0 - V02

NATURAL RESPONSE OF A 
SERIES RLC CIRCUITS

1. Determine the initial capacitor voltage (V0) 
and inductor current (I0) from the circuit.
2. Determine the values of A and V0 using  
the equations in Table 8.4.
3. If A2 7 V0

2, the response is overdamped 
and i(t) = A1e

s1t + A2e
s2t, t Ú 0;

If A2 6 V0
2 the response is underdamped and 

i(t) = B1e
-at cos vdt + B2e

-at sin vdt, t Ú 0;
If A2 = V0

2, the response is critically damped  
and i(t) = D1te

-at + D2e
-at, t Ú 0.

4. If the response is overdamped, calculate  
s1 and s2 using the equations in Table 8.4;
If the response is underdamped, calculate 
Vd using the equation in Table 8.4.
5. If the response is overdamped, calculate  
A1 and A2 by simultaneously solving the 
 equations in Table 8.4;
If the response is underdamped, calculate B1 
and B2 by simultaneously solving the equations 
in Table 8.4;
If the response is critically damped,  calculate 
D1 and D2 by simultaneously  solving the equa-
tions in Table 8.4.
6. Write the equation for i(t) from Step 3 using 
the results from Steps 4 and 5; find any desired 
component voltages.

Analysis Method 8.5 The natural response 
of series RLC circuits.

1

2

R

i

t 5 0

L

CV

vR1 2 vL1 2

vC

1

2

Figure 8.16 ▲ A circuit used to illustrate the step 
response of a series RLC circuit.

(Note that the equations in the last three rows assume that the reference direction for the current 
in every component is in the direction of the reference voltage drop across that component.)
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Substitute the expressions for the current and its first derivative into the 
KVL equation to get

 
d2

vC

dt2 +
R
L

 
dvC

dt
+

vC

LC
=

V
LC

 . (8.34)

Equation 8.34 has the same form as Eq. 8.23; therefore, the procedure for 
finding vC parallels that for finding iL. The three possible solutions for vC 
are as follows:

PARALLEL RLC STEP-RESPONSE FORMS

  vC = Vf +  A′1es1t +  A′2es2t  1overdamped2 , (8.35)

  vC = Vf +  B′1e-at cos vdt 

                    +  B′2e-at sin vdt  1underdamped2 , (8.36)

  vC = Vf + D′1te-at +  D′2e-at  1critically damped2 , (8.37)

where Vf is the final value of vC. Hence, from the circuit shown in  
Fig. 8.15, the final value of vC is the dc source voltage V.

Let’s look at how to alter the series RLC natural-response method 
(Analysis Method 8.5) to find the series RLC step response for the 
 capacitor voltage.

Step 1: Determine the initial values of capacitor voltage, V0, and induc-
tor current, I0, by analyzing the RLC circuit. In this step, we also need to 
find the final value of the capacitor voltage, Vf, by analyzing the circuit as 
t S ∞ .

Step 2: Determine the values of the neper frequency, a, and the resonant 
radian frequency, v0, using the values of R, L, and C. No modifications are 
needed for this step.

Step 3: Compare a2 and v0
2. Here we replace the natural response for the 

current with the step response for the capacitor voltage, given in Eqs. 8.35–
8.37.

Step 4: If the response is overdamped, calculate the values of s1 and s2. 
If the response is underdamped, calculate the value of vd. If the response 
is critically damped, you can skip this step. No changes are needed in this 
step.

Step 5: Here we calculate the values of the A′, B′, and D′ coefficients by 
simultaneously solving two equations. To construct the first equation, we 
evaluate the expression for vC(t) from Step 3 at t = 0+ and set it equal to 
the initial capacitor voltage, V0. For example, in the overdamped case the 
first equation is

Vf + A′1 + A′2 = V0;

in the underdamped case, the first equation is

Vf + B′1 = V0;

and in the critically damped case, the first equation is

Vf + D′2 = V0.



To construct the second equation, we find dvC>dt from the capacitor volt-
age in Step 3, evaluate it at t = 0+ and set it equal to the initial value of 
dvC>dt from the circuit. How do we find dvC>dt at t = 0+ from the circuit? 
We use the relationship between voltage and current in a capacitor to get

dvC10+ 2
dt

=
iC10+ 2

C
=

I0

C
 .

In the overdamped case, the second equation is

A′1s1 + A′2s2 =
I0

C
;

in the underdamped case, the second equation is

-aB′1 + vdB′2 =
I0

C
;

and in the critically damped case, the second equation is

D′1 - aD′2 =
I0

C
 .

Step 6: Here we must write the equation for vC(t) from Step 3 using the 
results from Steps 4 and 5. Find the current i and the remaining component 
voltages using the relationships between voltage and current.

The steps for finding the step response for a series RLC circuit are con-
densed into Analysis Method 8.6. All of the equations you will need are 
collected in Table 8.5.

Examples 8.11 and 8.12 find the natural and step responses of a series 
RLC circuit.

TABLE 8.5 
 Equations for analyzing the step response of series RLC 
circuits

Characteristic equation s2 +
R
L

 s +
1

LC
=

V
LC

 

Neper, resonant, and  
damped frequencies a =

R
2L

   v0 = A 1
LC

   vd = 2v0
2 - a 2

Roots of the characteristic  
equation s1 = -a + 2a  

2 - v0
2,  s2 = -a - 2a 2 - v0

2

a  

2 7 v0
2 : overdamped  vC(t) = Vf + A′1es1t + A′2es2t, t Ú 0

 vC(0+) = Vf + A′1 + A′2 = V0

 
dvC(0+)

dt
= s1A′1 + s2A′2 =

I0

C
 

a  

2 6 v0
2 : underdamped  vC(t) = Vf + B′1e-at cos vdt + B′2e-at sin vdt, t Ú 0

 vC(0+) = Vf + B′1 = V0

 
dvC(0+)

dt
= -aB′1 + vdB′2 =

I0

C
 

a2 = v0
2 : critically 

damped
 vC(t) = Vf + D′1te-at + D′2e-at, t Ú 0

 vC(0+) = Vf + D′2 = V0

 
dvC(0+)

dt
= D′1 - aD′2 =

I0

C
 

STEP RESPONSE OF A  
SERIES RLC CIRCUITS

1. Determine the initial capacitor volt-
age (V0), the initial inductor current (I0), 
and the final capacitor voltage (Vf) from 
the circuit.
2. Determine the values of A and V0 
using the equations in Table 8.5.
3. If A2 7 V0

2, the response is  
overdamped and vC(t) = Vf + A′1es1t 
+  A′2es2t, t Ú 0+;
If A2 6 V0

2, the response is under-
damped and vC(t) = Vf + B′1e-at cos vdt
+  B′2e-at sin vdt, t Ú 0+;
If A2 = V0

2, the response is critically 
damped and vC(t) = Vf + D′1te-at 
+  D′2e-at, t Ú 0+.
4. If the response is overdamped, 
 calculate s1 and s2 using the equations  
in Table 8.5;
If the response is underdamped, calcu-
late Vd using the equation in Table 8.5.
5. If the response is overdamped, 
 calculate A1′ and A2′ by simultaneously 
solving the equations in Table 8.5;
If the response is underdamped, calcu-
late B1′ and B2′ by simultaneously solving 
the equations in Table 8.5;
If the response is critically damped, 
 calculate D1′ and D2′ by simultaneously 
solving the equations in Table 8.5.
6. Write the equation for vC(t) from Step 3  
using the results from Steps 4 and 5; 
find the inductor voltage and any desired 
branch currents.

Analysis Method 8.6 The step response 
of series RLC circuits.

(Note that the equations in the last three rows assume that the reference direction for the current 
in every component is in the direction of the reference voltage drop across that component.)
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EXAMPLE 8.11  Finding the Natural Response of a Series RLC Circuit

The 0.1 mF capacitor in the circuit shown in Fig. 8.17 
is charged to 100 V. At t = 0 the capacitor is dis-
charged through a series combination of a 100 mH 
inductor and a 560 Ω resistor.

a) Find i(t) for t Ú 0.

b) Find vC(t) for t Ú 0.

Solution

a) This is a natural-response problem because there 
is no source in the circuit for t Ú 0; follow Anal-
ysis Method 8.5, which uses Table 8.4.

Step 1: Determine the initial values of capacitor 
voltage, V0, and inductor current, I0. From the 
problem statement and the circuit configuration, 
V0 = 100 V and I0 = 0.

Step 2: Determine the values of a and v0 using 
the equations in Table 8.4:

 a =
R
2L

=
560

210.12 = 2800 rad>s,

 v0
2 =

1
LC

=
1

10.12 10.1 * 10-62 = 108 rad 

2>s2.

Step 3: Compare a  

2 and v0
2; since a  

2 6 v0
2, the re-

sponse is underdamped and from row 5 in Table 8.4,

i(t) = B1e
-at cos vdt + B2e

-at sin vdt, t Ú 0.

Step 4: Since the response is underdamped, calcu-
late the value of vd from row 2 in Table 8.4:

vd = 2v0
2 - a 2 = 2108 - 28002 = 9600 rad>s.

Step 5: Since the response is underdamped, calculate 
the values of B1 and B2 by simultaneously solving the 
equations from row 5 in Table 8.4:

 B1 = I0 = 0;

 -aB1 + vdB2 =
1
L

 1 -RI0 - V02 so

 -2800B1 + 9600B2 =
1

0.1
 1 - 15602(0) - 1002 = -1000.

Solving,

B1 = 0 and B2 = -0.1042 A.

Step 6: Write the equation for i(t) using the results 
from Steps 4 and 5:

 i(t) = -0.1042e-2800t sin 9600t A, t Ú 0.

b) To find vC(t), we can use either of the following re-
lationships:

vC =
1
C

 L
t

0
idt + 100 or vC = - aRi + L

di
dt
b .

Whichever expression is used (the second is recom-
mended), the result is

vC(t) = 1100 cos 9600t + 29.17 sin 9600t2e-2800t V, t Ú 0.

t 5 0

560 Vi

100 mH

0.1 mF100 V

1

2

vC

1

2

Figure 8.17 ▲ The circuit for Example 8.11.

EXAMPLE 8.12 Finding the Step Response of a Series RLC Circuit

No energy is stored in the 100 mH inductor or 
the 0.4 mF capacitor when the switch in the circuit 
shown in Fig. 8.18 is closed. Find vC(t) for t Ú 0.

Solution
This is a step-response problem because there is 
a source in the circuit for t Ú 0; follow Analysis 
Method 8.6, which uses Table 8.5.

Step 1: Determine the initial values of capaci-
tor voltage, V0, and inductor current, I0, and the 
final value of the capacitor voltage, Vf. From the 
problem statement and the circuit configuration, 
V0 = 0, I0 = 0, and Vf = 48 V.

1

2

0.1 H
t 5 0

1250 V

0.4 mF48 V vC

1

2

Figure 8.18 ▲ The circuit for Example 8.12.
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Step 2: Determine the values of a and v0 using the 
equations in Table 8.5:

 a =
R
2L

=
1250

210.12 = 6250 rad>s;

 v0
2 =

1
LC

=
1

10.12 10.4 * 10-62 = 25 * 106 rad 

2>s2.

Step 3: Compare a  

2 and v0
2; since a  

2 7 v0
2, the re-

sponse is overdamped and from row 4 in Table 8.5:

vC(t) = Vf + A′1es1t + A′2es2t, t Ú 0.

Step 4: Since the response is overdamped, calcu-
late the values of s1 and s2 from row 2 in Table 8.5:

 s1 = -a + 2a 2 - v0
2 = -6250 + 262502 - 50002

 = -6250 + 3750 = -2500 rad>s;

 s2 = -a - 2a 2 - v0
2 = -6250 - 262502 - 50002

 = -6250 - 3750 = -10,000 rad>s.

Step 5: Since the response is overdamped, calculate 
the values of A1′ and A2′ by simultaneously solving the 
equations from row 4 in Table 8.5:

 Vf + A′1 + A′2 = V0 so 48 + A′1 + A′2 = 0;

 s1A′1 + s2A′2 =
I0

C
  so -2500A′1 - 10,000A′2 = 0.

Solving,

A′1 = -64 V and A′2 = 16 V.

Step 6: Write the equation for vC(t) in Step 3 using 
the results from Steps 4 and 5:

vC(t) = 148 - 64e-2500t + 16e-10,000t2  V,  t Ú 0.

Objective 2—Be able to determine the natural response and the step response of series RLC circuits

 8.7 The switch in the circuit shown has been in 
position a for a long time. At t = 0, it moves to 
position b. Find vC (t) for t Ú 0.

1

2
15 kV

2 mF

1

2
80 V

t 5 0

80 V9 kV 5 mHa b

vC

1

2

100 V

i

Answer:  [100 - e-8000t (50 cos 6000t  
+  66.67 sin 6000t)] V for t Ú 0.

 8.8 Find i(t) for t Ú 0 for the circuit in Assessment 
Problem 8.7.

Answer: 11.67e-8000t sin 6000t2  A for t Ú 0.

 8.9 Repeat Assessment Problems 8.7 and 8.8 if the 
80 Ω resistor is replaced by a 100 Ω resistor.

Answer:

 vC(t) = 1100 - 500,000te-10,000t - 50e-10,000t2  V, t Ú 0;

   i(t) = 10,000te-10,000t A, t Ú 0.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 8.50–8.52.

8.5 A Circuit with Two Integrating 
Amplifiers

A circuit containing two integrating amplifiers connected in cascade1 is 
also a second-order circuit; that is, the output voltage of the second in-
tegrator is related to the input voltage of the first by a second-order dif-
ferential equation. We begin our analysis of a circuit containing two cas-
caded amplifiers with the circuit shown in Fig. 8.19.

1 In a cascade connection, the output signal of the first amplifier (vo1 in Fig. 8.19) is the input 
signal for the second amplifier.
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VCC

2VCC vo1

1

2

vg

1

2

2

1

R1
R2

C1

VCC

2VCC vo

1

2

2

1

C2

Figure 8.19 ▲ Two integrating amplifiers connected in cascade.

We derive the differential equation that defines the relationship be-
tween vo and vg, assuming that the op amps are ideal. Begin the deriva-
tion by summing the currents at the inverting input terminal of the first 
integrator:

0 - vg

R1
+ C1

d
dt

 10 - vo12 = 0.

Simplifying and rearranging, we get

 
dvo1

dt
= -

1
R1C1

 vg. (8.38)

Now, sum the currents away from the inverting input terminal of the sec-
ond integrating amplifier:

0 - vo1

R2
+ C2 

d
dt

 10 - vo2 = 0,

or

dvo

dt
= -

1
R2C2

 vo1.

Differentiating both sides of this equation gives

d2
vo

dt2 = -
1

R2C2
 
dvo1

dt
.

We find the differential equation that governs the relationship between vo 
and vg by substituting for dvo1>dt, using Eq. 8.38:

 
d2

vo

dt2 =
1

R1C1
 

1
R2C2

 vg. (8.39)

Example 8.13 illustrates the step response of a circuit containing two cas-
caded integrating amplifiers.
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EXAMPLE 8.13 Analyzing Two Cascaded Integrating Amplifiers

No energy is stored in the circuit shown in Fig. 8.20 
when the input voltage vg jumps instantaneously 
from 0 to 25 mV.

a) Derive the expression for vo(t) for 0 … t … tsat.

b) Find the time tsat when the circuit saturates.

Solution

a) Figure 8.20 indicates that the amplifier scaling 
factors are

 
1

R1C1
=

1000
12502 10.12 = 40,

 
1

R2C2
=

1000
15002 112 = 2.

Now, because vg = 25 mV for t 7 0, Eq. 8.39 
becomes

d2
vo

dt2 = 1402 122 125 * 10-32 = 2.

To solve for vo, we let

g(t) =
dvo

dt
,

then,

dg(t)

dt
= 2, and dg(t) = 2dt.

Hence

L
g(t)

g102
dy = 2L

t

0
dx,

from which

g(t) - g102 = 2t.

However,

g102 =
dvo102

dt
= 0,

because the energy stored in the circuit initially is 
zero, and the op amps are ideal. (See Problem 8.59.) 
Then,

dvo

dt
= 2t, and vo = t2 + vo102 .

But vo102 = 0, so the expression for vo becomes

vo = t2, 0 … t … tsat.

b) The second integrating amplifier saturates when 
vo reaches 9 V or t = 3 s. But it is possible that 
the first integrating amplifier saturates before 
t = 3 s. To explore this possibility, use Eq. 8.38 
to find dvo1>dt:

dvo1

dt
= -401252 * 10-3 = -1.

Solving for vo1 yields

vo1 = - t.

Thus, at t = 3 s, vo1 = -3 V, and, because the 
power supply voltage on the first integrating 
amplifier is {5 V, the circuit reaches saturation 
when the second amplifier saturates. When one 
of the op amps saturates, we no longer can use 
the linear model to predict the behavior of the 
circuit.

5 V

25 V vo1

1

2

vg

1

2

2

1

9 V

29 V

250 kV
500 kV

0.1 mF
1 mF

vo

1

2

2

1

Figure 8.20 ▲ The circuit for Example 8.13.

Two Integrating Amplifiers with Feedback Resistors
Figure 8.21 depicts a variation of the circuit shown in Fig. 8.19. Recall 
from Section 7.7 that the op amp in the integrating amplifier saturates 
due to the feedback capacitor’s accumulation of charge. Here, a resistor is 

SELF-CHECK: Assess your understanding of this material by trying Chapter Problem 8.63.
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placed in parallel with each feedback capacitor (C1 and C2) to overcome 
this problem. We derive the equation for the output voltage, vo, and de-
termine the impact of these feedback resistors on the integrating amplifi-
ers from Example 8.13.

We begin the derivation of the second-order differential equation 
that relates vo1 to vg by summing the currents at the inverting input node 
of the first integrator:

0 - vg

Ra
+

0 - vo1

R1
+ C1

d
dt

 10 - vo12 = 0.

Simplifying and rearranging, we get

dvo1

dt
+

1
R1C1

 vo1 =
-vg

RaC1
 .

For convenience, we let t1 = R1C1 and write Eq. 8.41

 
dvo1

dt
+

vo1

t1
=

-vg

RaC1
 . (8.40)

Next, sum the currents at the inverting input terminal of the second integrator:

0 - vo1

Rb
+

0 - vo

R2
+ C2

d
dt

 10 - vo2 = 0.

Simplifying and rearranging, we get

 
dvo

dt
+

vo

t2
=

-vo1

RbC2
, (8.41)

where t2 = R2C2. Differentiating both sides of Eq. 8.41 yields

d2
vo

dt2 +
1
t2

 
dvo

dt
= -

1
RbC2

 
dvo1

dt
.

From Eq. 8.40,

dvo1

dt
=

-vo1

t1
 -  

vg

RaC1
,

VCC1

2VCC1 vo1

1

2

vg

1

2

2

1

Ra

R1

Rb VCC 2

2VCC 2 vo

1

2

2

1

C1

R2

C2

Figure 8.21 ▲ Cascaded integrating amplifiers with feedback  
resistors.
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and from Eq. 8.41,

vo1 = -RbC2 

dvo

dt
-

RbC2

t2
 vo.

Finally, eliminate vo1 and dvo1>dt from the second-order differential 
equation and obtain the desired relationship:

 
d 2

vo

dt2 +  a 1
t1

+
1
t2
bdvo

dt
+ a 1

t1t2
bvo =

vg

RaC1RbC2
 . (8.42)

From Eq. 8.42, the characteristic equation is

s2 + a 1
t1

+
1
t2
bs +

1
t1t2

= 0.

The roots of the characteristic equation are real, namely,

 s1 =
-1
t1

,

 s2 =
-1
t2

.

Example 8.14 determines the step response of two cascaded integrating am-
plifiers when the feedback capacitors are shunted with feedback resistors.

EXAMPLE 8.14  Analyzing Two Cascaded Integrating Amplifiers with Feedback 
Resistors

The parameters for the circuit shown in Fig. 8.21 are  
Ra = 100 kΩ, R1 = 500 kΩ, C1 = 0.1 mF, Rb = 25 kΩ,  
R2 = 100 kΩ, and C2 = 1 mF. The power supply volt-
age for each op amp is {6 V. The signal voltage (vg)  
for the cascaded integrating amplifiers jumps from 0 
to 250 mV at t = 0. No energy is stored in the feed-
back capacitors at the instant the signal is applied.

a) Find differential equation that governs vo.

b) Find vo(t) for t Ú 0.

c) Find the differential equation that governs vo1.

d) Find vo1(t) for t Ú 0.

Solution

a) From the numerical values of the circuit parameters, 
we have t1 = R1C1 = 0.05 s; t2 = R2C2 = 0.10 s,  
and vg>RaC1RbC2 = 1000 V>s 

2. Substituting these 
values into Eq. 8.42 gives

d2
vo

dt2 + 30 

dvo

dt
+ 200 vo = 1000.

b) The roots of the characteristic equation are 
s1 = -20 rad>s and s2 = -10 rad>s. The final value 

of vo is the product of the input voltage and the 
gain of each stage because the capacitors behave 
as open circuits as t S  ∞ . Thus,

vo1∞2 = 1250 * 10-32 1 -5002
100

 
1 -1002

25
= 5 V.

The solution for vo thus takes the form:

vo = 5 + A′1e-10t +  A′2e-20t.

With vo102 = 0 and dvo102 >dt = 0, the numer-
ical values of A′1 and A′2 are A′1 = -10 V and 
A′2 = 5 V. Therefore, the solution for vo is

vo(t) = 15 - 10e-10t + 5e-20t2  V, t Ú 0.

The solution assumes that neither op amp satu-
rates. We have already noted that the final value 
of vo is 5 V, which is less than 6 V; hence, the sec-
ond op amp does not saturate. The final value 
of vo1 is 1250 * 10-32 1 -500>1002 , or -1.25 V. 
Therefore, the first op amp does not saturate, 
and our assumption and solution are correct.
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Practical Perspective
Clock for Computer Timing
Consider the circuit in Fig. 8.22, where the output is the voltage drop 
across the capacitor. For t Ú 0 this circuit looks like the series RLC 
 natural-response circuit of Fig. 8.3 without its resistor. When we analyze 
this LC circuit, we will discover that its output is an undamped sinusoid, 
which a computer’s clock generator could use instead of the typical 
quartz crystal oscillator. We will be able to specify the frequency of the 
clock by selecting appropriate values for the inductor and capacitor.

Since this is a series RLC natural-response problem, we follow 
Analysis Method 8.5, which uses Table 8.4. Remember that R = 0 for 
t Ú 0.

Step 1: Determine the initial values of capacitor voltage, V0, and inductor 
current, I0. How does the circuit behave when t 6 0? When the switch 
is in the a position, all of the components are connected. The capacitor 
acts like an open circuit, whose voltage is V0, and the inductor acts like 
a short circuit, whose current is I0. The capacitor and inductor have the 
same voltage, and since the inductor’s voltage is 0, V0 = 0. The current 
in the inductor is the current in the loop containing the voltage source, 
the resistor, and the inductor, which is V0 = Vs>Rs.

Step 2: Determine the values of a and v0 using the equations in  
Table 8.4:

 a =
R
2L

=
0

2L
= 0,

 v0
2 =

1
LC

 .

Step 3: Compare a2 and v0
2; since a2 6 v0

2, the response is under-
damped and from row 5 in Table 8.4:

i(t) = B1e
-at cos vdt + B2e

-at sin vdt, t Ú 0.

Step 4: Since the response is underdamped, calculate the value of vd 
from row 2 in Table 8.4:

vd = 2v0
2 - a 2 = 2v0

2 - 02 = v0.

c) Substituting the numerical values of the parame-
ters into Eq. 8.40 generates the desired differential 
equation:

dvo1

dt
+ 20 vo1 = -25.

d) We have already noted the initial and final val-
ues of vo1, along with the time constant t1. Thus, 
we write the solution in accordance with Analysis 
Method 7.5, developed in Section 7.4:

 vo1 = -1.25 + 30 - 1 -1.252 4e-20t

 = -1.25 + 1.25e-20t V, t Ú 0.

aRs

C
LVs

b

vo(t)

t = 0

i
1

2

1

2

Figure 8.22 ▲ An LC natural response circuit.

SELF-CHECK: Assess your understanding of this material by trying Chapter Problem 8.64.
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Step 5: Since the response is underdamped, calculate the values of B1 
and B2 by simultaneously solving the equations from row 5 in Table 8.4:

 B1 = I0 =
Vs

Rs
 ;

 -aB1 + vdB2 =
1
L

 1 -RsI0 - V02 so

 - 102B1 + v0B2 =
1
L

 a - 102 aVs

Rs
b - 0b = 0.

Solving,

B1 =
Vs

Rs
  and B2 = 0.

Step 6: Write the equation for i(t) using the results from Steps 4 and 5:

i(t) =
Vs

Rs
 e-102t cos v0t, t Ú 0.

We can now use the expression for the current in the circuit to find the volt-
age output by the capacitor:

vo(t) =
1
C

 L
t

0
i(x)dx =

1
C

 L
t

0

Vs

Rs
 cos v0 

xdx =
Vs

v0RsC
  sin v0t,  t Ú 0.

By choosing values for L and C, we can use the circuit in Fig. 8.22 
to generate an undamped sinusoid when t Ú 0 for a computer’s clock 
generator.

So why is a quartz crystal used to generate the sinusoid for the 
clock generator instead of the LC circuit of Fig. 8.22? Remember that 
our analysis of the LC circuit assumed that the inductor and capacitor 
are ideal. But ideal inductors and capacitors do not exist—real induc-
tors and capacitors have a small amount of resistance. We leave it to 
you to examine the effect of this small amount of resistance on the per-
formance of an LC oscillator in the Chapter Problems.

SELF-CHECK: Assess your understanding of the Practical Perspective 
by solving Chapter Problems 8.66–8.68.

Summary
• The characteristic equation for both the parallel and se-

ries RLC circuits has the form

s2 + 2as + v0
2 = 0,

where a = 1>2RC for the parallel circuit, a = R>2L 
for the series circuit, and v0

2 = 1>LC for both the paral-
lel and series circuits. (See pages 303 and 325.)

• The roots of the characteristic equation are

s1,2 = -a { 2a2 - v0
2.

(See page 304.)

• The form of the natural and step responses of series and 
parallel RLC circuits depends on the values of a  

2 and v0
2; 

such responses can be overdamped, underdamped, or criti-
cally damped. These terms describe the impact of the dissi-
pative element (R) on the response. The neper frequency, 
a, reflects the effect of R. (See pages 304 and 305.)

• To determine the natural response of a parallel RLC cir-
cuit, follow the steps in Analysis Method 8.3, using the 
equations in Table 8.2. (See page 316.)

• To determine the step response of a parallel RLC cir-
cuit, follow the steps in Analysis Method 8.4, using the 
equations in Table 8.3. (See page 321.)
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• To determine the natural response of a series RLC cir-
cuit, follow the steps in Analysis Method 8.5, using the 
equations in Table 8.4. (See page 327.)

• To determine the step response of a series RLC circuit, 
follow the steps in Analysis Method 8.6, using the equa-
tions in Table 8.5. (See page 329.)

• When two integrating amplifiers with ideal op amps are 
connected in cascade, the output voltage of the second 

integrator is related to the input voltage of the first by an 
ordinary, second-order differential equation. Therefore, 
the techniques developed in this chapter may be used to 
analyze the behavior of a cascaded integrator. (See pages 
331 and 332.)

• We can overcome the limitation of a simple integrating 
amplifier—the saturation of the op amp due to charge 
accumulating in the feedback capacitor—by placing a 
resistor in parallel with the capacitor in the feedback 
path. (See page 333.)

Problems
Sections 8.1–8.2

 8.1 The circuit elements in the circuit in Fig. 8.1 are 
R = 125 Ω, L = 200 mH, and C = 5 mF. The ini-
tial inductor current is -0.3 A and the initial capac-
itor voltage is 25 V.

a) Calculate the initial current in each branch of 
the circuit.

b) Find v(t) for t Ú 0.

c) Find iL(t) for t Ú 0.

 8.2 The resistance in Problem 8.1 is decreased to 100 Ω. 
Find the expression for v(t) for t Ú 0.

 8.3 The resistance in Problem 8.1 is decreased to 80 Ω. 
Find the expression for v(t) for t Ú 0.

 8.4 The resistance, inductance, and capacitance in a 
parallel RLC circuit are 1 kΩ, 12.5 H, and 2 mF, 
 respectively.

a) Calculate the roots of the characteristic equation 
that describe the voltage response of the circuit.

b) Will the response be over-, under-, or critically 
damped?

c) What value of R will yield a damped frequency 
of 120 rad>s?

d) What are the roots of the characteristic equation 
for the value of R found in (c)?

e) What value of R will result in a critically damped 
response?

 8.5 Suppose the inductor in the circuit shown in 
Fig. 8.1 has a value of 10 mH. The voltage response 
for t Ú 0 is

v(t) = 40e-1000t - 90e-4000t V.

a) Determine the numerical values of v0, a, C, 
and R.

b) Calculate iR(t), iL(t), and iC(t) for t Ú 0+.

PSPICE

MULTISIM

PSPICE

MULTISIM

PSPICE

MULTISIM

 8.6 The natural voltage response of the circuit in 
Fig. 8.1 is

v(t) = 120e-400t cos 300t + 80e-400t sin 300t V,

when the capacitor is 250 mF. Find (a) L; (b) R; 
(c) V0; (d) I0; and (e) iL(t).

 8.7 The voltage response for the circuit in Fig. 8.1 is 
known to be

v(t) = D1te
-80t + D2e

-80t, t Ú 0.

The initial current in the inductor (I0) is -25 mA, 
and the initial voltage on the capacitor (V0) is 5 V. 
The resistor has a value of 50 Ω.

a) Find the values of C, L, D1, and D2.

b) Find iC(t) for t Ú 0+.

 8.8 In the circuit shown in Fig. 8.1, a 20 mH induc-
tor is shunted by a 500 nF capacitor, the resistor 
R is adjusted for critical damping, V0 = 40 V, and 
I0 = 120 mA.

a) Calculate the numerical value of R.

b) Calculate v(t) for t Ú 0.

c) Find v(t) when iC 

(t) = 0.

d) What percentage of the initially stored energy re-
mains stored in the circuit at the instant iC(t) is 0?

 8.9 The natural response for the circuit shown in Fig. 8.1 
is known to be

v(t) = -11e-100t + 20e-400t V, t Ú 0.

If C = 2 mF and L = 12.5 H, find iL(0+) in milli- 
amperes.

 8.10 The resistor in the circuit in Example 8.4 is changed 
to 3200 Ω.

a) Find the numerical expression for v(t) when 
t Ú 0.

PSPICE

MULTISIM

PSPICE

MULTISIM
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is underdamped. Continue to use components 
from Appendix H. Calculate the roots of the 
characteristic equation for this new resistance.

b) Change the resistance for the circuit you de-
signed in Problem 8.11(a) so that the response is 
overdamped. Continue to use components from 
Appendix H. Calculate the roots of the charac-
teristic equation for this new resistance.

 8.19 In the circuit in Fig. 8.1, R = 5 kΩ, L = 8 H, 
C = 125 nF, V0 = 30 V, and I0 = 6 mA.

a) Find v(t) for t Ú 0.

b) Find the first three values of t for which dv>dt 
is zero. Let these values of t be denoted t1, t2, 
and t3.

c) Show that t3 - t1 = Td.

d) Show that t2 - t1 = Td>2.

e) Calculate v(t1), v(t2), and v(t3).

f) Sketch v(t) versus t for 0 … t … t2.

 8.20 a) Find v(t) for t Ú 0 in the circuit in Problem 8.19 
if the 5 kΩ resistor is removed from the circuit.

b) Calculate the frequency of v(t) in hertz.

c) Calculate the maximum amplitude of v(t) in 
volts.

 8.21 Assume the underdamped voltage response of the 
circuit in Fig. 8.1 is written as

v(t) = (A1 + A2)e-at cos vdt + j(A1 - A2)e-at sin vdt.

The initial value of the inductor current is I0, and 
the initial value of the capacitor voltage is V0. 
Show that A2 is the conjugate of A1. (Hint: Use the 
same process as outlined in the chapter to find A1 
and A2.)

 8.22 Show that the results obtained from Problem 8.21—
that is, the expressions for A1 and A2—are consis-
tent with Eqs. 8.16 and 8.17 in the text.

 8.23 The initial value of the voltage v in the circuit in 
Fig. 8.1 is zero, and the initial value of the  capacitor 
current, iC(0 + ), is 50 mA. The expression for the 
 capacitor current is known to be

iC(t) = A1e
-200t + A2e

-800t, t Ú 0 +,

when R is 250 Ω. Find

a) the values of a, v0, L, C, A1, and A2

aHint: 
diC(0 + )

dt
= -

diL(0 + )

dt
-

diR(0 + )

dt
=

-v(0)

L
-

1
R

 
iC(0 + )

C
b ,

b) the expression for v(t), t Ú 0,

c) the expression for iR(t) Ú 0,

d) the expression for iL(t) Ú 0.
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b) Plot v(t) versus t for the time interval 
0 … t … 7 ms. Compare this response with the one 
in Example 8.4 (R = 20 kΩ) and Example 8.5 
(R = 4 kΩ). In particular, compare peak  values 
of v(t) and the times when these peak  values 
 occur.

 8.11 The two switches in the circuit seen in Fig. P8.11 
 operate synchronously. When switch 1 is in position a, 
switch 2 is in position d. When switch 1 moves to posi-
tion b, switch 2 moves to position c. Switch 1 has been 
in position a for a long time. At t = 0, the switches 
move to their alternate positions. Find vo(t) for t Ú 0.

Figure P8.11

5 A
250 V

a b
c d

50 V

1

2

75 V

25mF

t 5 0

vo(t)

t 5 0

100V
160 mH

1

2

 8.12 The resistor in the circuit of Fig. P8.11 is decreased 
from 50 Ω to 40 Ω. Find vo(t) for t Ú 0.

 8.13 The resistor in the circuit of Fig. P8.11 is decreased 
from 50 Ω to 32 Ω. Find vo(t) for t Ú 0.

 8.14 The switch in the circuit of Fig. P8.14 has been in 
position a for a long time. At t = 0 the switch moves 
instantaneously to position b. Find vo(t) for t Ú 0.

Figure P8.14

50 V 25 mH

10 kV
10if if

t 5 0

8 kV 100 V 40 V
8 mF

a b

vo
1

2

1

2

12

 8.15 The inductor in the circuit of Fig. P8.14 in increased 
to 40.81 mH. Find vo(t) for t Ú 0.

 8.16 The inductor in the circuit of Fig. P8.14 in increased 
to 125 mH. Find vo(t) for t Ú 0.

 8.17 a) Design a parallel RLC circuit (see Fig. 8.1) using 
component values from Appendix H, with a res-
onant radian frequency of 5000 rad>s. Choose a 
resistor or create a resistor network so that the 
response is critically damped. Draw your circuit.

b) Calculate the roots of the characteristic equation 
for the resistance in part (a).

 8.18 a) Change the resistance for the circuit you de-
signed in Problem 8.17(a) so that the response 
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 8.33 There is no energy stored in the circuit in Fig. P8.33 
when the switch is closed at t = 0. Find io(t) for 
t Ú 0.

Figure P8.33

vo

1

2

6.25 mF 250 mH

125 V

t 5 0

25 V
1

2

io

 8.34 a) For the circuit in Fig. P8.33, find vo for t Ú 0.

b) Show that your solution for vo is consistent with 
the solution for io in Problem 8.30.

 8.35 The switch in the circuit in Fig. P8.35 has been in the 
left position for a long time before moving to the 
right position at t = 0. Find

a) iL(t)  for  t Ú 0.

b) vC(t)  for  t Ú 0.

Figure P8.35

40 V
25mF

3 kV

2 kV

200 mA
250 mH200 V

vC(t)

iL(t)t 5 0

1

2

1

2

 8.36 Consider the circuit in Fig. P8.35.

a) Find the total energy delivered to the inductor.

b) Find the total energy delivered to the 40 Ω 
 resistor.

c) Find the total energy delivered to the capacitor.

d) Find the total energy delivered by the current 
source.

e) Check the results of parts (a) through (d) against 
the conservation of energy principle.

 8.37 The switch in the circuit in Fig. P8.37 has been open 
for a long time before closing at t = 0. Find iL(t) for 
t Ú 0.

Figure P8.37

300 V

36 V 20 mH 500 nF 150 V 20 mA
1

2

t 5 0

iL

 8.38 Switches 1 and 2 in the circuit in Fig. P8.38 are syn-
chronized. When switch 1 is opened, switch 2 closes 
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Section 8.3

 8.24 For the circuit in Example 8.6, find, for t Ú 0, 
(a) v(t); (b) iR(t); and (c) iC(t).

 8.25 For the circuit in Example 8.7, find, for t Ú 0, (a) v(t) 
and (b) iC(t).

 8.26 For the circuit in Example 8.8, find v(t) for  
t Ú 0.

 8.27 Assume that at the instant the 2 A current source is 
applied to the circuit in Fig. P8.27, the initial current 
in the 25 mH inductor is 2 A, and the initial voltage 
on the capacitor is 100 V (positive at the upper ter-
minal). Find the expression for iL(t) for t Ú 0 if R 
equals 12.5 Ω.

Figure P8.27

Ri1(t) 62.5 mF25 mH4 A

 8.28 The resistance in the circuit in Fig. P8.27 is changed 
to 9 Ω. Find iL(t) for t Ú 0.

 8.29 The resistance in the circuit in Fig. P8.27 is changed 
to 10 Ω. Find iL(t) for t Ú 0.

 8.30 The switch in the circuit in Fig. P8.30 has been open 
a long time before closing at t = 0. At the time the 
switch closes, the capacitor has no stored energy. 
Find vo for t Ú 0.

Figure P8.30

vo

1

2

312.5 mF0.5 H

16 V

t 5 0

4 V
1

2

 8.31 The switch in the circuit in Fig. P8.31 has been open 
for a long time before closing at t = 0. Find io(t) for 
t Ú 0.

Figure P8.31

vo

1

2

31.25 mF 50 mH

20 V

t 5 0

60 V
1

2

io

 8.32 a) For the circuit in Fig. P8.31, find vo for t Ú 0.

b) Show that your solution for vo is consistent with 
the solution for io in Problem 8.31.
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Figure P8.42

R

125 mH320 nFvC

1

2

t 5 0 i

 8.43 a) Design a series RLC circuit (see Fig. 8.3) using 
component values from Appendix H, with a res-
onant radian frequency of 20 krad>s. Choose a 
resistor or create a resistor network so that the 
response is critically damped. Draw your circuit.

b) Calculate the roots of the characteristic equation 
for the resistance in part (a).

 8.44 a) Change the resistance for the circuit you de-
signed in Problem 8.43(a) so that the response 
is underdamped. Continue to use components 
from Appendix H. Calculate the roots of the 
characteristic equation for this new resistance.

b) Change the resistance for the circuit you de-
signed in Problem 8.43(a) so that the response is 
overdamped. Continue to use components from 
Appendix H. Calculate the roots of the charac-
teristic equation for this new resistance.

 8.45 The circuit shown in Fig. P8.45 has been in opera-
tion for a long time. At t = 0, the two switches move 
to the new positions shown in the figure. Find

a) io(t)  for  t Ú 0.

b) vo(t)  for  t Ú 0.

Figure P8.45

t 5 0 250 V

100 V 200 mH
io(t)

8 A 20 mFvo(t)
1

2

50 V

200 V

t 5 0

1

2

 8.46 The switch in the circuit shown in Fig. P8.46 has 
been in position a for a long time. At t = 0, the 
switch is moved instantaneously to position b. Find 
i(t) for t Ú 0.

Figure P8.46

t 5 0

i
a b

20 V

400 mF
40 mH

50 V150 mA

 8.47 The switch in the circuit shown in Fig. P8.47 has 
been closed for a long time. The switch opens at 
t = 0. Find vo(t) for t Ú 0 + .

and vice versa. Switch 1 has been open a long time 
before closing at t = 0. Find iL(t) for t Ú 0.

Figure P8.38

10 V

10 V

Switch 1

250 mF
Switch 2
16 mH 1 kV 10 A80 V1

2

t 5 0

t 5 0

iL

Section 8.4

 8.39 The current in the circuit in Fig. 8.3 is known to be

i = B1e
-2000t cos 1500t + B2e

-2000t sin 1500t, t Ú 0.

The capacitor has a value of 80 nF; the initial value 
of the current is 7.5 mA; and the initial voltage on 
the capacitor is -30 V. Find the values of R, L, B1, 
and B2.

 8.40 Find the voltage across the 80 nF capacitor for the 
circuit described in Problem 8.39. Assume the refer-
ence polarity for the capacitor voltage is positive at 
the upper terminal.

 8.41 The initial energy stored in the 31.25 nF capacitor 
in the circuit in Fig. P8.41 is 9 mJ. The initial energy 
stored in the inductor is zero. The roots of the char-
acteristic equation that describes the natural behav-
ior of the current i are -4000 s-1 and -16,000 s-1

a) Find the numerical values of R and L.

b) Find the numerical values of i(0) and di(0)>dt 
immediately after the switch has been closed.

c) Find i(t) for t Ú 0.

d) How many microseconds after the switch closes 
does the current reach its maximum value?

e) What is the maximum value of i in milliamperes?

f) Find vL(t) for t Ú 0.

Figure P8.41

31.25 nF L

R

i(t)t 5 0
vL(t)

1

2

 8.42 In the circuit in Fig. P8.42, the resistor is adjusted 
for critical damping. The initial capacitor voltage is 
15 V, and the initial inductor current is 6 mA.

a) Find the numerical value of R.

b) Find the numerical values of i and di>dt immedi-
ately after the switch is closed.

c) Find vC(t) for t Ú 0.
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Figure P8.52

b

a

960 V

480 V 0.5 mH

40 V12.5 nF56 V

800 V
t 5 0

vo(t)2
1

1
2

2

1

 8.53 The circuit shown in Fig. P8.53 has been in opera-
tion for a long time. At t = 0, the source voltage 
suddenly drops to 150 V. Find vo(t) for t Ú 0.

Figure P8.53

25 V 250 mH

vo(t)2.5 mF200 V
1

2

1

2

 8.54 The two switches in the circuit seen in Fig. P8.54 
 operate synchronously. When switch 1 is in position 
a, switch 2 is closed. When switch 1 is in position 
b, switch 2 is open. Switch 1 has been in position a 
for a long time. At t = 0, it moves instantaneously 
to position b. Find vC(t) for t Ú 0.

Figure P8.54

1

2

2

1

2 V a

b

1
2

12 V

60 V

150 V

8 V 200 mH

t 5 0

t 5 0

2 mF 20 VvC(t)

1

2

 8.55 The switch in the circuit shown in Fig. P8.55 has 
been closed for a long time before it is opened at 
t = 0. Assume that the circuit parameters are such 
that the response is underdamped.

a) Derive the expression for vo(t) as a function of 
Vg, a, vd, C, and R for t Ú 0.

b) Derive the expression for the value of t when the 
magnitude of vo is maximum.

Figure P8.55

1

2

R

Vg L

t 5 0

vo(t)

1

2

C
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Figure P8.47

300 V

100 V 100 V

200 mH

80 V

100 V

20 V

t 5 0

31.25 mF
vo1

2

1

2

 8.48 The switch in the circuit in Fig. P8.48 has been in po-
sition a for a long time. At t = 0, the switch moves 
instantaneously to position b.

a) What is the initial value of va?

b) What is the initial value of dva>dt?

c) What is the numerical expression for va(t) for 
t Ú 0?

Figure P8.48

100 V

t 5 0
va300 V

a b

5 mF

20 V 12 V

2 mH

1

1

2

2

 8.49 The initial energy stored in the circuit in Fig. P8.49 is 
zero. Find vo(t) for t Ú 0.

Figure P8.49

250 mH

16 mF
1

2

t 5 0

80 mA 200 V vo(t)

 8.50 The resistor in the circuit shown in Fig. P8.49 is 
changed to 250 Ω. The initial energy stored is still 
zero. Find vo(t) for t Ú 0.

 8.51 The resistor in the circuit shown in Fig. P8.49 is 
changed to 312.5 Ω. The initial energy stored is still 
zero. Find vo(t) for t Ú 0.

 8.52 The switch in the circuit of Fig. P8.52 has been in 
position a for a long time. At t = 0 the switch 
moves instantaneously to position b. Find vo(t) 
for t Ú 0.
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b) Compare the result with Eq. 8.39 when 
R1C1 = R2C2 = RC in Fig. 8.19.

c) What is the advantage of the circuit shown in Fig. 
P8.62?

Figure P8.62

VCC

2VCC

2

1

R

vg

1

2

R

C

2C

C

vo

1

2

R>2

 8.63 The voltage signal of Fig. P8.63(a) is applied to 
the cascaded integrating amplifiers shown in 
Fig. P8.63(b). There is no energy stored in the capac-
itors at the instant the signal is applied.

a) Derive the numerical expressions for vo(t) and 
vo1(t) for the time intervals 0 … t … 0.5 s and 
0.5 s … t … tsat.

b) Compute the value of tsat.

Figure P8.63

(a)

(b)

vg

0 0.5 1
t (s)

80

vg (mV)

240

5 V

25 V vo1

1

2

2

1

100 kV
400 kV 12.5 V

212.5 V vo

1

2

2

1

500 nF
200 nF

1

2

 8.64 The circuit in Fig. P8.63(b) is modified by adding 
a 1 MΩ resistor in parallel with the 500 nF capac-
itor and a 5 MΩ resistor in parallel with the 200 
nF capacitor. As in Problem 8.63, there is no ener-
gy stored in the capacitors at the time the signal is 
applied. Derive the numerical expressions for vo(t) 
and vo1(t) for the time intervals 0 … t … 0.5 s and 
t Ú 0.5 s.
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 8.56 The circuit parameters in the circuit of Fig. P8.55 
are R = 480 Ω, L = 8 mH, C = 50 nF, and 
vg = -24 V.

a) Express vo(t) numerically for t Ú 0.

b) How many microseconds after the switch opens 
is the inductor voltage maximum?

c) What is the maximum value of the inductor voltage?

d) Repeat (a)–(c) with R reduced to 96 Ω.

 8.57 Assume that the capacitor voltage in the circuit 
of Fig. 8.16 is underdamped. Also assume that no 
 energy is stored in the circuit elements when the 
switch is closed.

a) Show that dvC>dt = (v0
2>vd)Ve-at  sin  vdt.

b) Show that dvC>dt = 0 when t = np>vd, where 
n = 0, 1, 2, c.

c) Let tn = np>vd, and show that

vC(tn) =V - V(-1)ne-anp>vd.

d) Show that

a =
1
Td

  ln 
vC(t1) - V

vC(t3) - V
,

where Td = t3 - t1.

 8.58 The voltage across a 100 nF capacitor in the circuit 
of Fig. 8.16 is described as follows: After the switch 
has been closed for several seconds, the voltage is 
constant at 100 V. The first time the voltage exceeds 
100 V, it reaches a peak of 163.84 V. This occurs 
p>7 ms after the switch has been closed. The second 
time the voltage exceeds 100 V, it reaches a peak 
of 126.02 V. This second peak occurs 3p>7 after the 
switch has been closed. At the time when the switch 
is closed, there is no energy stored in either the ca-
pacitor or the inductor. Find the numerical values of 
R and L. (Hint: Work Problem 8.57 first.)

Section 8.5

 8.59 Show that, if no energy is stored in the circuit shown 
in Fig. 8.20 at the instant vg jumps in value, then 
dvo>dt equals zero at t = 0.

 8.60 a) Find the equation for vo(t) for 0 … t … tsat in 
the circuit shown in Fig. 8.20 if vo1(0) = 5 V and 
vo(0) = 8 V.

b) How long does the circuit take to reach saturation?

 8.61 a) Rework Example 8.14 with feedback resistors 
R1 and R2 removed.

b) Rework Example 8.14 with vo1(0) = -2 V and 
vo(0) = 4 V.

 8.62 a) Derive the differential equation that relates the 
output voltage to the input voltage for the circuit 
shown in Fig. P8.62.
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Now assume that a voltage equal to d2x>dt2 is 
available and by successive integrations gener-
ates dx>dt and x. We can synthesize the coeffi-
cients in the equations by scaling amplifiers, and 
we use a summing amplifier to combine the terms 
required to generate d2x>dt2. With these ideas in 
mind, analyze the interconnection shown in Fig. 
P8.65(b). In particular, describe the purpose of 
each shaded area in the circuit and describe the 
signal at the points labeled B, C, D, E, and F, as-
suming the signal at A represents d2x>dt2. Also 
discuss the parameters R; R1, C1; R2, C2; R3, R4; 
R5, R6; and R7, R8 in terms of the coefficients in 
the differential equation.

 8.65 We now wish to illustrate how several op amp cir-
cuits can be interconnected to solve a differential 
equation.

a) Derive the differential equation for the spring-
mass system shown in Fig. P8.65(a). Assume that 
the force exerted by the spring is directly pro-
portional to the spring displacement, that the 
mass is constant, and that the frictional force is 
directly proportional to the velocity of the mov-
ing mass.

b) Rewrite the differential equation derived in (a) so 
that the highest order derivative is expressed as 
a function of all the other terms in the equation. 

Figure P8.65
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Sections 8.1–8.5

 8.66 a) Suppose the circuit in Fig. 8.22 has a 5 nH induc-
tor and a 2 pF capacitor. Calculate the frequency, 
in GHz, of the sinusoidal output for t Ú 0.

b) The dc voltage source and series-connected re-
sistor in Fig. 8.22 are used to establish the ini-
tial energy in the inductor. If V = 10 V and 
Rs = 25 Ω, calculate the initial energy stored in 
the inductor.

c) What is the total energy stored in the LC circuit 
for any time t Ú 0?

 8.67 Consider the LC oscillator circuit in Fig. 8.22. As-
sume that V = 4 V, Rs = 10 Ω, and L = 1 nH.

a) Calculate the value of capacitance, C, that will 
produce a sinusoidal output with a frequency of 
2 GHz for t Ú 0.

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

b) Write the expression for the output voltage, 
vo(t), for t Ú 0.

 8.68 Suppose the inductor and capacitor in the LC oscil-
lator circuit in Fig. 8.22 are not ideal, but instead have 
some small resistance that can be lumped together. 
Assume that V = 10 V, Rs = 25 Ω, L = 5 nH, and 
C = 2 pF, just as in Problem 8.66. Suppose the re-
sistance associated with the inductor and capacitor 
is 10 mΩ.

a) Calculate the values of the neper frequency, a, 
and the resonant radian frequency, v0.

b) Is the response of this circuit overdamped, un-
derdamped, or critically damped?

c) What is the actual frequency of oscillation, in 
GHz?

d) Approximately how long will the circuit oscillate?

PRACTICAL
PERSPECTIVE
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CHAPTER CONTENTS

9
CHAPTER 

Sinusoidal  
Steady-State Analysis
Thus far, we have focused on circuits with constant sources; 
in this chapter we are now ready to consider circuits energized by 
sinusoidal voltage or current sources. For these circuits, we will 
calculate the values of the specified output voltages and currents 
in the steady state. This means we will not know the complete re-
sponse of the circuits, which in general is the sum of the transient 
(or natural) response and the steady-state response. Our analysis 
will only characterize a circuit’s response once the transient com-
ponent has decayed to zero.

Sinusoidal sources and their effect on circuit behavior form 
an important area of study for several reasons.

• Generating, transmitting, distributing, and consuming elec-
tric energy occurs under essentially sinusoidal steady-state 
conditions.

• Understanding sinusoidal behavior makes it possible to 
predict the behavior of circuits with nonsinusoidal sources.

• Specifying the behavior of an electrical system in terms of 
its steady-state sinusoidal response simplifies the design. If 
the system satisfies the specifications, the designer knows 
that the circuit will respond satisfactorily to nonsinusoidal 
inputs.

The remaining chapters of this book are largely based on the 
techniques used when analyzing circuits with sinusoidal sources. 
Fortunately, the circuit analysis and simplification techniques 
from Chapters 1–4 work for circuits with sinusoidal as well as dc 
sources, so some of the material in this chapter will be very fa-
miliar to you. The challenges of sinusoidal analysis include devel-
oping the appropriate component models, writing the equations 
that describe the resulting circuit, and working with complex 
numbers.

9.1 The Sinusoidal Source p. 348

9.2 The Sinusoidal Response p. 351

9.3 The Phasor p. 352

9.4 The Passive Circuit Elements in the  
Frequency Domain p. 355

9.5 Kirchhoff’s Laws in the Frequency  
Domain p. 360

9.6 Series, Parallel, and Delta-to-Wye  
Simplifications p. 361

9.7 Source Transformations and Thévenin–
Norton Equivalent Circuits p. 368

9.8 The Node-Voltage Method p. 372

9.9 The Mesh-Current Method p. 373

9.10 The Transformer p. 375

9.11 The Ideal Transformer p. 379

9.12 Phasor Diagrams p. 385

1 Understand phasor concepts and be able 
to perform a phasor transform and an 
 inverse phasor transform.

2 Be able to transform a circuit with a 
 sinusoidal source into the frequency 
 domain using phasor concepts.

3 Know how to use the following circuit 
 analysis techniques to solve a circuit in the 
frequency domain:

• Kirchhoff’s laws;

• Series, parallel, and delta-to-wye  
simplifications;

• Voltage and current division;

• Thévenin and Norton equivalents;

• Node-voltage method; and

• Mesh-current method.

4 Be able to analyze circuits containing linear 
transformers using phasor methods.

5 Understand the ideal transformer 
 constraints and be able to analyze  
circuits containing ideal transformers  
using phasor methods.

CHAPTER OBJECTIVES



Practical Perspective
A Household Distribution Circuit
Power systems that generate, transmit, and distribute 
electrical power are designed to operate in the sinusoidal 
steady state. The standard household distribution circuit 
used in the United States supplies both 120 V and 240 V.

Consider the following situation. At the end of a day 
of fieldwork, a farmer returns to his farmstead, checks his 
hog confinement building, and finds to his dismay that the 
hogs are dead. The problem is traced to a blown fuse that 
caused a 240 V fan motor to stop. The loss of ventilation 
led to the suffocation of the livestock. The interrupted fuse 
is located in the main switch that connects the farmstead 
to the electrical service.

Before the insurance company settles the claim, 
it wants to know if the electric circuit supplying the 

farmstead functioned properly. The lawyers for the in-
surance company are puzzled because the farmer’s 
wife, who was in the house on the day of the accident 
convalescing from minor surgery, was able to watch TV 
during the afternoon. Furthermore, when she went to the 
kitchen to start preparing the evening meal, the electric 
clock indicated the correct time. The lawyers have hired 
you to explain why the electric clock in the kitchen and 
the television set in the living room continued to operate 
after the fuse in the main switch blew.

We will explore this situation and answer the question 
after learning how to calculate the steady-state response 
of circuits with sinusoidal sources.
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9.1 The Sinusoidal Source
A sinusoidal voltage source (independent or dependent) produces a 
voltage that varies sinusoidally with time. A sinusoidal current source 
(independent or dependent) produces a current that varies sinusoidally 
with time. We begin by reviewing the sinusoidal function, using a voltage 
source as an example, but our observations also apply to current sources.

We can express a sinusoidally varying function with either the sine 
function or the cosine function. Although they work equally well, we 
 cannot use both functional forms simultaneously. We will use the cosine 
function throughout our discussion. Hence, we write a sinusoidally vary-
ing voltage as

 v = Vm cos(vt + f). (9.1)

To aid discussion of the parameters in Eq. 9.1, we show the voltage ver-
sus time plot in Fig. 9.1. The coefficient Vm gives the maximum amplitude 
of the sinusoidal voltage. Because {1 bounds the cosine function, {Vm 
bounds the amplitude, as seen in Fig. 9.1. You can also see that the sinusoi-
dal function repeats at regular intervals; therefore, it is a periodic function. 
A periodic function is characterized by the time required for the function to 
pass through all its possible values. This time is the period of the function, T. 
and is measured in seconds. The reciprocal of T gives the number of cycles 
per second, or the frequency, of the periodic function, and is denoted f, so

 f =
1
T

. (9.2)

A cycle per second is called a hertz, abbreviated Hz. (The term cycles per 
second rarely is used in contemporary technical literature.)

Now look at the coefficient of t in Eq. 9.1. Omega (v) represents 
the angular frequency of the sinusoidal function and is related to both 
T and f:

 v = 2pf = 2p>T (radians>second). (9.3)

Equation 9.3 tells us that the cosine (or sine) function passes through a com-
plete set of values each time its argument, vt, passes through 2p rad (360°). 
From Eq. 9.3, we see that whenever t is an integral multiple of T, the argu-
ment vt increases by an integral multiple of 2p rad.

The angle f in Eq. 9.1 is the phase angle of the sinusoidal voltage. It 
determines the value of the sinusoidal function at t = 0; therefore, it fixes 
the point on the periodic wave where we start measuring time. Changing 
the phase angle f shifts the sinusoidal function along the time axis but has 
no effect on either the amplitude (Vm) or the angular frequency (v). Note, 
for example, that reducing f to zero shifts the sinusoidal function shown 
in Fig. 9.1 f>v time units to the right, as shown in Fig. 9.2. When com-
pared with a sinusoidal function with f = 0, a sinusoidal function with a 
positive f is shifted to the left, while a sinusoidal function with a negative 
f is shifted to the right. (See Problem 9.2.)

Remember that vt and f must carry the same units because the argu-
ment of the sinusoidal function is (vt + f). With vt expressed in radians, 
you would expect f to also be in radians. However, f normally is given 
in degrees, and vt is converted from radians to degrees before the two 
quantities are added. The conversion from radians to degrees is given by

(number of degrees) =
180°
p

 (number of radians).

0

2Vm
T

v

Vm

t

Vm

Figure 9.1 ▲ A sinusoidal voltage.

t0

2Vm

v

Vm

f>v

Figure 9.2 ▲ The sinusoidal voltage from Fig. 9.1 
shifted to the right when f = 0.
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Another important characteristic of the sinusoidal voltage (or cur-
rent) is its rms value. The rms value of a periodic function is defined 
as the square root of the mean value of the squared function. Hence, if 
v = Vm cos(vt + f), the rms value of v is

 Vrms = C1
T

 L
t0 + T

t0

Vm
2  cos2(vt + f) dt. (9.4)

Note from Eq. 9.4 that we obtain the mean value of the squared voltage 
by integrating v2 over one period (that is, from t0 to t0 + T) and then di-
viding by the range of integration, T. Note further that the starting point 
for the integration t0 is arbitrary.

The quantity under the square root sign in Eq. 9.4 reduces to Vm
2 >2. 

(See Problem 9.8.) Hence, the rms value of v is

RMS VALUE OF A SINUSOIDAL VOLTAGE SOURCE

 Vrms =
Vm12

. (9.5)

The rms value of the sinusoidal voltage depends only on the maximum 
amplitude of v, namely, Vm. The rms value is not a function of either the 
frequency or the phase angle. In Chapter 10, we explain the importance 
of the rms value and use it extensively to calculate power in circuits with 
sinusoidal sources.

We can completely describe a specific sinusoidal signal if we know its 
frequency, phase angle, and amplitude. Examples 9.1, 9.2, and 9.3 illus-
trate these basic properties of the sinusoidal function. In Example 9.4, we 
calculate the rms value of a periodic function, and in so doing we clarify 
the meaning of root mean square.

EXAMPLE 9.1 Finding the Characteristics of a Sinusoidal Current

A sinusoidal current has a maximum amplitude 
of 20 A. The current passes through one complete 
cycle in 1 ms. The magnitude of the current at t = 0 
is 10 A.
a) What is the frequency of the current in hertz?
b) What is the frequency in radians per second?
c) Write the expression for i(t) using the cosine 

function. Express f in degrees.
d) What is the rms value of the current?

Solution
a) From the statement of the problem, T = 1 ms; 

hence, f = 1>T = 1>0.001 = 1000 Hz.

b) v = 2pf = 2p(1000) = 2000p rad>sec.

c) We have 

i(t) = Im cos(vt + f)

      = 20 cos(2000pt + f) A, 

 but i(0) = 10 A. Therefore, 10 = 20 cos f, so 
f = 60°. Thus, the expression for i(t) becomes

i(t) = 20 cos(2000pt + 60°) A.

d) From Eq. 9.5, the rms value of a sinusoidal current  
is Im>12. Therefore, the rms value is 20>12, or 
14.14 A.
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EXAMPLE 9.2 Finding the Characteristics of a Sinusoidal Voltage

A sinusoidal voltage is given by the expression 
v = 300 cos(120pt + 30°) V.

a) What is the period of the voltage in milliseconds?

b) What is the frequency in hertz?

c) What is the magnitude of v at t = 2.778 ms?

d) What is the rms value of v?

Solution

a) From the expression for v, v = 120p rad>s. Be-
cause v = 2p>T, T = 2p>v = 1>60 s, or 16.667 ms.

b) The frequency is 1>T, or 60 Hz.

c) From (a), v = 2p>16.667; thus, at t = 2.778 ms,  
vt is nearly 1.047 rad, or 60°. Therefore, 
v(2.778 ms) = 300 cos(60° + 30°) = 0 V.

d) Vrms = 300>12 = 212.13 V.

EXAMPLE 9.3 Translating a Sine Expression to a Cosine Expression

We can translate the sine function to the cosine 
function by subtracting 90° (p>2 rad) from the ar-
gument of the sine function.

a) Verify this translation by showing that

 sin(vt + u) =  cos(vt + u - 90°).

b) Use the result in (a) to express sin(vt + 30°) as a 
cosine function.

Solution

a) Verification involves direct application of the 
trigonometric identity

 cos(a - b) =  cos a  cos b +  sin a  sin b.

We let a = vt + u and b = 90°. From the trigono-
metric identity,

 cos(vt + u - 90°) =  cos(vt + u) cos(90°) 
                                           +  sin(vt + u) sin(90°).

Since cos 90° = 0 and sin 90° = 1, we have

 cos(vt + u - 90°) =  sin(vt + u).

b) From (a) we have

 sin(vt + 30°) =  cos(vt + 30° - 90°) 
               =  cos(vt - 60°).

EXAMPLE 9.4 Calculating the rms Value of a Triangular Waveform

Calculate the rms value of the periodic triangular 
current shown in Fig. 9.3. Express your answer in 
terms of the peak current Ip.

Solution
From the definition of rms, the rms value of i is

Irms = C1
T

 L
t0 + T

t0

i2dt.

Interpreting the integral under the square root 
sign as the area under the squared function for an 
interval of one period helps us find the rms value. 
The squared function, with the area between 0 and 
T shaded, is shown in Fig. 9.4. Notice that the area 
under the squared current for an interval of one 
period is equal to four times the area under the 
squared  current for the interval 0 to T>4 seconds; 
that is,

2TN4

Ip

2Ip

i

2TN2 TN4 TN2 3TN4 T
t

etc.

Figure 9.3 ▲ Periodic triangular current.
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9.2 The Sinusoidal Response
As stated in the Introduction, this chapter focuses on the steady-state 
 response to sinusoidal sources. But we begin by characterizing the total re-
sponse, which will help you keep the steady-state solution in perspective.

The circuit shown in Fig. 9.5 describes the general problem, where vs 
is a sinusoidal voltage described by

vs = Vm cos(vt + f).

For convenience, we assume the circuit’s initial current is zero, and we 
measure time from the moment the switch is closed. We want to find i(t) 
for t Ú 0, using a method similar to the one used when finding the step 
response of an RL circuit (Chapter 7). But here, the voltage source is 
time-varying sinusoidal voltage rather than a constant voltage. Applying 
KVL to the circuit in Fig. 9.5 gives us the ordinary differential equation

 L
di
dt

+ Ri = Vm cos(vt + f). (9.6)

The solution for Eq. 9.6 is discussed in an introductory course in dif-
ferential equations. We ask those of you who have not yet studied differ-
ential equations to accept that the solution for i is

i =
-Vm2R2 + v2L2

 cos(f - u)e-(R>L)t +
Vm2R2 + v2L2

 cos(vt + f - u), 

 (9.7)

where

u =  tan-1avL
R

b .

L
t0 + T

t0

i2dt = 4L
T>4

0
i2dt.

The analytical expression for i in the interval 0 to 
T>4 is

i =
4Ip

T
 t, 0 6 t 6 T>4.

The area under the squared function for one 
 period is

L
t0 + T

t0

i2dt = 4L
T>4

0

16Ip
2

T 2  t2dt =
Ip

2T

3
.

The mean, or average, value of the function is simply 
the area for one period divided by the period. Thus

imean =
1
T

 
Ip

2T

3
=

1
3

 Ip
2.

The rms value of the current is the square root of 
this mean value. Hence

Irms =
Ip13

.

TN4 TN2 3TN4 T
t

etc.

2TN2 2TN4 0

Ip
2

i2

Figure 9.4 ▲ i2 versus t.

i(t)
vs

R

1

2
L

t 5 0

Figure 9.5 ▲ An RL circuit excited by a sinusoidal 
voltage source.

SELF-CHECK: Assess your understanding of this material by trying Chapter Problems 9.1, 9.2, and 9.8.
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Thus, we can easily determine u for a circuit driven by a sinusoidal source 
of known frequency. We can check that Eq. 9.7 is valid by showing that it 
satisfies Eq. 9.6 for all values of t Ú 0; this exercise is left for your explo-
ration in Problem 9.10.

Look carefully at the two terms on the right-hand side of Eq. 9.7. 
The first term is a decaying exponential function whose time constant is 
t = L>R. This term is the transient component of the current because 
it decays to zero as t S 0. Remember from Chapter 7 that this transient 
component has less than 1% of its initial value when t = 5t.

The second term is a cosine whose frequency is v, the same as the fre-
quency of the voltage source. This is the steady-state component of the cur-
rent because it persists as long as the switch remains closed and the source 
continues to supply the sinusoidal voltage. In this chapter, we find only the 
steady-state response of circuits with sinusoidal sources; that is, we find the 
response once its transient component has decayed to zero. We develop a 
technique for calculating the steady-state response directly, thus avoiding the 
problem of solving the differential equation. However, when we use this tech-
nique, we cannot find either the transient component or the total response.

Using the steady-state component of Eq. 9.7, we identify four import-
ant characteristics of the steady-state solution:

1. The steady-state solution is a cosine function, just like the circuit’s 
source.

2. The frequency of the solution is identical to the frequency of the 
source. This condition is always true in a linear circuit when the circuit 
parameters, R, L, and C, are constant. (If frequencies in the solution are 
not present in the source, there is a nonlinear element in the circuit.)

3. The maximum amplitude of the steady-state response, in general, 
differs from the maximum amplitude of the source. For the circuit in 
Fig. 9.5, the maximum amplitude of the current is Vm>2R2 + v2L2, 
while the maximum amplitude of the source is Vm.

4. The phase angle of the steady-state response, in general, differs from 
the phase angle of the source. For the circuit being discussed, the 
phase angle of the current is f - u, and that of the voltage source is f.

These characteristics motivate the phasor method, which we introduce in 
Section 9.3. Note that finding only the steady-state response means find-
ing only its maximum amplitude and phase angle. The waveform and fre-
quency of the steady-state response are already known because they are 
the same as the circuit’s source.

SELF-CHECK: Assess your understanding of this material by trying 
Chapter Problem 9.9.

9.3 The Phasor
A phasor is a complex number that carries the amplitude and phase angle 
information of a sinusoidal function.1 The phasor concept is rooted in Euler’s 
identity, which relates the exponential function to the trigonometric function:

e{ju =  cos u { j sin u.

Euler’s identity gives us another way of representing the cosine and sine 
functions. We can think of the cosine function as the real part of the 

1You can review complex numbers by reading Appendix B.
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exponential function and the sine function as the imaginary part of the 
exponential function; that is,

 cos u = ℛ5eju6

and

 sin u = ℐ5eju6 ,

where ℛ means “the real part of” and ℐ means “the imaginary part of.”
Because we chose to use the cosine function to represent sinusoidal 

signals (see Section 9.1), we can apply Euler’s identity directly. In partic-
ular, we write the sinusoidal voltage function given in Eq. 9.1 by replacing 
the cosine function with the real part of the complex exponential:

 v = Vm cos(vt + f)

 = Vmℛ5ej1vt + f26

 = Vmℛ5ejvtejf6 .

We can move the constant Vm inside the argument of the ℛ function with-
out altering the equation. We can also reverse the order of the two expo-
nential functions inside the argument and write the voltage as

v = ℛ5Vmejfejvt6 .

In this expression for the voltage, note that the quantity Vmejf is a complex 
number that carries the amplitude and phase angle of the cosine function 
we started with (Eq. 9.1). We define this complex number as the phasor 
representation, or phasor transform, of the given sinusoidal function. Thus

PHASOR TRANSFORM

 V = Vmejf = �5Vm cos(vt + f)6 , (9.8)

where the notation �5Vm cos(vt + f)6  is read as “the phasor transform 
of Vm cos(vt + f).” Thus, the phasor transform transfers the sinusoidal 
function from the time domain to the complex-number domain, which is 
also called the frequency domain, since the response depends, in general, 
on v. As in Eq. 9.8, throughout this book we represent a phasor quantity 
by using a boldface capital letter.

Equation 9.8 is the polar form of a phasor, but we also can express a 
phasor in rectangular form. Thus, we rewrite Eq. 9.8 as

V = Vm cos f + jVm sin f.

Both polar and rectangular forms are useful in circuit applications of the 
phasor concept.

We see from Eq. 9.8 that phasors always have the form Ae jf, where 
A is the amplitude of the underlying voltage or current. It is common to 
abbreviate phasors using the angle notation Alf°, where

Alf° K Aejf.

We use this angle notation extensively in the material that follows.
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Inverse Phasor Transform
Using Eq. 9.8, we can transform a sinusoidal function to a phasor. We 
can also reverse the process; that is, we can transform a phasor back to 
the original sinusoidal function. If V = 100l-26° V, the expression for 
v is 100 cos(vt - 26°) V because we have decided to use the cosine func-
tion for all sinusoids. Notice that the phasor cannot give us the value of v 
because it carries only amplitude and phase information. When we trans-
form a phasor to the corresponding time-domain expression, we use the 
inverse phasor transform function, as shown in the equation

INVERSE PHASOR TRANSFORM

 �-15Vmeju6 = ℛ5Vmejuejvt6 = Vm cos(vt + u°) (9.9)

where the notation �-15Vmejf6  is read as “the inverse phasor transform 
of Vmejf.” Using Eq. 9.9, we find the inverse phasor transform by multiply-
ing the phasor by ejvt and extracting the real part of the product.

Before applying the phasor transform to circuit analysis, we use it to 
solve a problem with which you are already familiar: adding sinusoidal 
functions. Example 9.5 shows how the phasor transform greatly simplifies 
this type of problem.

EXAMPLE 9.5 Adding Cosines Using Phasors

If y1 = 20 cos(vt - 30°) and y2 = 40 cos(vt + 60°),  
express y = y1 + y2 as a single sinusoidal function.

a) Solve by using trigonometric identities.

b) Solve by using the phasor concept.

Solution

a) First, we expand both y1 and y2, using the cosine of 
the sum of two angles, to get

 y1 = 20 cos vt cos 30° + 20 sin vt sin 30°;

 y2 = 40 cos vt cos 60° - 40 sin vt sin 60°.

Adding y1 and y2, we obtain

 y = (20 cos 30° + 40 cos 60°) cos vt

    + (20 sin 30° - 40 sin 60°) sin vt

 = 37.32 cos vt - 24.64 sin vt.

To combine these two terms, we treat the coeffi-
cients of the cosine and sine as sides of a right tri-
angle (Fig. 9.6) and then multiply and divide the 
right-hand side by the hypotenuse. Our expres-
sion for y becomes

 y = 44.72a 37.32
44.72

 cos vt -
24.64
44.72

 sin vtb

 = 44.72 (cos 33.43° cos vt - sin 33.43° sin vt).

Again, we invoke the identity involving the co-
sine of the sum of two angles and write

y = 44.72 cos(vt + 33.43°).

b) The sum of the two cosines is

y = 20 cos(vt - 30°) + 40 cos(vt + 60°).

Use Euler’s identity to rewrite the righthand side 
of this equation as

 y = ℛ520e-j30°ejv6 + ℛ540ej60°ejv6

 = ℛ520e-j30°ejv + 40ej60°ejv6 .

33.438

24.6444.72

37.32

Figure 9.6 ▲ A right triangle used in the solution for y.
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Factoring out the term ejv from each term gives

y = ℛ5(20e-j30° + 40ej60°) ejv6 .

We can calculate the sum of the two phasors 
using the angle notation:

 20l-30° + 40l60° = (17.32 - j10) + (20 + j34.64)

 = 37.32 + j24.64

 = 44.72∠33.43°.

Therefore,

 y = ℛ544.72ej33.43°ejv6

 = 44.72 cos(vt + 33.43°).

Adding sinusoidal functions using phasors is 
clearly easier than using trigonometric identities. 
Note that it requires the ability to move back and 
forth between the polar and rectangular forms of 
complex numbers.

Objective 1—Understand phasor concepts and be able to perform a phasor transform and an inverse 
 phasor transform

 9.1 Find the phasor transform of each trigonomet-
ric function:

a) v = 170 cos(377t - 40°) V.

b) i = 10 sin(1000t + 20°) A.

c) i = [5 cos(vt + 36.87°) 
        +  10 cos(vt -  53.13°)] A.

d) v = [300 cos(20,000pt + 45°)
         -  100 sin(20,000pt + 30°)] mV.

Answer: (a) 170l-40° V;

(b) 10l-70° A;

(c) 11.18l-26.57° A;

(d) 339.90 l61.51° mV.

 9.2 Find the time-domain expression corresponding 
to each phasor:

a) V = 18.6l-54° V.

b) I = (20 l45° - 50 l-30°) mA.

c) V = (20 + j80 - 30l15° ) V.

Answer: (a) 18.6 cos(vt - 54°) V;

(b) 48.81 cos(vt + 126.68°) mA;

(c) 72.79 cos(vt + 97.08°) V.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problem 9.11.

9.4 The Passive Circuit Elements  
in the Frequency Domain

Applying the phasor transform in circuit analysis is a two-step process.

1. Establish the relationship between the phasor current and the pha-
sor voltage at the terminals of the passive circuit elements. We com-
plete this step in this section, analyzing the resistor, inductor, and 
capacitor in the phasor domain.

2. Develop the phasor-domain version of Kirchhoff’s laws, which we 
discuss in Section 9.5.

The V-I Relationship for a Resistor
From Ohm’s law, if the current in a resistor is i = Im cos(vt + ui), the 
voltage at the terminals of the resistor, as shown in Fig. 9.7, is

 v = R3Im cos(vt + ui)4
 = RIm3cos(vt + ui)4 ,

1 2

R

v

i

Figure 9.7 ▲ A resistive element carrying a 
 sinusoidal current.
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where Im is the maximum amplitude of the current in amperes and ui is the 
phase angle of the current.

The phasor transform of this voltage is

V = RImejui = RIm
lui.

But Imlui is the phasor representation of the sinusoidal current, so we can 
write the voltage phasor as

1 2

R

V
I

Figure 9.8 ▲ The frequency-domain equivalent 
 circuit of a resistor.
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Figure 9.9 ▲ A plot showing that the voltage and 
current at the terminals of a resistor are in phase.

RELATIONSHIP BETWEEN PHASOR VOLTAGE AND 
PHASOR CURRENT FOR A RESISTOR

 V = RI, (9.10)

which states that the phasor voltage at the terminals of a resistor is the 
resistance times the phasor current—the phasor version of Ohm’s law. 
Figure 9.8 shows the circuit diagram for a resistor in the frequency domain.

Equation 9.10 contains an important piece of information—namely, 
that at the terminals of a resistor, there is no phase shift between the cur-
rent and voltage. Figure 9.9 depicts this phase relationship, where the phase 
angle of both the voltage and the current waveforms is 60°. The signals are 
said to be in phase because they both reach corresponding values on their 
respective curves at the same time (for example, they are at their positive 
maxima at the same instant).

The V-I Relationship for an Inductor
We derive the relationship between the phasor current and phasor 
voltage at the terminals of an inductor by assuming a sinusoidal cur-
rent and using Ldi>dt to establish the corresponding voltage. Thus, for 
i = Im cos(vt + ui), the expression for the voltage is

v = L
di
dt

= -vLImsin(vt + ui).

We now replace the sine function with the cosine function:

v = -vLIm cos(vt + ui - 90°).

The phasor representation of the voltage is then

 V = -vLImej1ui - 90°2

 = -vLImejuie-j90°

 = jvLImejui

 = jvLIm
lui .

Note that, in deriving the expression for the phasor voltage, we used the 
identity

e-j90° =  cos 90° - j sin 90° = - j.

Also, Im
lui is the phasor representation of the sinusoidal current, so we 

can express the phasor voltage in terms of the phasor current:
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Equation 9.11 states that the phasor voltage at the terminals of an 
inductor equals jvL times the phasor current. Figure 9.10 shows the 
 frequency-domain equivalent circuit for the inductor. Note that the rela-
tionship between phasor voltage and phasor current for an inductor also 
applies for the mutual inductance in one coil due to current flowing in 
another mutually coupled coil. That is, the phasor voltage at the terminals 
of one coil in a mutually coupled pair of coils equals jvM times the phasor 
current in the other coil.

We can rewrite Eq. 9.11 as

 V = 1vLl90°2Im
lui

 = vLIml(ui + 90)°,

which indicates that the voltage and current are out of phase by exactly 
90°. Specifically, the voltage leads the current by 90°, or, equivalently, 
the current lags the voltage by 90°. Figure 9.11 illustrates the concept of 
 voltage leading current or current lagging voltage. For example, the voltage 
reaches its negative peak exactly 90° before the current reaches its neg-
ative peak. The same observation can be made with respect to the zero- 
going-positive crossing or the positive peak.

We can also express the phase shift in seconds. A phase shift of 90° 
corresponds to one-fourth of a period; hence, the voltage leads the current 
by T>4, or 1

4f  second.

The V-I Relationship for a Capacitor
To determine the relationship between the phasor current and phasor 
voltage at the terminals of a capacitor, we start with the relationship be-
tween current and voltage for a capacitor in the time domain,

i = C
dv

dt
,

and assume that

v = Vm cos(vt + u
v
).

Therefore,

i = C
dv

dt
= -vCVm sin(vt + u

v
).

We now rewrite the expression for the current using the cosine function:

i = -vCVm cos(vt + u
v

- 90°).

RELATIONSHIP BETWEEN PHASOR VOLTAGE AND 
PHASOR CURRENT FOR AN INDUCTOR

 V = jvLI. (9.11)

t

v, i

0

908

2TN4 TN2 T 3TN2

v

i

Figure 9.11 ▲ A plot showing the phase relationship 
between the current and voltage at the terminals of 
an inductor (ui = 60°).

1 2

jvL

V
I

Figure 9.10 ▲ The frequency-domain equivalent 
circuit for an inductor.
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The phasor representation of the current is

 I = -vCVmej1u
v

- 90°2

 = -vCVmeju
ve-j90°

 = jvCVmeju
v

 = jvCVm
lu

v
.

Since Vm
lu

v is the phasor representation of the sinusoidal voltage, we can 
express the current phasor in terms of the voltage phasor as

I = jvCV.

Now express the voltage phasor in terms of the current phasor, to con-
form to the phasor equations for resistors and inductors:

1 2

1NjvC

V
I

Figure 9.12 ▲ The frequency domain equivalent 
circuit of a capacitor.

RELATIONSHIP BETWEEN PHASOR VOLTAGE AND 
PHASOR CURRENT FOR A CAPACITOR

 V =
1

jvC
 I. (9.12)

DEFINITION OF IMPEDANCE

 V = ZI, (9.13)

Equation 9.12 demonstrates that the equivalent circuit for the capacitor in 
the phasor domain is as shown in Fig. 9.12.

The voltage across the terminals of a capacitor lags behind the current 
by 90°. We can show this by rewriting Eq. 9.12 as

 V = a 1
vC

 l-90°bIm
lui

°

 =
Im

vC
 l(ui - 90)°.

Thus, we can also say that the current leads the voltage by 90°. Figure 9.13 
shows the phase relationship between the current and voltage at the termi-
nals of a capacitor.

Impedance and Reactance
We conclude this discussion of passive circuit elements in the frequency 
domain with an important observation. When we compare Eqs. 9.10, 9.11, 
and 9.12, we note that they are all of the form

t

v i
v, i

02TN4 TN2 T 3TN2 2T

v vi i

i iv

v

Figure 9.13 ▲ A plot showing the phase relationship 
between the current and voltage at the terminals of 
a capacitor (ui = 60°).

where Z represents the impedance of the circuit element. Solving for Z 
in Eq. 9.13, you can see that impedance is the ratio of a circuit element’s 
voltage phasor to its current phasor. Thus, the impedance of a resistor is 
R, the impedance of an inductor is jvL, the impedance of mutual induc-
tance is jvM, and the impedance of a capacitor is 1>jvC. In all cases, im-
pedance is measured in ohms. Note that, although impedance is a complex 
number, it is not a phasor. Remember, a phasor is a complex number that 
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results from the phasor transform of a cosine waveform. Thus, although 
all phasors are complex numbers, not all complex numbers are phasors.

Impedance in the frequency domain is the quantity analogous to re-
sistance, inductance, and capacitance in the time domain. The imaginary 
part of the impedance is called reactance. The values of impedance and 
reactance for each of the component values are summarized in Table 9.1.

And, finally, a reminder. The passive sign convention holds in the 
frequency domain. If the reference direction for the current phasor in a 
circuit element is in the direction of the voltage phasor rise across the 
element, you must insert a minus sign into the equation that relates the 
voltage phasor to the current phasor.

Work through Example 9.6 to practice transforming circuit compo-
nents from the time domain to the phasor domain.

TABLE 9.1   Impedance and Reactance 
Values

Circuit  
Element Impedance Reactance

Resistor R —

Inductor jvL vL

Capacitor j(-1>vC) -1>vC

1 21 2

100 V 50 mHi

vR vL

Figure 9.14 ▲ The components for Example 9.6.

EXAMPLE 9.6 Calculating Component Voltages Using Phasor Techniques

Figure 9.14 shows a resistor and an inductor con-
nected in series. The current in these components is

i = 50 cos(1000t + 45°) mA.

The phasor transform of these components is shown 
in Fig. 9.15. Find

a) ZR;

b) ZL;

c) I;

d) VR;

e) VL.

Solution

a) ZR = R = 100 Ω.

b) ZL = jvL = j(1000)(0.05) = j50 Ω.

c) I = �50.05 cos(1000t + 45°6 = 0.05l45° 
  =  50l45° mA.

d) VR = ZR I = (100)(0.05l45°) = 5l45° V.

e) VL. = ZL I = ( j50)(0.05l45°) = 2.5l135° V.

1 21 2

ZR ZL
I

VR VL

Figure 9.15 ▲ The phasor transform of the components in Fig. 9.14.

Objective 2—Be able to transform a circuit with a sinusoidal source into the frequency domain using  
phasor concepts

 9.3 The current in the 20 mH inductor is 
10 cos(10,000t + 30°) mA. Calculate (a) the  
inductive reactance; (b) the impedance of 
the inductor; (c) the phasor voltage V;  
and (d) the steady-state expression for v(t).

 9.4 The voltage across the terminals of the 5 mF 
capacitor is 30 cos(4000t + 25°) V. Calculate 
(a) the capacitive reactance; (b) the impedance 
of the capacitor; (c) the phasor current I; and 
(d) the steady-state expression for i(t).

1 2

5 mF

v

i

Answer: (a) -50 Ω;
(b) - j50 Ω;
(c) 0.6l115° A;
(d) 0.6 cos(4000t + 115°) A.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 9.13 and 9.14.

1 2

20 mH

v

i

Answer: (a) 200 Ω;
(b) j200 Ω;
(c) 2 l120° V;
(d) 2 cos(10,000t + 120°) V.
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9.5 Kirchhoff’s Laws in the Frequency 
Domain

Kirchhoff’s Voltage Law in the Frequency Domain
We begin by assuming that v1, v2, . . ., vn represent voltages around a 
closed path in a circuit. We also assume that the circuit is operating in a 
sinusoidal steady state. Thus, Kirchhoff’s voltage law requires that

v1 + v2 + g + vn = 0,

which in the sinusoidal steady state becomes

Vm1
 cos(vt + u1) + Vm2

 cos(vt + u2) + g + Vmn
 cos(vt + un) = 0.

We now use Euler’s identity to write the KVL equation as

ℛ5Vm1
eju1ejvt6 + ℛ5Vm2

eju2ejvt6 + g + ℛ5Vmn
ejune jvt6 = 0,

which we simplify as

ℛ5Vm1
eju1ejvt + Vm2

eju2ejvt + g + Vmn
ejune jvt6 = 0.

Factoring the term ejvt from each term yields

ℛ5(Vm1
eju1 + Vm2

eju2 + g + Vmn
ejun)ejvt6 = 0,

or

ℛ5(V1 + V2 + g + Vn)ejvt6 = 0.

But ejvt ≠ 0, so

KVL IN THE FREQUENCY DOMAIN

 V1 + V2 + g + Vn = 0, (9.14)

which is the statement of Kirchhoff’s voltage law as it applies to phasor 
voltages.

Kirchhoff’s Current Law in the Frequency Domain
A similar derivation applies to a set of sinusoidal currents. Thus, if

i1 + i2 + g + in = 0,

then

KCL IN THE FREQUENCY DOMAIN

 I1 + I2 + g + In = 0, (9.15)

where I1, I2, c, In are the phasor representations of the individual 
 currents i1, i2, c, in. Thus, Eq. 9.15 states Kirchhoff’s current law as it 
applies to phasor currents.
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Equations 9.13, 9.14, and 9.15 form the basis for circuit analysis in 
the frequency domain. Note that Eq. 9.13 has the same algebraic form 
as Ohm’s law and that Eqs. 9.14 and 9.15 state Kirchhoff’s laws for pha-
sor quantities. Therefore, you can use all the techniques developed for 
analyzing resistive circuits to find phasor currents and voltages. No new 
analytical techniques are needed; the basic circuit analysis and simplifi-
cation tools covered in Chapters 2–4 can all be used to analyze circuits in 
the frequency domain. Phasor-circuit analysis consists of two fundamental 
tasks: (1) You must be able to construct the frequency-domain model of a 
circuit; and (2) you must be able to manipulate complex numbers and/or 
quantities algebraically.

Example 9.7 illustrates the use of KVL in the frequency domain.

EXAMPLE 9.7 Using KVL in the Frequency Domain

a) Use the results from Example 9.6 to calculate the 
phasor voltage drop, from left to right, across the 
series combination of the resistive and inductive 
impedances in Fig. 9.15.

b) Use the phasor voltage found in (a) to calculate 
the steady-state voltage drop, from left to right, 
across the series combination of resistor and in-
ductor in Fig. 9.14.

Solution

a) Using KVL, the phasor voltage drop from left to 
right in Fig. 9.15 is

V = V1 + V2 = 5l45° + 2.5l135° 

                     =  5.59l71.565° V.

b) To find the steady-state voltage drop across the re-
sistor and inductor in Fig. 9.14, we need to apply the 
inverse phasor transform to the phasor V from part 
(a). We need the frequency of the current defined in 
Example 9.6, which is v = 1000 rad>s:

vss(t) = �-15V6 = �-15  5.59l71.565°6  
  = 5.59 cos(1000t + 71.565°) V.

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

 9.5 Four branches terminate at a common  
node. The reference direction of each  
branch current (i1, i2, i3, and i4) is toward the 
node. If 

i1 = 100 cos(vt + 25°) A, 
i2 = 100 cos(vt + 145°) A, and 
i3 = 100 cos(vt - 95°) A, find i4.

Answer: i4 = 0.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 9.15.

9.6 Series, Parallel, and Delta-to-Wye 
Simplifications

The rules for combining impedances in series or parallel and for making 
delta-to-wye transformations are the same as those for resistors. The only 
difference is that combining impedances involves the algebraic manipula-
tion of complex numbers.
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Combining Impedances in Series
Impedances in series can be combined into a single equivalent imped-
ance whose value is the sum of the individual impedances. The circuit 
shown in Fig. 9.16 defines the problem in general terms. The impedances 
Z1, Z2,c, Zn are connected in series between terminals a,b. When im-
pedances are in series, they carry the same phasor current I. From Eq. 9.13, 
the voltage drop across each impedance is Z1I, Z2I, c, ZnI, and from 
Kirchhoff’s voltage law,

 Vab = Z1I + Z2I + g + ZnI

 = (Z1 + Z2 + g + Zn)I.

The equivalent impedance between terminals a,b is

1

2

a

b

Vab
I

Z1 Z2 Zn

Figure 9.16 ▲ Impedances in series.

COMBINING IMPEDANCES IN SERIES

 Zab =
Vab

I
= Z1 + Z2 + g + Zn. (9.16)

VOLTAGE DIVISION IN THE FREQUENCY DOMAIN

 Vj =
Zj

Zeq
 Vs. (9.17)

Remember from Chapter 3 that we can use voltage division to find the 
voltage across a single component from a collection of series- connected 
components whose total voltage is known (Eq. 3.9). We derived the volt-
age division equation using the equation for the equivalent resistance 
of series-connected resistors. Using the same process, we can derive  
the voltage division equation for frequency-domain circuits, where Vs is the  
voltage applied to a collection of series-connected impedances, Vj is  
the voltage across the impedance Zj, and Zeq is the equivalent impedance 
of the series-connected impedances:

Example 9.8 illustrates the following frequency-domain circuit analysis 
techniques: combining impedances in series, Ohm’s law for phasors, and 
voltage division.

EXAMPLE 9.8 Combining Impedances in Series

A 90 Ω resistor, a 32 mH inductor, and a 5 mF 
 capacitor are connected in series across the ter-
minals of a sinusoidal voltage source, as shown in  
Fig. 9.17. The steady-state expression for the source 
voltage vs is 750 cos(5000t + 30°) V.

a) Construct the frequency-domain equivalent 
 circuit.

b) Calculate the phasor voltage V using voltage 
 division for the circuit from part (a).

vs v

90 V 32 mH

1
1

2

2

5 mF

Figure 9.17 ▲ The circuit for Example 9.8.

c) Find the steady-state voltage v using the inverse phasor 
transform.
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Solution

a) From the expression for vs, we have 
v = 5000 rad>s. Therefore, the impedance of the 
inductor is

ZL = jvL = j(5000)(32 *  10-3) = j160 Ω,

and the impedance of the capacitor is

ZC = j
-1
vC

= - j
1

(5000)(5 * 10-6)
= - j40 Ω.

The phasor transform of vs is

Vs = 750l30° V.

Figure 9.18 illustrates the frequency-domain 
equivalent circuit of the circuit shown in Fig. 9.17.

b) Using voltage division, we see that the phasor 
voltage V is proportional to the source voltage; 
from Eq. 9.17,

V =
- j40

90 + j160 - j40
 (750l30°) = 200l-113.13° V.

Note that we used Eq. 9.16 to find the equivalent 
impedance of the series-connected impedances 
in the circuit.

c) Find the steady-state voltage v using the inverse 
phasor transform of V from part (b). Remember 
that the source frequency is 5000 rad>s:

v(t) = 200 cos(5000t - 113.13°) V.

This voltage is the steady-state component of the 
complete response, which is what remains once  
the transient component has decayed to zero.

90 V j160 V

1

2
2j40 V

a

b

308750
V V

1

2

Figure 9.18 ▲ The frequency-domain equivalent 
circuit of the circuit shown in Fig. 9.17.

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

 9.6 Using the values of resistance and inductance in 
the circuit of Fig. 9.15, let Vs = 125l-60° V and 
v = 5000 rad>s. Find
a) the value of capacitance that yields a steady-state 

output current i with a phase angle of -105°;

b) the magnitude of the steady-state output 
 current i.

Answer: (a) 2.86 mF;
(b) 0.982 A.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 9.17.

Combining Impedances in Parallel
Impedances connected in parallel can be reduced to an equivalent imped-
ance using the reciprocal relationship

COMBINING IMPEDANCES IN PARALLEL

 
1

Zab
=

1
Z1

+
1

Z2
+ g +

1
Zn

. (9.18)

Figure 9.19 depicts the parallel connection of impedances. Note 
that when impedances are in parallel, they have the same voltage across 
their terminals. We derive Eq. 9.18 directly from Fig. 9.19 by combining 
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Kirchhoff’s current law with the phasor-domain version of Ohm’s law, 
that is, Eq. 9.13. From Fig. 9.19,

I = I1 + I2 + g + In,

or

V
Zab

=
V
Z1

+
V
Z2

+ g +
V
Zn

.

Canceling the common voltage term from both sides gives us Eq. 9.18.
From Eq. 9.18, for the special case of just two impedances in parallel,

 Zab =
Z1Z2

Z1 + Z2
. (9.19)

We can also express Eq. 9.18 in terms of admittance, defined as the recip-
rocal of impedance and denoted Y. Thus

Y =
1
Z

= G + jB (siemens).

Admittance is a complex number whose real part, G, is called conductance 
and whose imaginary part, B, is called susceptance. Like admittance, con-
ductance and susceptance are measured in siemens (S). Replacing imped-
ances with admittances in Eq. 9.18, we get

Yab = Y1 + Y2 + g + Yn.

The admittance of each of the ideal passive circuit elements also is worth 
noting and is summarized in Table 9.2.

Finally, remember from Chapter 3 that we can use current division to 
find the current in a single branch from a collection of parallel- connected 
branches whose total current is known (Eq. 3.10). We derived the cur-
rent division equation using the equation for the equivalent resistance 
of  parallel-connected resistors. Using the same process, we can derive 
the  current division equation for frequency-domain circuits, where Is is the 
current supplied to a collection of parallel-connected impedances, Ij is the 
current in the branch containing impedance Zj, and Zeq is the equivalent 
impedance of the parallel-connected impedances:

a

1

2

V

b

Z1I1 Z2I2 ZnIn

I

Figure 9.19 ▲ Impedances in parallel.

TABLE 9.2   Admittance and Susceptance 
Values

Circuit  
Element Admittance (Y) Susceptance

Resistor G (conductance) —

Inductor j(-1>vL) -1>vL

Capacitor jvC vC

CURRENT DIVISION IN THE FREQUENCY DOMAIN

 Ij =
Zeq

Zj
 Is. (9.20)

We use Eq. 9.18 to calculate the equivalent impedance in Eq. 9.20.
Example 9.9 analyzes a circuit in the frequency domain using series 

and parallel combinations of impedances and current division.



 9.6 Series, Parallel, and Delta-to-Wye Simplifications 365

EXAMPLE 9.9 Combining Impedances in Series and in Parallel

The sinusoidal current source in the circuit shown in 
Fig. 9.20 produces the current is = 8 cos 200,000t A.

a) Construct the frequency-domain equivalent circuit.

b) Find the equivalent admittance to the right of the 
current source.

c) Use the equivalent admittance from part (b) to 
find the phasor voltage V.

d) Find the phasor current I, using current division.

e) Find the steady-state expressions for v and i.

Solution

a) The phasor transform of the current source is 
8 l0°; the resistors transform directly to the fre-
quency domain as 10 and 6 Ω; the 40 mH inductor 
has an impedance of j8 Ω at the given frequency 
of 200,000 rad>s; and at this frequency the 1 mF 
capacitor has an impedance of - j5 Ω. Figure 9.21 
shows the frequency-domain equivalent circuit 
and symbols representing the phasor transforms 
of the unknowns.

b) We first find the equivalent admittance to the right 
of the current source by adding the admittances of 
each branch. The admittance of the first branch is

Y1 =
1
10

= 0.1 S,

the admittance of the second branch is

Y2 =
1

6 + j8
= 0.06 - j0.08  S,

and the admittance of the third branch is

Y3 =
1

- j5
= j0.2 S.

The admittance of the three branches is

 Yeq = Y1 + Y2 + Y3

 = 0.16 + j0.12 S

 = 0.2l36.87° S.

c) Use the equivalent admittance from part (b) to 
find the phasor voltage V.
The impedance seen by the current source is

Zeq =
1

Yeq
= 5l-36.87° Ω.

The phasor voltage V is

V = ZeqI = 40l-36.87° V.

d) Using Eq. 9.20, together with the equivalent im-
pedance found in part (c), we get

I =
5l-36.87°

6 + j8
(8l0° ) = 4l-90° A.

You can verify this answer using the phasor volt-
age across the branch, V, and the impedance of 
the branch, (6 + j8) Ω.

e) From the phasors found in parts (c) and (d), the 
steady-state time-domain expressions are

 v(t) = 40 cos(200,000t - 36.87°) V,

 i(t) = 4 cos(200,000t - 90°) A.

10 V

6 V

40 mH
1 mF

1

2

vis i

Figure 9.20 ▲ The circuit for Example 9.9.

10 V

6 V

j8 V
2j5 V

1

2

V I088
A

Figure 9.21 ▲ The frequency-domain equivalent circuit.
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Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

 9.7 A 20 Ω resistor is connected in parallel with a  
5 mH inductor. This parallel combination is 
connected in series with a 5 Ω resistor and a 
25 mF capacitor.
a) Calculate the impedance of this interconnec-

tion if the frequency is 2 krad>s.
b) Repeat (a) for a frequency of 8 krad>s.
c) At what finite frequency does the impedance of 

the interconnection become purely resistive?
d) What is the impedance at the frequency 

found in (c)?

Answer: (a) 9 - j12 Ω;
(b) 21 + j3 Ω;
(c) 4 krad>s;
(d) 15 Ω.

 9.8 The interconnection described in Assessment 
Problem 9.7 is connected across the termi-
nals of a voltage source that is generating 
v = 150 cos 4000t V. What is the maximum 
amplitude of the current in the 5 mH inductor?

Answer: 7.07 A.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 9.28, 9.31, and 9.36.

Delta-to-Wye Transformations
The ∆-to-Y transformation for resistive circuits, discussed in Section 3.7, 
also applies to impedances. Figure 9.22 defines the ∆-connected imped-
ances along with the Y-equivalent circuit. The Y impedances as functions 
of the ∆ impedances are

 Z1 =
ZbZc

Za + Zb + Zc
, (9.21)

 Z2 =
ZcZa

Za + Zb + Zc
, (9.22)

 Z3 =
ZaZb

Za + Zb + Zc
. (9.23)

The ∆-to-Y transformation also may be reversed; that is, we can start 
with the Y structure and replace it with an equivalent ∆ structure. The ∆ 
impedances as functions of the Y impedances are

 Za =
Z1Z2 + Z2Z3 + Z3Z1

Z1
, (9.24)

 Zb =
Z1Z2 + Z2Z3 + Z3Z1

Z2
, (9.25)

 Zc =
Z1Z2 + Z2Z3 + Z3Z1

Z3
. (9.26)

The process used to derive Eqs. 9.21–9.23 or Eqs. 9.24–9.26 is the same 
as that used to derive the corresponding equations for resistive circuits. 
In fact, comparing Eqs. 3.15–3.17 with Eqs. 9.21–9.23 and Eqs. 3.18–3.20 
with Eqs. 9.24–9.26 reveals that the symbol Z has replaced the symbol R. 
You may want to review Problem 3.65 concerning the derivation of the  
Δ-to-Y transformation.

Example 9.10 uses the ∆-to-Y transformation in phasor-circuit 
analysis.

a b

n

c

Zc

Z3

Zb Za

Z1 Z2

Figure 9.22 ▲ The delta-to-wye transformation.
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20 V

j60 V 2j20 V

j2.4 V

63.2 V

a

2j4 V

cb

d
2

1

V1

2

1

V2

10 V

I0

I3
I2I1

I5I4

1

2
120  08 V

Figure 9.23 ▲ The circuit for Example 9.10.

EXAMPLE 9.10 Using a Delta-to-Wye Transform in the Frequency Domain

Use a ∆-to-Y impedance transformation to find I0, 
I1, I2, I3, I4, I5, V1, and V2 in the circuit in Fig. 9.23.

Note that the abn branch is in parallel with the acn 
branch. Therefore, we may replace these two branches  
with a single branch having an impedance of

Zan =
(60)(12)

72
= 10 Ω.

Combining this 10 Ω resistor with the impedance 
between n and d reduces the circuit to the one 
shown in Fig. 9.25. From that circuit,

I0 =
120 l0°

18 - j24
= 4 l53.13° = 2.4 + j3.2 A.

Once we know I0, we can work back through 
the equivalent circuits to find the branch currents 
in the original circuit. We begin by noting that I0 is 
the current in the branch nd of Fig. 9.24. Therefore,

Vnd = (8 - j24) I0 = 96 - j32 V.

We can now calculate the voltage Van because

V = Van + Vnd

where V is the phasor voltage of the source and Vnd 
is known. Thus

Van = 120 - (96 - j32) = 24 + j32 V.

12 V

j4 V

2j2.4 V

2j 2.4 V

23.2 V

j 2.4 V

63.2 V

a

2j4 V

cb

I0

d

n

1

2

8 V

120  08 V

Figure 9.24 ▲ The circuit shown in Fig. 9.23, with 
the lower delta replaced by its equivalent wye.

2j24 V2

1
18 V

I0 a

V
120  08 

Figure 9.25 ▲ A simplified version of the circuit 
shown in Fig. 9.24.

Solution
It is not possible to simplify the circuit in Fig. 9.23 
using series and parallel combinations of imped-
ances. But if we replace either the upper delta (abc) 
or the lower delta (bcd) with its Y equivalent, we 
can simplify the resulting circuit by series-parallel 
combinations. To decide which delta to replace, find 
the sum of the impedances around each delta. This 
quantity forms the denominator for the equivalent 
Y impedances. The sum around the lower delta is 
30 + j40, so we choose to transform the lower delta 
to its equivalent Y. The Y impedance connecting to 
terminal b is

Z1 =
(20 + j60)(10)

30 + j40
= 12 + j4Ω,

the Y impedance connecting to terminal c is

Z2 =
10(- j20)

30 + j40
= -3.2 - j2.4 Ω,

and the Y impedance connecting to terminal d is

Z3 =
(20 + j60)(- j20)

30 + j40
= 8 - j24 Ω.

Inserting the Y-equivalent impedances into the circuit 
results in the circuit shown in Fig. 9.24.

We can simplify the circuit in Fig. 9.24 by mak-
ing series-parallel combinations. The impedence of 
the abn branch is

Zabn = 12 + j4 - j4 = 12 Ω,

and the impedance of the acn branch is

Zacn = 63.2 + j2.4 - j 2.4 - 3.2 = 60 Ω.
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We now compute the branch currents Iabn and Iacn us-
ing Van and the equivalent impedance of each branch:

 Iabn =
24 + j32

12
= 2 + j 

8
3

 A,

 Iacn =
24 + j32

60
=

4
10

+ j 
8
15

 A.

In terms of the branch currents defined in Fig. 9.23,

 I1 = Iabn = 2 + j 
8
3

 A,

 I2 = Iacn =
4
10

+ j 
8
15

 A.

We check the calculations of I1 and I2 by noting that

I1 + I2 = 2.4 + j3.2 = I0.

To find the branch currents I3, I4, and I5, we must 
first calculate the voltages V1 and V2. Referring to 
Fig. 9.23, we note that

 V1 = 120 l0° - (- j4)I1 =
328
3

+ j8 V,

 V2 = 120 l0° - (63.2 + j2.4)I2 = 96 - j 
104
3

 V.

We now calculate the branch currents I3, I4, and I5:

 I3 =
V1 - V2

10
=

4
3

+ j 
12.8

3
 A,

 I4 =
V1

20 + j60
=

2
3

- j1.6 A,

 I5 =
V2

- j20
=

26
15

+ j4.8 A.

We check the calculations by noting that

 I4 + I5 =
2
3

+
26
15

- j1.6 + j4.8 = 2.4 + j3.2 = I0,

 I3 + I4 =
4
3

+
2
3

+ j 
12.8

3
- j1.6 = 2 + j 

8
3

= I1,

 I3 + I2 =
4
3

+
4
10

+ j 
12.8

3
+ j 

8
15

=
26
15

+ j4.8 = I5.

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

 9.9 Use a Y-to-∆ transformation to find the current 
I in the circuit shown.

Answer: I = 4 l28.07° A.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 9.42.

j40 V

40 V

50 V

10 V

2j15 V

1

2

14 V

I

136 08
V

9.7 Source Transformations and 
Thévenin–Norton Equivalent 
Circuits

The source transformations introduced in Section 4.9 and the Thévenin–
Norton equivalent circuits discussed in Section 4.10 are analytical techniques 
that also can be applied to frequency-domain circuits. We prove these tech-
niques are valid by following the same process used in Sections 4.9 and 4.10, 
except that we substitute impedance (Z) for resistance (R). Figure 9.26 shows 
a source-transformation equivalent circuit in the frequency domain.
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Figure 9.27 illustrates the frequency-domain version of a Thévenin 
equivalent circuit, and Figure 9.28 shows the frequency-domain equivalent 
of a Norton equivalent circuit. The techniques for finding the Thévenin 
equivalent voltage and impedance are identical to those used for resistive 
circuits, except that the frequency-domain equivalent circuit involves pha-
sors and complex numbers. The same holds for finding the Norton equiv-
alent current and impedance.

Example 9.11 demonstrates the application of the source-transformation 
equivalent circuit to frequency-domain analysis. Example 9.12 illustrates the 
details of finding a Thévenin equivalent circuit in the frequency domain.

1

2
Vs

a

b
Vs 5 ZsIs

Is

a

b
Is 5 VsNZs

Zs

Zs

Figure 9.26 ▲ A source transformation in the fre-
quency domain.

ZTh

1

2

Frequency-domain
linear circuit;
may contain
both independent
and dependent
sources.

a

b

VTh

a

b

Figure 9.27 ▲ The frequency-domain version of a 
Thévenin equivalent circuit.

ZNIN

a

b

a
Frequency-domain
linear circuit;
may contain
both independent
and dependent
sources. b

Figure 9.28 ▲ The frequency-domain version of a 
Norton equivalent circuit.

EXAMPLE 9.11 Performing Source Transformations in the Frequency Domain

Use a series of source transformations to find the 
phasor voltage V0 in the circuit shown in Fig. 9.29.

which is in parallel with the current source of 
4 - j12 A. Another source transformation converts 
this parallel combination to a series combination of 
a voltage source and the impedance of 1.8 + j2.4 Ω. 
The voltage of the voltage source is

V = (4 - j12)(1.8 + j2.4) = 36 - j12 V.

The resulting circuit is shown in Fig. 9.31. We added 
the current I0 to this circuit to assist us in finding V0.

We have now reduced the circuit to a simple 
series connection. We calculate the current I0 by di-
viding the voltage of the source by the total series 
impedance:

 I0 =
36 - j12
12 - j16

= 1.56 + j1.08 A.

j3 V

10 V9 V

2j19 V2j3 V

1

2

j0.6 V1 V 0.2 V

1

2

V040 08 V

Figure 9.29 ▲ The circuit for Example 9.11.

10 V9 V

2j19 V2j3 V

1 V

j3 V

j0.6 V0.2 V

4 2 j12
A

1

2

V0

Figure 9.30 ▲ The first step in reducing the circuit 
shown in Fig. 9.29.

Solution
Begin by replacing the series combination of the volt-
age source (40 l0° ) and the impedance of 1 + j3 Ω 
with the parallel combination of a current source and 
the 1 + j3 Ω impedance. The current source is

I =
40

1 + j3
= 4 - j12 A.

The resulting circuit is shown in Fig. 9.30. We used 
the polarity of the 40 V source to determine the di-
rection for I.

Next, we combine the two parallel branches 
into a single impedance,

Z =
(1 + j3)(9 - j3)

10
= 1.8 + j2.4 Ω,
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Now multiply I0 by the impedance 10 - j19 to get V0:

V0 = (1.56 + j1.08)(10 - j19) = 36.12 - j18.84 V.

You can verify this result by using voltage division 
to calculate V0.

10 V

2j19 V

1

2

j2.4 V1.8 V j0.6 V0.2 V

1

2

V036 2 j12 V

I0

Figure 9.31 ▲ The second step in reducing the circuit shown 
in Fig. 9.29.

EXAMPLE 9.12 Finding a Thévenin Equivalent in the Frequency Domain

Find the Thévenin equivalent circuit with respect to 
terminals a,b for the circuit shown in Fig. 9.32.

We added the current I to Fig. 9.33; note that 
once we know its value, we can compute the Thévenin 
voltage. Use KVL to find I by summing the voltages 
around the closed path in the circuit. Hence

100 = 10I - j40I + 120I + 10Vx = (130 - j40)I + 10Vx.

We relate the controlling voltage Vx to the current I by 
noting from Fig. 9.33 that

Vx = 100 - 10I.

Then,

I =
-900

30 - j40
= -10.8 - j14.4 A.

Finally, we note from Fig. 9.33 that

 VTh = 10Vx + 120I

 = 10(100 - 10I) + 120I

 = 1000 + 20(-10.8 - j14.4)

 = 784 - j288 V.

1

2

1

2

12 V

60 V

2

1

Vx

2j40 V

10 Vx

120 V

V
120  08 

Figure 9.32 ▲ The circuit for Example 9.12.

1

2

1

2

10 V

2

1

Vx

2

1

VTh

2j40 V

10 Vx

a

b

I

120 V

V
100  08 

Figure 9.33 ▲ A simplified version of the circuit 
shown in Fig. 9.32.

Solution
We first determine the Thévenin equivalent 
voltage. This voltage is the open-circuit voltage 
 appearing at terminals a,b. We choose the refer-
ence for the Thévenin voltage as positive at ter-
minal a. We can make two source transformations 
using the 120 V, 12 Ω, and 60 Ω  circuit elements 
to simplify the left-hand side of the circuit. These 
transformations must preserve the identity of the 
controlling voltage Vx because of the dependent 
voltage source.

The first source transformation replaces the se-
ries combination of the 120 V source and 12 Ω resis-
tor with a 10 A current source in parallel with 12 Ω. 
Next, we replace the parallel combination of the 12 
and 60 Ω resistors with a single 10 Ω resistor. Finally, 
we replace the parallel-connected 10 A source and 
10 Ω resistor with a 100 V source in series with 10 Ω. 
Figure 9.33 shows the resulting circuit.
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We can find the Thévenin impedance using any 
of the techniques in Sections 4.10–4.11 for finding 
Thévenin resistance. We use the test-source method 
in this example. We begin by deactivating all inde-
pendent sources in the circuit, and then we apply 
either a test-voltage source or a test-current source 
to the terminals of interest. The ratio of the voltage 
to the current at the test source is the Thévenin im-
pedance. Figure 9.34 presents the result of applying 
this technique to the circuit shown in Fig. 9.32 while 
preserving the identity of Vx.

We added branch currents Ia and Ib to simplify 
the calculation of IT. You should verify the follow-
ing relationships by applying Ohm’s law, KVL, and 
KCL for phasors:

 Ia =
VT

10 - j40
,  Vx = 10Ia,

 Ib =
VT - 10Vx

120

 =
-VT (9 + j4)

120(1 - j4)
 ,

 IT = Ia + Ib

 =
VT

10 - j40
 a1-  

9 + j4
12

b

 =
VT(3 - j4)

12(10 - j40)
 ,

 ZTh =
VT

IT
= 91.2 - j38.4 Ω.

Figure 9.35 depicts the Thévenin equivalent circuit.

1

2

1

2

12 V

60 V

2

1

Vx

2j40 V

10 Vx

a

b

120 V

VT

IT

Ia

Ib

Figure 9.34 ▲ A circuit for calculating the Thévenin  
equivalent impedance.

1

2

91.2 V
a

b

784 2 j288
V

2j38.4 V

Figure 9.35 ▲ The Thévenin equivalent for the 
 circuit shown in Fig. 9.32.

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

 9.10 Find the steady-state expression for vo(t) in the 
circuit shown by using source transformations. The 
sinusoidal voltage sources are

v1 = 240 cos(4000t + 53.13°) V,

v2 = 96 sin 4000t V.

30 V 25N6 mF v2v1 vo(t)

1

2

15 mH 20 V

1

2

2

1

Answer: 48 cos(4000t + 36.87°) V.

 9.11 Find the Thévenin equivalent with respect to 
terminals a,b in the circuit shown.

20 V 2j10 V

j10 V 10 V

Ix 10 Ix
2 458

A
1

2

a

b

Answer:  VTh = Vab = 10 l45° V;  
ZTh = 5 - j5 Ω.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 9.43, 9.44, and 9.48.
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9.8 The Node-Voltage Method
In Sections 4.2–4.4, we introduced the node-voltage method of circuit 
analysis, culminating in Analysis Method 4.3 (p. 130). We can use this 
analysis method to find the steady-state response for circuits with sinusoi-
dal sources. We need to make a few modifications:

• If the circuit is in the time domain, it must be transformed to the 
appropriate frequency domain. To do this, transform known voltages 
and currents to phasors, replace unknown voltages and currents with 
phasor symbols, and replace the component values for resistors, in-
ductors, mutually coupled coils, and capacitors with their impedance 
values.

• Follow the steps in Analysis Method 4.3 to find the values of the un-
known voltage and current phasors of interest.

• Apply the inverse phasor transform to the voltage and current pha-
sors to find the steady-state values of the corresponding voltages and 
currents in the time domain.

Example 9.13 illustrates these steps. Assessment Problem 9.12 and many 
of the chapter problems give you an opportunity to use the node-voltage 
method to solve for steady-state sinusoidal responses.

EXAMPLE 9.13 Using the Node-Voltage Method in the Frequency Domain

Use the node-voltage method to find the branch 
currents ia, ib, and ic in the steady-state, for the cir-
cuit shown in Fig. 9.36. The value of the current 
source in this circuit is is = 10.6 cos(500t) A.

10 V 400 mF

4 mH1 V

iais ic

ix

20 ix

1

2

5 V

Ib

Figure 9.36 ▲ The circuit for Example 9.13.

Solution
We begin by transforming the circuit into the fre-
quency domain. To do this, we replace the value of the 
current source with its phasor transform, 10.6l0° A.  
We also replace the currents ia, ib, ic, and ix with cor-
responding phasor symbols Ia, Ib, Ic, and Ix. Then we 
 replace the inductor and capacitor values with their 
impedances, using the frequency of the source:

ZL = j(500)(4 * 10-3) = j2 Ω;

ZC =
- j

(500)(400 * 10-6)
= - j5 Ω.

The resulting frequency-domain circuit is shown in 
Fig. 9.37.

Now we can employ Analysis Method 4.3.

Step 1: The circuit has three essential nodes, two at 
the top and one on the bottom. We will need two 
KCL equations to describe the circuit.

Step 2: Four branches terminate on the bottom 
node, so we select it as the reference node and label 
the node voltages at the remaining essential nodes. 
The results of the first two steps are shown in Fig. 9.38.

10 V 2j5 V

j2 V1 V

Ia Ic

Ix

20 Ix

10.6  08 A
1

2

5 V

Ib

Figure 9.37 ▲ The circuit in Fig. 9.36, transformed into the  
frequency domain.

10 V 2j5 V

j2 V1 V

Ix

20 Ix

10.6  08 A
1

2

5 V1 2

V2

1

2

V1

1

2

Figure 9.38 ▲ The circuit shown in Fig. 9.37, with the node 
 voltages defined.
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Step 3: Apply KCL at the nonreference essential 
nodes to give

-10.6 +
V1

10
+

V1 - V2

1 + j2
= 0,

and

V2 - V1

1 + j2
+

V2

- j5
+

V2 - 20Ix

5
= 0.

The circuit has a dependent source, so we need a 
dependent source constraint equation that defines 
Ix in terms of the node voltages:

Ix =
V1 - V2

1 + j2
.

Step 4: Solve the three equations from Step 3 for 
V1, V2, and Ix:

 V1 = 68.4 - j16.8 V,

 V2 = 68 - j26 V,

 Ix = 3.76 + j1.68 A.

Step 5: Use the phasor values from Step 4 to find 
the three branch currents from Fig. 9.37:

 Ia =
V1

10
= 6.84 - j1.68 A = 7.04l-13.8° A,

 Ib =
V2 - 20Ix

5
= -1.44 - j11.92 A = 12l-96.89° A,

 Ic =
V2

- j5
= 5.2 + j13.6 A = 14.56l69.08° A.

We find the steady-state values of the branch 
 currents in the time-domain circuit of Fig. 9.37 by 
applying the inverse phasor transform to the re-
sults of Step 5. Remember that the frequency of 
the current source in the circuit is 500 rad/s. The 
results are

 ia = 7.04 cos(500t - 13.8°) A,

 ib = 12 cos(500t - 96.89°) A,

 ic = 14.56 cos(500t + 69.08°) A.

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

 9.12 Use the node-voltage method to find the 
steady-state expression for v(t) in the cir-
cuit shown. The sinusoidal sources are 
is = 10 cos vt A and vs = 100 sin vt V, where 
v = 50 krad>s.

Answer: v(t) = 31.62 cos(50,000t - 71.57°) V.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter 9.55 and 9.59.

1

2
5 V 9 mFis 100 mH vs

20 V
1

2

v(t)

9.9 The Mesh-Current Method
We can also use the mesh-current method to analyze frequency-domain 
circuits. If a problem begins with a circuit in the time domain, it needs to 
be transformed into the frequency domain. Then, Analysis Method 4.6  
(p. 138) can be used to find the mesh-current phasors, just as it was used 
to find mesh currents in resistive circuits. Finally, apply the inverse phasor 
transform to the phasor voltages and currents to find the steady-state volt-
ages and currents in the time domain. We use the mesh current method to 
analyze a frequency-domain circuit in Example 9.14.
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EXAMPLE 9.14 Using the Mesh-Current Method in the Frequency Domain

Use the mesh-current method to find the voltages 
V1, V2, and V3 in the circuit shown in Fig. 9.39.

j2 V

12 V

2j16 V

1

2

j3 V1 V 1 V

150  08
V

1 2V1 1 2V3

1

2

V2 Ix
39 Ix

1

2

Figure 9.39 ▲ The circuit for Example 9.14.

The circuit in Fig. 9.40 has a dependent source, so we 
need a constraint equation that defines Ix in terms of 
the mesh currents. The resulting equation is

Ix = I1 - I2.

j2 V

12 V

2j16 V

1

2

j3 V1 V 1 V

39 Ix
1

2

Ix

I1 I2

150  08
V

Figure 9.40 ▲ Mesh currents used to solve the 
 circuit shown in Fig. 9.39.

Solution
The circuit is already in the frequency domain, so 
we apply Analysis Method 4.6.

Step 1: Use directed arrows that traverse the 
mesh perimeters to identify the two mesh current 
phasors.

Step 2: Label the mesh current phasors as I1 and I2, 
as shown in Fig. 9.40.

Step 3: Write the KVL equations for the meshes:

150 = (1 + j2)I1 + (12 - j16)(I1 - I2),

0 = (12 - j16)(I2 - I1) + (1 + j3)I2 + 39Ix.

Step 4: Solving the simultaneous equations in Step 
3 gives

 I1 = -26 - j52 A,

 I2 = -24 - j58 A,

 Ix = -2 + j6 A.

Step 5: Finally, we use the mesh-current phasors 
from Step 4 to find the phasor voltages identified in 
the circuit of Fig. 9.39:

 V1 = (1 + j2) I1 = 78 - j104 V,

 V2 = (12 - j16) Ix = 72 + j104 V,

 V3 = (1 + j3) I2 = 150 - j130 V.

Also

39Ix = -78 + j234 V.

We check these calculations by summing the volt-
ages around closed paths:

-150 + V1 + V2 = -150 + 78 - j104 + 72

 + j104 = 0,

-V2 + V3 + 39Ix = -72 - j104 + 150 - j130

 - 78 + j234 = 0,

-150 + V1 + V3 + 39Ix = -150 + 78 - j104 + 150

- j130 - 78 + j234 = 0.
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9.10 The Transformer
A transformer is a device based on the magnetic coupling that charac-
terizes mutually coupled inductor coils. Transformers are used in both 
 communication and power circuits. In communication circuits, the trans-
former is used to match impedances and eliminate dc signals from por-
tions of the system. In power circuits, transformers are used to establish ac 
 voltage levels that facilitate the transmission, distribution, and consumption 
of electrical power. We need to know how a transformer behaves in the 
sinusoidal steady state when analyzing both communication and power sys-
tems. In this section, we will discuss the sinusoidal steady-state behavior 
of the linear transformer, which is found primarily in communication cir-
cuits. In Section 9.11, we will present the ideal transformer, which is used to 
model the ferromagnetic transformers found in power systems.

When analyzing circuits containing mutually coupled inductor coils, 
we use the mesh-current method. The node-voltage method is hard to use 
when mutual inductance is present because the currents in the coupled 
coils cannot be written by inspection as functions of the node voltages.

The Analysis of a Linear Transformer Circuit
A simple transformer is formed when two coils are wound on a single 
core to ensure magnetic coupling. Figure 9.41 shows the frequency- 
domain circuit model of a system that uses a transformer to connect a load 
to a source. The transformer winding connected to the source is called 
the  primary winding, and the winding connected to the load is called the 
 secondary winding. The transformer circuit parameters are

R1 = the resistance of the primary winding,

R2 = the resistance of the secondary winding,

L1 = the self@inductance of the primary winding,

L2 = the self@inductance of the secondary winding,

M = the mutual inductance.

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

 9.13 Use the mesh-current method to find the pha-
sor current I in the circuit shown.

Answer: 29 + j2 A = 29.07 l3.95° A.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 9.61 and 9.64.
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1
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33.8  08
V 1
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ZL
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2

Source Transformer Load

VS

a

b

c

d

jvL1 jvL2

jvM
R2R1

I2I1

Figure 9.41 ▲ The frequency domain circuit model 
for a transformer used to connect a load to a source.
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The internal voltage of the sinusoidal source is VS, and the internal 
 impedance of the source is ZS. The impedance ZL represents the load con-
nected to the secondary winding of the transformer. The phasor currents I1 
and I2 are the primary and secondary currents of the transformer, respectively.

We analyze the circuit in Fig. 9.41 to find I1 and I2 as functions of the 
circuit parameters VS, ZS, R1, L1, L2, R2, M, ZL, and v. Let’s write the two 
KVL equations that describe the circuit:

 VS = (ZS + R1 + jvL1)I1 - jvMI2,

 0 = - jvMI1 + (R2 + jvL2 + ZL) I2.

We define

 Z11 = ZS + R1 + jvL1, (9.27)

 Z22 = R2 + jvL2 + ZL, (9.28)

where Z11 is the total self-impedance of the mesh containing the primary 
winding of the transformer and Z22 is the total self-impedance of the mesh 
containing the secondary winding. Using the impedances defined in Eqs. 9.27 
and 9.28, we solve the mesh-current equations for I1 and I2 to give

 I1 =
Z22

Z11Z22 + v2M2 VS, (9.29)

 I2 =
jvM

Z11Z22 + v2M2 VS =
jvM

Z22
 I1. (9.30)

We are also interested in finding the impedance seen when we look 
into the transformer from the terminals a and b. The internal source volt-
age VS is attached to an equivalent impedance whose value is the ratio of 
the source-voltage phasor to the primary current phasor, or

VS

I1
= Zint =

Z11Z22 + v2M2

Z22
= Z11 +

v2M2

Z22
.

The impedance at the terminals of the source is Zint - ZS, so

     Zab = Z11 +
v2M2

Z22
- ZS = R1 + jvL1 +

v2M2

(R2 + jvL2 + ZL)
. (9.31)

Note that the impedance Zab is independent of the magnetic polarity 
of the transformer because the mutual inductance M appears in Eq. 9.31 as 
a squared quantity. The impedance Zab is interesting because it describes 
how the transformer affects the impedance of the load as seen from the 
source. Without the transformer, the load would be connected directly 
to the source, and the source would see a load impedance of ZL; with the 
transformer, the load is connected to the source through the transformer, 
and the source sees a load impedance that is a modified version of ZL, as 
seen in the third term of Eq. 9.31.

Reflected Impedance
The third term in Eq. 9.31 is called the reflected impedance (Zr) because 
it is the equivalent impedance of the secondary coil and load impedance 
transmitted, or reflected, to the primary side of the transformer. Note 
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that the reflected impedance exists because of the mutual inductance. If 
the two coils are not coupled, M is zero, Zr is zero, and Zab is the self- 
impedance of the primary coil.

To consider reflected impedance in more detail, we first express the 
load impedance in rectangular form:

ZL = RL + jXL,

where the load reactance XL carries its own algebraic sign. That is, XL is a 
positive number if the load is inductive and a negative number if the load is 
capacitive. We can now write the reflected impedance in rectangular form:

Zr =
v2M2

R2 + RL + j(vL2 + XL)

 =
v2M2[(R2 + RL) - j(vL2 + XL)]

(R2 + RL)2 + (vL2 + XL)2  (9.32)

=
v2M2

0Z22 0 2 [(R2 + RL) - j(vL2 + XL)].

The derivation of Eq. 9.32 uses the fact that, when ZL is written in rect-
angular form, the self-impedance of the mesh containing the secondary 
winding is

Z22 = R2 + RL + j(vL2 + XL).

In Eq. 9.32 we see that the self-impedance of the secondary circuit is 
reflected into the primary circuit by a scaling factor of (vM> 0Z22 0 )2 and 
that the sign of the reactive component (vL2 + XL) is reversed. Thus, the 
linear transformer reflects the complex conjugate of the self-impedance of 
the secondary circuit (Z22

* ) into the primary winding with a scalar multiplier.
Example 9.15 analyzes a circuit with a linear transformer.

EXAMPLE 9.15 Analyzing a Linear Transformer in the Frequency Domain

The parameters of a linear transformer are 
R1 = 200 Ω, R2 = 100 Ω, L1 = 9 H, L2 = 4 H, 
and k = 0.5. The transformer couples a load im-
pedance with an 800 Ω resistor in series with a 
1 mF capacitor to a sinusoidal voltage source. The 
300 V (rms) source has an internal impedance of 
500 + j100 Ω and a frequency of 400 rad>s.

a) Construct a frequency-domain equivalent circuit 
of the system.

b) Calculate the self-impedance of the primary circuit.

c) Calculate the self-impedance of the secondary 
circuit.

d) Calculate the impedance reflected into the  primary 
winding.

e) Calculate the scaling factor for the reflected im-
pedance.

f) Calculate the impedance seen looking into the 
primary terminals of the transformer.

g) Calculate the Thévenin equivalent with respect 
to the terminals of the load impedance.

Solution

a) Figure 9.42 shows the frequency-domain equiva-
lent circuit. Note that the internal voltage of the 
source serves as the reference phasor because it 
is assigned a phase angle of 0°, and that V1 and V2 
represent the terminal voltages of the transformer.  
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In constructing the circuit in Fig. 9.42, we made 
the following calculations:

 jvL1 = j(400)(9) = j3600 Ω,

 jvL2 = j(400)(4) = j1600 Ω,

 M = 0.51(9)(4) = 3 H,

 jvM = j(400)(3) = j1200 Ω,

 
- j

vC
=

- j

(400)(1 * 10-6)
= - j2500 Ω.

b) From Eq. 9.27, the self-impedance of the primary 
circuit is

Z11 = 500 + j100 + 200 + j3600 = 700 + j3700 Ω.

c) From Eq. 9.28, the self-impedance of the second-
ary circuit is

Z22 = 100 + j1600 + 800 - j2500 = 900 - j900 Ω.

d) From Eq. 9.32, the impedance reflected into the 
primary winding is

 Zr = a 1200
0 900 - j900 0 b

2 

(900 + j900)

 =
8
9

 1900 + j9002 = 800 + j800 Ω.

e) The scaling factor by which Z22
*  is reflected is 8>9.

f) The impedance seen looking into the primary 
terminals of the transformer is the impedance of 
the primary winding, Z11, plus the reflected im-
pedance, Zr; thus

Zab = 200 + j3600 + 800 + j800 = 1000 + j4400 Ω.

g) The Thévenin voltage is the open-circuit value 
of Vcd, which equals j1200 times the open-circuit 
value of I1. The open-circuit value of I1 is

 I1 =
300 l0°

700 + j3700

 = 79.67 l-79.29° mA.

Therefore

 VTh = j1200(79.67 l-79.29° ) * 10-3

 = 95.60 l10.71° V.

The Thévenin impedance equals the impedance 
of the secondary winding, plus the impedance 
reflected from the primary when the voltage 
source is replaced by a short circuit. Thus

 ZTh = 100 + j1600 + a 1200
0 700 + j3700 0 b

2

(700 - j3700)

 = 171.09 + j1224.26 Ω.

The Thévenin equivalent is shown in Fig. 9.43.
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j3600 V j1600 V 2j2500 V

j1200200 V 100 V 800 Vj100 V500 V
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V2300  08 V
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Figure 9.42 ▲ The frequency-domain equivalent circuit for Example 9.15.
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95.60  10.718

V

Figure 9.43 ▲ The Thévenin equivalent circuit for 
Example 9.15.
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9.11 The Ideal Transformer
An ideal transformer consists of two magnetically coupled coils having N1 
and N2 turns, respectively, and exhibiting these three properties:

1. The coefficient of coupling is unity (k = 1).

2. The self-inductance of each coil is infinite (L1 = L2 = ∞).

3. The coil losses, due to parasitic resistance, are negligible.

Understanding the behavior of ideal transformers begins with Eq. 9.31, 
which describes the impedance at the terminals of a source connected to 
a linear transformer. We repeat this equation in the following discussion 
and examine it further.

Exploring Limiting Values
Equation 9.31, repeated here as Eq. 9.33, defines the relationship be-
tween the input impedance (Zab) and load impedance (ZL) for a linear 
transformer:

Zab = Z11 +
v2M2

Z22
- Zs

 = R1 + jvL1 +
v2M 2

(R2 + jvL2 + ZL)
. (9.33)

Let’s consider what happens to Eq. 9.33 as L1 and L2 each become infinitely 
large and, at the same time, the coefficient of coupling approaches unity. 
Transformers wound on ferromagnetic cores can approach these condi-
tions. Even though such transformers are nonlinear, we can obtain some 
useful information using an ideal model that ignores the nonlinearities.

To show how Zab changes when k = 1 and L1 and L2 approach infin-
ity, we first introduce the notation

Z22 = R2 + RL + j(vL2 + XL) = R22 + jX22

Objective 4—Be able to analyze circuits containing linear transformers using phasor methods

 9.14 A linear transformer couples a load consisting 
of a 360 Ω  resistor in series with a 0.25 H  
inductor to a sinusoidal voltage source, as 
shown. The voltage source has an internal 
impedance of 184 + j0 Ω  and a maximum 
voltage of 245.20 V, and it is operating at 
800 rad>s. The transformer parameters 
are R1 = 100 Ω, L1 = 0.5 H, R2 = 40 Ω, 
L2 = 0.125 H, and k = 0.4. Calculate (a) the 
reflected impedance; (b) the primary current; 
and (c) the secondary current.

ZS

ZL
1

2

Source Transformer Load

VS

a

b

c

d

jvL1 jvL2

jvM
R2R1

I2I1

Answer: (a) 10.24 - j7.68 Ω;
(b) 0.5 cos(800t - 53.13°) A;
(c) 80 cos 800t mA.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 9.74 and 9.77.
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and then rearrange Eq. 9.33:

  Zab = R1 +
v2M2R22

R22
2 + X22

2 + javL1-  
v2M2X22

R22
2 + X22

2 b  (9.34)

 = Rab + jXab.

At this point, we must be careful with the imaginary part of Zab because, 
as L1 and L2 approach infinity, Xab is the difference between two large 
quantities. Thus, before letting L1 and L2 increase, we write the imaginary 
part of Zab as

Xab = vL1-  
(vL1)(vL2)X22

R22
2 + X22

2 = vL1 a1-  
vL2X22

R22
2 + X22

2 b ,

where we recognize that, when k = 1, M2 = L1L2. Putting the term mul-
tiplying vL1 over a common denominator gives

Xab = vL1a
R22

2 + vL2XL + XL
2

R22
2 + X22

2 b .

Factoring vL2 out of the numerator and (vL2) 2 out of the denominator, 
then simplifying, yields

Xab =
L1

L2
 

XL + (R22
2 + XL

2 )>vL2

(R22>vL2)
2 + [1 + (XL>vL2)]2.

As k approaches 1.0, the ratio L1>L2 approaches the constant value 
of (N1>N2)

2. This follows from the relationship between L1 and N1  
(Eq. 6.21), the relationship between L2 and N2 (Eq. 6.23), and the fact 
that, as the coupling becomes extremely tight, the two permeances �1 and 
�2 become equal. The expression for Xab simplifies to

Xab = aN1

N2
b

2

 XL,

as L1 S ∞ , L2 S ∞ , and k S 1.0.
The same reasoning leads to simplification of the reflected resistance 

in Eq. 9.34:

v2M2R22

R22
2 + X22

2 =
L1

L2
 R22 = aN1

N2
b

2

R22.

Substituting the simplified forms for Xab and the reflected resistance in 
Eq. 9.34 yields

Zab = R1 + aN1

N2
b

2

R2 + aN1

N2
b

2

(RL + jXL).

Compare this expression for Zab with the one given in Eq. 9.33. We see that 
when the coefficient of coupling approaches unity and the self-inductances 
of the coupled coils approach infinity, the transformer reflects the secondary 
winding resistance and the load impedance to the primary side by a scaling 
factor equal to the turns ratio (N1>N2) squared. Hence, we may describe the 
terminal behavior of the ideal transformer in terms of two characteristics. 
First, the magnitude of the volts per turn is the same for each coil, or

 ` V1

N1
` = ` V2

N2
` . (9.35)
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Second, the magnitude of the ampere-turns is the same for each coil, or

 0 I1N1 0 = 0 I2N2 0 . (9.36)

We use magnitude signs in Eqs. 9.35 and 9.36 because we have not yet es-
tablished reference polarities for the currents and voltages; we discuss the 
removal of the magnitude signs shortly.

Figure 9.44 shows two lossless (R1 = R2 = 0) magnetically coupled 
coils. We use Fig. 9.44 to validate Eqs. 9.35 and 9.36. In Fig. 9.44(a), coil 2 
is open; in Fig. 9.44(b), coil 2 is shorted. Although we carry out the follow-
ing analysis in terms of sinusoidal steady-state operation, the results also 
apply to instantaneous values of v and i.

Determining the Voltage and Current Ratios
Note in Fig. 9.44(a) that the voltage at the terminals of the open-circuit 
coil is entirely the result of the current in coil 1; therefore,

V2 = jvMI1.

The current in coil 1 is

I1 =
V1

jvL1
.

Thus,

V2 =
M
L1

 V1.

For unity coupling (k = 1), the mutual inductance equals 1L1L2, so the 
expression for V2 becomes

V2 = AL2

L1
  V1.

For unity coupling, the flux linking coil 1 is the same as the flux linking 
coil 2, so we need only one permeance to describe the self-inductance of 
each coil. Thus,

V2 = BN2
2�

N1
2�

 V1 =
N2

N1
 V1

or

1

2

1

2

(a)

V1

N1 N2

jvL1

jvM

jvL2 V2

1

2

I1

(b)

V1

N1 N2

jvL1

jvM

jvL2

I1 I2

Figure 9.44 ▲ The circuits used to verify Eqs. 9.35 
and 9.36 for an ideal transformer.

VOLTAGE RELATIONSHIP FOR AN IDEAL 
TRANSFORMER

 
V1

N1
=

V2

N2
. (9.37)

Summing the voltages around the shorted coil of Fig. 9.44(b) yields

0 = - jvMI1 + jvL2I2,

which, when k = 1, gives

I1

I2
=

L2

M
=

L21L1L2
= AL2

L1
 =

N2

N1
.
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Therefore,

CURRENT RELATIONSHIP FOR AN IDEAL 
TRANSFORMER

 I1N1 = I2N2. (9.38)

DOT CONVENTION FOR IDEAL TRANSFORMERS

If the coil voltages V1 and V2 are both positive or negative 
at the dot-marked terminals, use a plus sign in Eq. 9.35. 
Otherwise, use a negative sign.

If the coil currents I1 and I2 are both directed into or out 
of the dot-marked terminals, use a minus sign in Eq. 9.36. 
Otherwise, use a plus sign.

Figure 9.45 shows the graphic symbol for an ideal transformer. The 
vertical lines in the symbol represent the layers of magnetic material from 
which ferromagnetic cores are often made. Coils wound on a ferromag-
netic core behave very much like an ideal transformer, for several reasons. 
The ferromagnetic material creates a space with high permeance. Thus, 
most of the magnetic flux is trapped inside the core material, establishing 
tight magnetic coupling between coils that share the same core. High per-
meance also means high self-inductance because L = N 2�. Finally, ferro-
magnetically coupled coils efficiently transfer power from one coil to the 
other. Efficiencies in excess of 95% are common, so neglecting losses is a 
valid approximation for many applications.

Determining the Polarity of the Voltage and Current 
Ratios
We now turn to the removal of the magnitude signs from Eqs. 9.35 and 
9.36. Note that magnitude signs do not appear in Eqs. 9.37 and 9.38 
 because we established reference polarities for voltages and reference 
 directions for currents in Fig. 9.44. In addition, we specified the magnetic 
polarity dots of the two coupled coils.

The rules for assigning the proper algebraic sign to Eqs. 9.35 and 9.36 
are as follows:

Ideal

N1 N2

Figure 9.45 ▲ The graphic symbol for an ideal 
transformer.

The four circuits shown in Fig. 9.46 illustrate these rules.

Ideal

N1 N2

I1 I2

Ideal

N1 N2

I1 I2

Ideal

N1 N2

I1 I2

Ideal

N1 N2

I1 I2V1

1

2

V2

1

2

(a)

N1I1 5 2N2I2

V1

N1

V2

N2
5 ,

V1

1

2

V2

1

2

(b)

N1I1 5 N2I2

V1

N1

V2

N2
52

V1

1

2

V2

1

2

(c)

N1I1 5 N2I2

V1

N1

V2

N2
5

V1

1

2

V2

1

2

(d)

N1I1 5 2N2I2

V1

N1

V2

N2
52, , ,

Figure 9.46 ▲ Circuits that show the proper algebraic signs for relating the terminal voltages and currents of an ideal 
transformer.
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The turns ratio for the two windings is an important parameter of the 
ideal transformer. In this text, we use a to denote the ratio N2>N1, so

 a =
N2

N1
. (9.39)

Figure 9.47 shows three ways to represent the turns ratio of an ideal 
transformer. Figure 9.47(a) shows the number of turns in each coil explic-
itly. Figure 9.47(b) shows that the ratio N2>N1 is 5 to 1, and Fig. 9.47(c) 
shows that the ratio N2>N1 is 1 to 15.

Example 9.16 analyzes a circuit containing an ideal transformer.

Ideal

(a)

N1 5 500 N2 5 2500

Ideal

1 : 5

(b)

Ideal

1N5 : 1

(c)

V2

1

2

V1

1

2

V2

1

2

V1

1

2

V2

1

2

V1

1

2

Figure 9.47 ▲ Three ways to show that the turns 
ratio of an ideal transformer is 5.

EXAMPLE 9.16  Analyzing an Ideal Transformer  
Circuit in the Frequency Domain

The load impedance connected to the secondary 
winding of the ideal transformer in Fig. 9.48 is a 
237.5 mΩ resistor in series with a 125 mH inductor.

If the sinusoidal voltage source (vg) is gener-
ating the voltage 2500 cos 400t V, find the steady-
state expressions for: (a) i1; (b) v1; (c) i2; and (d) v2.

Using the relationship between V1 and V2 for 
the ideal transformer and using Ohm’s law to ex-
press V2 in terms of I2, we have

V1 = 10V2 = 10[(0.2375 + j0.05)I2].

Because

I2 = 10I1

we have

 V1 = 10(0.2375 + j0.05)(10I1)

 = (23.75 + j5)I1.

Therefore

2500 l0° = (24 + j7)I1,

or

I1 = 100 l-16.26° A.

Thus, the steady-state expression for i1 is

i1 = 100 cos(400t - 16.26°) A.

b) V1 = 2500l0° - (100 l-16.26°)(0.25 + j2)

 = 2420 - j185 = 2427.06 l-4.37° V.

Hence, in the steady state

v1 = 2427.06 cos(400t - 4.37°) V.

c) I2 = 10I1 = 1000 l-16.26° A.

Therefore, in the steady state

i2 = 1000 cos(400t - 16.26°) A.

d) V2 = 0.1V1 = 242.71 l-4.37° V,

so in the steady state,

v2 = 242.71 cos(400t - 4.37°) V.

1

2

10 : 1

vg

0.25 V 237.5 mV

i1

5 mH

125 mHv2

1

2

v1

1

2 Ideal

i2

Figure 9.48 ▲ The circuit for Example 9.16.

Solution

a) We begin by transforming the circuit to the fre-
quency domain. The voltage source has the pha-
sor value 2500 l0° V; the 5 mH inductor has an 
impedance of j2 Ω; and the 125 mH inductor has 
an impedance of j0.05 Ω. The resulting frequency 
domain circuit is shown in Fig. 9.49.

Writing a KCL equation for the left-hand mesh 
in Fig. 9.49 gives

2500 l0° = (0.25 + j2)I1 + V1.

1

2

10 : 1
0.25 V 0.2375 V

I1

j2 V

j0.05 VV1

1

2

V2

1

2Ideal

I2

2500  08
V

Figure 9.49 ▲ Phasor domain circuit for Example 9.16.
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Using an Ideal Transformer for Impedance Matching
Ideal transformers can be used to increase or decrease the impedance level 
of a load, as illustrated by the circuit shown in Fig. 9.50. The impedance 
seen by the practical voltage source (Vs in series with Zs) is V1>I1. The 
voltage and current at the terminals of the load impedance (V2 and I2) are 
related to V1 and I1 by the transformer turns ratio; thus

V1 =
V2

a
,

and

I1 = aI2.

Therefore, the impedance seen by the practical source is

ZIN =
V1

I1
=

1
a2 

V2

I2
,

but the ratio V2>I2 is the load impedance ZL, so the expression for ZIN 
becomes

 ZIN =
1
a2 ZL. (9.40)

Thus, the ideal transformer’s secondary coil reflects the load impedance 
back to the primary coil, with the scaling factor 1>a2.

Note that the ideal transformer changes the magnitude of ZL but does 
not affect its phase angle. Whether ZIN is greater or less than ZL depends 
on the turns ratio a. The ideal transformer—or its practical counterpart, 
the ferromagnetic core transformer—can be used to match the magnitude 
of ZL to the magnitude of Zs. We will discuss why this may be desirable in 
Chapter 10.

Ideal transformers are also used to increase or decrease voltages from 
a source to a load, as we will see in Chapter 10. Thus, ideal transformers 
are used widely in the electric utility industry, where it is desirable to de-
crease, or step down, the voltage level at the power line to safer residen-
tial voltage levels.

Objective 5—Be able to analyze circuits with ideal transformers

 9.15 The source voltage in the phasor domain circuit 
in the accompanying figure is 25 l0° kV. Find 
the amplitude and phase angle of V2 and I2.

Answer:  V2 = 1868.15 l142.39° V; 
I2 = 125 l216.87° A.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 9.82.

25 : 1

Ideal

Vs
1

2

1.5 kV

I1

4 Vj6 kV

V1

1

2

V2

1

2

I2

2j14.4 V

1

2

1

2

V1

1

2

V2

I1

VS

1 : a

Ideal

ZL

Zs

I2

Figure 9.50 ▲ Using an ideal transformer to couple 
a load to a source.
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9.12 Phasor Diagrams
When we analyze the sinusoidal steady-state operation of a circuit using 
phasors, a diagram of the phasor currents and voltages can give us ad-
ditional insight into the circuit’s behavior. A phasor diagram shows the 
 magnitude and phase angle of each phasor quantity in the complex- 
number plane. Phase angles are measured counterclockwise from the pos-
itive real axis, and magnitudes are measured from the origin of the axes. 
For example, Fig. 9.51 shows the phasor quantities 10 l30°, 12 l150°, 
5 l-45°, and 8 l-170°.

Because constructing phasor diagrams for circuits usually involves 
both currents and voltages, we use two different magnitude scales, one 
for currents and one for voltages. Visualizing a phasor on the complex- 
number plane is a good way to check your calculations. For example, sup-
pose you convert the phasor -7 - j3 to polar form. Before making your 
calculation, you should anticipate a magnitude greater than 7 and an angle 
in the third quadrant that is more negative than -135° or less positive than 
225°, as illustrated in Fig. 9.52.

Examples 9.17 and 9.18 construct and use phasor diagrams. You can 
use phasor diagrams to get additional insight into the steady-state sinusoi-
dal operation of a circuit. For example, Problem 9.83 uses a phasor dia-
gram to explain the operation of a phase-shifting circuit.

1508

12  1508
10  308

8  21708

5  2458

21708
2458

308

Imag

Real

Figure 9.51 ▲ A graphic representation of phasors.

225827

2j3

1358

Imag

Real

Figure 9.52 ▲ The complex number 
-7 - j3 = 7.62 l-156.80°. 

EXAMPLE 9.17 Using Phasor Diagrams to Analyze a Circuit

Use a phasor diagram for the circuit in Fig. 9.53 to 
find the value of R that causes the current through 
that resistor, iR, to lag the source current, is, by 45° 
when v = 5 krad>s.

is R

1

2

vm 0.2 mH

iL

50 mF

iC iR

Figure 9.53 ▲ The circuit for Example 9.17.

Solution
According to KCL, the sum of the currents IR, IL, 
and IC must equal the source current Is. If we as-
sume that the phase angle of the voltage Vm is zero, 
we can draw the current phasors for each of the 
components. The current phasor for the inductor is

IL =
Vm l0°

j (5000)(0.2 * 10-3)
= Vm l-90°,

whereas the current phasor for the capacitor is

IC =
Vm l0°

- j(5000)(50 * 10-6)
= 4Vm l90°,

and the current phasor for the resistor is

IR =
Vm l0°

R
=

Vm

R
 l0°.

These phasors are shown in Fig. 9.54. The pha-
sor diagram also shows the source current phasor, 
sketched as a dashed line, which must be the sum 
of the current phasors of the three circuit compo-
nents and must be at an angle that is 45° more posi-
tive than the current phasor for the resistor. As you 
can see, summing the phasors makes an isosceles 
 triangle, so the length of the current phasor for the 
resistor must equal 3Vm. Therefore, the value of the 
resistor is 13 Ω.

458

Is
IC 5 j4Vm

IL 5 2j1Vm
IR 5 Vm>R

Imag

Real

Figure 9.54 ▲ The phasor diagram for the currents  
in Fig. 9.53.
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EXAMPLE 9.18 Using Phasor Diagrams to Analyze Capacitive Loading Effects

The circuit in Fig. 9.55 has a load consisting of the 
parallel combination of the resistor and inductor. 
Use phasor diagrams to explore the effect of adding 
a capacitor across the terminals of the load on the 
amplitude of Vs if we adjust Vs so that the amplitude 
of VL remains constant. Utility companies use this 
technique to control the voltage drop on their lines.

vL

1

2

vs
1

2

L1R1

R2 L2

Figure 9.55 ▲ The circuit for Example 9.18.

Solution
We begin by assuming zero capacitance across the 
load. After constructing the phasor diagram for the 
zero-capacitance case, we can add the capacitor and 
study its effect on the amplitude of Vs, holding the 
amplitude of VL constant. Figure 9.56 shows the 
frequency-domain equivalent of the circuit in Fig. 
9.55. We added the phasor branch currents I, Ia, 
and Ib to Fig. 9.56 to assist our analysis.

VL

1

2

Vs
1

2

jvL1R1

R2 jvL2Ia Ib

I

Figure 9.56 ▲ The frequency-domain equivalent of the cir-
cuit in Fig. 9.55.

Figure 9.57 shows the stepwise evolution of 
the phasor diagram. Keep in mind that in this ex-
ample we are not interested in specific phasor val-
ues and positions, but rather in the general effect 
of adding a capacitor across the terminals of the 
load. Thus, we want to develop the relative posi-
tions of the phasors before and after the capacitor 
is added.

Relating the phasor diagram to the circuit shown 
in Fig. 9.56, we make the following observations:

• We choose VL as our reference because we are 
holding its amplitude constant. For convenience, 
we place this phasor on the positive real axis.

• We know that Ia is in phase with VL and that its 
magnitude is 0VL 0 >R2. (On the phasor diagram, 
the magnitude scale for the current phasors is in-
dependent of the magnitude scale for the voltage 
phasors.)

• We know that Ib lags behind VL by 90° and that 
its magnitude is 0VL 0 >vL2.

• The current I is equal to the sum of Ia and Ib.
• The voltage drop across R1 is in phase with the current 

I, and the voltage drop across jvL1 leads I by 90°.
• The source voltage is given by  

Vs = VL +  (R1 + jvL1)I.

The completed phasor diagram shown in Step 6 
of Fig. 9.57 shows the amplitude and phase angle 
 relationships among all the currents and voltages 
in Fig. 9.56.

Now add the capacitor branch shown in Fig. 9.58. 
We are holding VL constant, so we construct the  phasor 
diagram for the circuit in Fig. 9.58 following the same  
steps as those in Fig. 9.57, except that, in Step 4,  
we add the capacitor current Ic to the diagram, where 
Ic leads VL by 90°, with 0 Ic 0 = 0VLvC 0 . Figure 9.59 
shows the effect of Ic on the current I: Both the mag-
nitude and phase angle of I change as the magnitude 
of Ic changes. As I changes, so do the magnitude and 
phase angle of the voltage drop across the impedance 
(R1 + jvL1), resulting in changes to the magnitude 
and phase angle of Vs. The phasor diagram shown 
in Fig. 9.60 depicts these observations. The dashed 
phasors represent the pertinent currents and voltages 
 before adding the capacitor.

VL

1

2

Vs
1

2

jvL1R1

R2 jvL2

I

jvC
1 IcIbIa

Figure 9.58 ▲ The addition of a capacitor to the circuit 
shown in Fig. 9.56.

VL

(1) (2)

VL

Ia

(3)

VL

Ib

Ia
VL

Ib I

Ia

(4)

(5)

jvL1I

R1I

VL

Ib

Ia908

I
(6)

jvL1I

jvL1I

R1I R1I
VL

Ib

Ia

I

Vs

Figure 9.57 ▲ The step-by-step evolution of the 
phasor diagram for the circuit in Fig. 9.56.
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Practical Perspective
A Household Distribution Circuit
After determining the loads on the three-wire distribution circuit prior 
to the interruption of fuse A, you are able to construct the frequency- 
domain circuit model shown in Fig. 9.61. The impedances of the wires 
connecting the source to the loads are assumed negligible.

Fuse A (100 A)

Fuse B (100 A)

30 A

24 V

8.4 V

j6.30 V

Fan motor

15 A

15 A

12 V

Momentary
short
circuit
interrupts
fuse A

120  08

V

120  08

V
I5

I4

I2

I3

I1 I6
3

1

2

1

2

Figure 9.61 ▲ The three-wire household distribution circuit model.

Let’s begin by calculating all of the branch current phasors in the 
figure, prior to the interruption of Fuse A. We calculate I4, I5, and I6 using 
Ohm’s law:

 I4 =
120
24

= 5l0° A;

 I5 =
120
12

= 10l0° A;

 I6 =
240

8.4 + j6.3
= 18.29 - j13.71 A = 22.86l-36.87° A.

VL

Ib

Ic

Ia

I

Figure 9.59 ▲ The effect of the capacitor current Ic on the 
line current I.

Thus, comparing the dashed phasors of I, R1I, 
jvL1I, and Vs with their solid counterparts clearly 
shows the effect of adding C to the circuit. In partic-
ular, adding the capacitor reduces the source volt-
age amplitude while maintaining the load voltage 
amplitude. Practically, this result means that, as the 
load increases (i.e., as Ia and Ib increase), we can 
add capacitors to the system (i.e., increase Ic), so 

that under heavy load conditions we can maintain 
VL without increasing the amplitude of the source 
voltage.

SELF-CHECK: Assess your understanding of this 
material by trying Chapter Problems 9.83 and 9.84.

Vs

Vs

Ib

Ic

VLIa

I

I

jvL1I

R1I

Figure 9.60 ▲ The effect of adding a load-shunting 
capacitor to the circuit shown in Fig. 9.53 if VL is 
held constant.
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We calculate I1, I2, and I3 using KCL and the other branch currents:

 I1 = I4 + I6 = 23.29 - j13.71 A = 27.02l-30.5° A;

 I2 = I5 - I4 = 5l0° A;

 I3 = I5 + I6 = 28.29 - j13.71 A = 31.44l-25.87° A.

Now calculate those same branch current phasors after Fuse A is in-
terrupted. We assume that the fan motor behaves like a short circuit when 
it stalls, and the interrupted fuse behaves like an open circuit. The circuit 
model now looks like Fig. 9.62. To analyze this circuit, we write two mesh 
current equations using the mesh current phasors shown in Fig. 9.62:

Fuse B (100 A)

30 A

24 V

15 A

15 A

12 V

120  08

V

120  08

V Ia

1

2

1

2

Ib

Figure 9.62 ▲ The circuit in Fig. 9.61 after Fuse A is interrupted and  
the fan motor stalls.

 121Ia - Ib2 = 120;

 24Ib + 121Ib - Ia2 = 0.

Solving the mesh current equations, we get

 Ia = 15 A;

 Ib = 5 A.

Using these mesh current phasors to calculate the new branch current 
phasors from Fig. 9.61, we get

 I1 = 0 A;

 I2 = I3 = Ia = 15 A;

 I6 = Ib = 5 A;

 I4 = I1 - I6 = -5 A;

 I5 = I2 + I4 = 10 A.

We can see that even though Fuse A is interrupted and the I1 branch 
current is zero, all of the other branch currents are nonzero. The televi-
sion and clock continued to operate because they are represented by 
the 12 Ω  load that still has an ample supply of current.

SELF-CHECK: Assess your understanding of this Practical Perspective 
by trying Chapter Problems 9.86 and 9.87.
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Summary
• The general equation for a sinusoidal source is

v = Vm cos(vt + f) (voltage source),

or

i = Im cos(vt + f) (current source),

where Vm (or Im) is the maximum amplitude, v is the 
frequency, and f is the phase angle. (See page 348.)

• The frequency, v, of a sinusoidal response is the same as 
the frequency of the sinusoidal source driving the circuit. 
The amplitude and phase angle of the response are usu-
ally different from those of the source. (See page 351.)

• The best way to find the steady-state voltages and 
currents in a circuit driven by sinusoidal sources is to 
 perform the analysis in the frequency domain. The 
following mathematical transforms allow us to move 
 between the time and frequency domains.

• The phasor transform (from the time domain to the 
frequency domain):

V = Vmejf = �5Vm cos(vt + f)6 .

• The inverse phasor transform (from the frequency 
domain to the time domain):

�-15Vmejf = ℛ5Vmejfejvt6 .

(See pages 352–353.)

• In a circuit with a sinusoidal source, the voltage leads 
the current by 90° at the terminals of an inductor, and 
the current leads the voltage by 90° at the terminals of a 
capacitor. (See pages 355–359.)

• Impedance (Z) relates the phasor current and phasor 
voltage for resistors, inductors, and capacitors in an 
equation that has the same form as Ohm’s law,

V = ZI,

where the reference direction for I obeys the passive sign 
convention. The reciprocal of impedance is admittance 

(Y), so another way to express the current-voltage re-
lationship for resistors, inductors, and capacitors in the 
frequency domain is

V = I>Y.

(See pages 358 and 364.)

• The equations for impedance and admittance for resistors, 
inductors, and capacitors are summarized in Table 9.3.

• All of the circuit analysis techniques developed in 
Chapters 2–4 for resistive circuits also apply to sinusoi-
dal steady-state circuits in the frequency domain. These 
techniques include KVL, KCL, series, and parallel com-
binations of impedances, voltage and current division, 
node-voltage and mesh- current methods, Thévenin and 
Norton equivalents, and source transformation.

• The two-winding linear transformer is a coupling device 
made up of two coils wound on the same nonmagnetic 
core. Reflected impedance is the impedance of the sec-
ondary circuit as seen from the terminals of the primary 
circuit, or vice versa. The reflected impedance of a linear 
transformer seen from the primary side is the complex 
conjugate of the self-impedance of the secondary circuit 
scaled by the factor (vM> 0Z22 0 )2. (See pages 375–377.)

• The two-winding ideal transformer is a linear trans-
former with the following special properties: perfect 
coupling (k = 1), infinite self-inductance in each coil 
(L1 = L2 = ∞), and lossless coils (R1 = R2 = 0).  
The circuit behavior is governed by the turns ratio 
a = N2>N1. In particular, the volts per turn is the same 
for each winding, or

V1

N1
= {

V2

N2
,

and the ampere turns are the same for each winding, or

N1I1 = {N2I2.

(See page 384.)

TABLE 9.3  Impedance and Related Values

Element Impedance (Z) Reactance Admittance (Y) Susceptance

Resistor R (resistance) — G (conductance) —

Capacitor j(-1>vC) -1>vC jvC vC

Inductor jvL vL j(-1>vL) -1>vL
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Figure P9.7

Vm

v

TN20 T 3TN2 2T
t

v 5 Vm sin       t, 0 < t < TN22p
T

 9.8 Show that

L
t0 + T

t0

Vm
2  cos2(vt + f)dt =

Vm
2 T

2
.

Section 9.2

 9.9 The voltage applied to the circuit shown in Fig. 9.5 
at t = 0 is 75 cos (4000t - 60 ∘) V. The circuit resis-
tance is 400 Ω and the initial current in the 75 mH 
inductor is zero.

a) Find i(t) for t Ú 0.

b) Write the expressions for the transient and 
steady-state components of i(t).

c) Find the numerical value of i after the switch has 
been closed for 750 ms.

d) What are the maximum amplitude, frequency 
(in radians per second), and phase angle of the 
steady-state current?

e) By how many degrees are the voltage and the 
steady-state current out of phase?

 9.10 a) Verify that Eq. 9.7 is the solution of Eq. 9.6. 
This can be done by substituting Eq. 9.7 into the 
left-hand side of Eq. 9.6 and then noting that it 
equals the right-hand side for all values of t 7 0. 
At t = 0, Eq. 9.7 should reduce to the initial val-
ue of the current.

b) Because the transient component vanishes as 
time elapses and because our solution must sat-
isfy the differential equation for all values of t, 
the steady-state component, by itself, must also 
satisfy the differential equation. Verify this ob-
servation by showing that the steady-state com-
ponent of Eq. 9.7 satisfies Eq. 9.6.

Sections 9.3–9.4

 9.11 Use the concept of the phasor to combine the fol-
lowing sinusoidal functions into a single trigono-
metric expression:

a) y = 30 cos(200t - 160°) + 15 cos(200t + 70°),

b) y = 90 sin(50t - 20°) + 60 cos(50t - 70°),

Section 9.1

 9.1 A sinusoidal current is given by the expression

i = 100 cos (600 t + 45°) mA.

Find (a) f in hertz; (b) T in milliseconds; (c) Im;  
(d) i(0); (e) f in degrees and radians; (f) the smallest 
positive value of t at which i = 0; and (g) the small-
est positive value of t at which di>dt = 0.

 9.2 In a single graph, sketch v = 100 cos(vt + f) ver-
sus vt for f = -60°, -30°, 0°, 30°, and 60°.

a) State whether the voltage function is shifting to 
the right or left as f becomes more positive.

b) What is the direction of shift if f changes from 
0 to -30°?

 9.3 Consider the sinusoidal voltage

v(t) = 25 cos (400pt + 60 ∘) V.

a) What is the maximum amplitude of the voltage?

b) What is the frequency in hertz?

c) What is the frequency in radians per second?

d) What is the phase angle in radians?

e) What is the phase angle in degrees?

f) What is the period in milliseconds?

g) What is the first time after t = 0 that v = 0 V?

h) The sinusoidal function is shifted 5>6 ms to the 
right along the time axis. What is the expression 
for v(t)?

i) What is the minimum number of milliseconds 
that the function must be shifted to the left if the 
expression for v(t) is 25 sin 400pt V?

 9.4 A series circuit with R = 20 Ω and C = 200 pF has 
a sinusoidal voltage with a frequency of 99.47 MHz 
applied to it. If the maximum voltage across the  
capacitor is 24 V, what is the maximum voltage 
across the series combination?

 9.5 At t = 5 ms, a sinusoidal current is known to be 
zero and going negative. The current is next zero at 
t = 25 ms. It is also known that the current is 50 mA 
at t = 0.

a) What is the frequency of i in hertz?

b) What is the expression for i?

 9.6 The rms value of the sinusoidal voltage supplied 
to the convenience outlet of a home in Scotland is  
240 V. What is the maximum value of the voltage at 
the outlet?

 9.7 Find the rms value of the half-wave rectified sinu-
soidal voltage shown in Fig. P9.7.

Problems
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c) y = 50 cos(5000t - 60°) + 25 sin(5000t + 110°)
-  75 cos(5000t - 30°),

d) y = 10 cos (vt + 30°) + 10 sin vt

+  10 cos(vt + 150°).

 9.12 A 200 Hz sinusoidal voltage with a maximum ampli-
tude of 100 V at t = 0 is applied across the terminals 
of an inductor of 2 mH. Find the maximum amplitude 
of the steady-state current in the inductor.

a) What is the frequency of the inductor current?

b) If the phase angle of the voltage is zero, what is 
the phase angle of the current?

c) What is the inductive reactance of the inductor?

d) Calculate the current through the inductor in 
amperes.

e) What is the impedance of the inductor?

 9.13 A 80 kHz sinusoidal voltage has zero phase angle 
and a maximum amplitude of 25 mV. When this 
voltage is applied across the terminals of a capac-
itor, the resulting steady-state current has a maxi-
mum amplitude of 628.32 mA.

a) What is the frequency of the current in radians 
per second?

b) What is the phase angle of the current?

c) What is the capacitive reactance of the capacitor?

d) What is the capacitance of the capacitor in  
microfarads?

e) What is the impedance of the capacitor?

 9.14 The expressions for the steady-state voltage and cur-
rent at the terminals of the circuit seen in Fig. P9.14 are

 vg = 100 cos (1000pt) V,

 ig = 2 sin (1000pt + 40°) A.

a) What is the impedance seen by the source?

b) By how many microseconds is the current out of 
phase with the voltage?

Figure P9.14

vg Circuit
1

2

ig

Sections 9.5 and 9.6

 9.15 A 25 Ω resistor, a 50 mH inductor, and a 32 mF  
capacitor are connected in series. The series- 
connected elements are energized by a sinusoidal volt-
age source whose voltage is 25 cos (500t - 60 ∘)V.

PSPICE

MULTISIM

a) Draw the frequency-domain equivalent circuit.

b) Reference the current in the direction of the 
voltage rise across the source, and find the pha-
sor current.

c) Find the steady-state expression for i(t).

 9.16 A 20 Ω resistor and a 0.5 mH inductor are con-
nected in parallel. This parallel combination is also 
in parallel with the series combination of a 16 Ω  
resistor and a 600 mH inductor. These three parallel 
branches are driven by a sinusoidal current source 
whose current is 922 cos120,000t + 30°2  A.

a) Draw the frequency-domain equivalent circuit.

b) Reference the voltage across the current source 
as a rise in the direction of the source current, 
and find the phasor voltage.

c) Find the steady-state expression for v(t).

 9.17 Three branches having impedances of 3 +  j4 Ω, 
16 - j12 Ω, and - j4 Ω, respectively, are connected 
in parallel. What are the equivalent (a) admittance, 
(b) conductance, and (c) susceptance of the par-
allel connection in millisiemens? (d) If the parallel 
branches are excited from a sinusoidal current source 
where i = 8 cos vt A, what is the maximum ampli-
tude of the current in the purely capacitive branch?

 9.18 a) Show that, at a given frequency v, the circuits in 
Fig. P9.18(a) and (b) will have the same imped-
ance between the terminals a,b if

R1 =
v2L2

2R2

R2
2 + v2L2

2,   L1 =
R2

2L2

R2
2 + v2L2

2.

b) Find the values of resistance and inductance 
that when connected in series will have the same  
impedance at 4 krad>s as that of a 5 kΩ  resistor 
connected in parallel with a 1.25 H inductor.

Figure P9.18

R1

a

b

L1

(a) (b)

a

b

R2 L2

 9.19 a) Show that at a given frequency v, the circuits in 
Fig. P9.18(a) and (b) will have the same imped-
ance between the terminals a,b if

R2 =
R1

2 + v2L1
2

R1
,   L2 =

R1
2 + v2L1

2

v2L1
.

(Hint: The two circuits will have the same imped-
ance if they have the same admittance.)
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 9.23 Find the admittance Yab in the circuit seen in  
Fig. P9.23. Express Yab in both polar and rectangu-
lar form. Give the value of Yab in millisiemens.

Figure P9.23

2j12.8 V

Yab

j12 V
j10 V

8 V

5 V
12 V

13.6 V

2j4 V

a

b

 9.24 a) For the circuit shown in Fig. P9.24, find the fre-
quency (in radians per second) at which the  
impedance Zab is purely resistive.

b) Find the value of Zab at the frequency of (a).

Figure P9.24

200 V 400 mH

20 mF

a

b

 9.25 a) Using component values from Appendix H, 
combine at least one resistor, inductor, and 
capacitor in series to create an impedance of 
300 - j400 Ω  at a frequency of 10,000 rad>s.

b) At what frequency does the circuit from part (a) 
have an impedance that is purely resistive?

 9.26 a) Using component values from Appendix H, 
combine at least one resistor and one inductor in 
parallel to create an impedance of 40 + j20 Ω at 
a frequency of 5000 rad>s. (Hint: Use the results 
of Problem 9.19.)

b) Using component values from Appendix H, 
combine at least one resistor and one capacitor 
in parallel to create an impedance of 40 - j20 Ω 
at a frequency of 5000 rad>s. (Hint: Use the re-
sult of Problem 9.21.)

 9.27 a) Using component values from Appendix H, find 
a single capacitor or a network of capacitors that, 
when combined in parallel with the RL circuit from 
Problem 9.26(a), gives an equivalent impedance 
that is purely resistive at a frequency of 5000 rad>s.

b) Using component values from Appendix H, 
find a single inductor or a network of inductors 
that, when combined in parallel with the RC cir-
cuit from Problem 9.26(b), gives an equivalent  
impedance that is purely resistive at a frequency 
of 5000 rad>s.

PSPICE

MULTISIM

b) Find the values of resistance and inductance that 
when connected in parallel will have the same 
impedance at 1 krad>s as an 8 kΩ  resistor con-
nected in series with a 4 H inductor.

 9.20 a) Show that at a given frequency v, the circuits in 
Fig. P9.20(a) and (b) will have the same imped-
ance between the terminals a,b if

R1 =
R2

1 + v2R2
2C2

2,

C1 =
1 + v2R2

2C2
2

v2R2
2C2

.

b) Find the values of resistance and capacitance that 
when connected in series will have the same im-
pedance at 40 krad>s as that of a 1000 Ω  resistor 
connected in parallel with a 50 nF capacitor.

Figure P9.20

R1

a

b
(a) (b)

a

b

R2

C1

C2

 9.21 a) Show that at a given frequency v, the circuits in 
Fig 9.20(a) and (b) will have the same imped-
ance between the terminals a,b if

R2 =
1 + v2R1

2C1
2

v2R1C1
2 ,

C2 =
C1

1 + v2R1
2C1

2.

(Hint: The two circuits will have the same imped-
ance if they have the same admittance.)

b) Find the values of resistance and capacitance that 
when connected in parallel will give the same im-
pedance at 50 krad>s as that of a 1 kΩ  resistor 
connected in series with a capacitance of 40 nF.

 9.22 Find the impedance Zab in the circuit seen in Fig. P9.22. 
Express Zab in both polar and rectangular form.

Figure P9.22

2j20 V

j16 V

j8 V

8 V

5 V

10 V

a

b

Zab

2j80 V

40 V
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Figure P9.32

1

2
Vg

Ib

2j2 V

2j3 V

2j5 V

4 V
Z

Iaj3 V

1 V

 9.33 Find the value of Z in the circuit seen in  
Fig. P9.33 if Vg = 100 - j50 V, Ig = 30 + j20 A, 
and V1 = 140 + j30 V.

Figure P9.33

Vg Ig

1

2

V1

20 V

1

2
j5 V 2j10 V

Z

12 V j16 V

 9.34 Find the steady-state expression for vo in the circuit 
of Fig. P9.34 if ig = 60 cos 10,000t mA.

Figure P9.34

50 V

100 V10 mH

2mF

ig

vo

1

2

 9.35 The circuit shown in Fig. P9.35 is operating in the 
sinusoidal steady state. Find the value of v if

 io = 40 sin (vt + 21.87 ∘) mA,

vg = 40 cos (vt - 15 ∘) V.

Figure P9.35

3.2 H600 V

io
2.5 mFvg

1

2

 9.36 The phasor current Ib in the circuit shown in  
Fig. P9.36 is 25 ∠0 ∘  mA.

 9.28 Find the steady-state expression for io(t) in the 
 circuit in Fig. P9.28 if vs = 80 cos 2000t V.

Figure P9.28

3 kV

1

2

100 nF

500 mH

io(t)

vs

 9.29 The circuit in Fig. P9.29 is operating in the sinusoi-
dal steady state. Find the steady-state expression for 
vo(t) if vg = 60 sin 8000t V.

Figure P9.29

50 V 5mF

3.125 mH

1

1

2
vg vo

1

2

 9.30 The circuit in Fig. P9.30 is operating in the 
 sinusoidal steady state. Find io(t) if vs(t) = 25  
sin 2000t V.

Figure P9.30

20 V10 V

10 V 12.5 mF5 mH

io

vs

 9.31 a) For the circuit shown in Fig. P9.31, find 
the steady-state expression for vo if 
ig = 25 cos  50, 000t mA.

b) By how many microseconds does vo lead ig?

Figure P9.31

50 V

40 mF2 mH 200 V

1

2

ig vo

 9.32 Find Ib and Z in the circuit shown in Fig. P9.32 if 
Vg = 25l 0° V and Ia = 5l 90° A.

PSPICE
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Figure P9.39

20 mH

135 nF

125 V(R)

1 kV

ig

vg
1

2

 9.40 a) The source voltage in the circuit in Fig. P9.40 is 
vg = 200 cos 500t V. Find the values of L such 
that ig is in phase with vg when the circuit is op-
erating in the steady state.

b) For the values of L found in (a), find the steady-
state expressions for ig.

Figure P9.40

ig

L

400 V
2.5 mF

2 kVvg

 9.41 The circuit shown in Fig. P9.41 is operating in the  
sinusoidal steady state. The capacitor is adjusted 
until the current ig is in phase with the sinusoidal 
voltage vg.

a) Specify the capacitance in microfarads if 
vg = 80 cos 5000t V.

b) Give the steady-state expression for ig when C 
has the value found in (a).

Figure P9.41

10 kV

vg
1

2

800 mH

C

ig

 9.42 Find Zab for the circuit shown in Fig P9.42.

Figure P9.42

1 V

1 V

1 V
2j1 V

2j1 V
j1 V

2j1 Vj1 V

j1 V

1 V

a b
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a) Find Ia, Ic, and Ig.

b) If v = 2000 rad/s, write expressions for ia(t), 
ic(t), and ig(t).

Figure P9.36

j 125 V

j100 V

2j 1000  V

500 V

250 V 2000  V

Ig

Ic

IbIa

2

1

 9.37 The frequency of the sinusoidal voltage source in 
the circuit in Fig. P9.37 is adjusted until the current 
io is in phase with vg.

a) Find the frequency in hertz.

b) Find the steady-state expression for ig (at the fre-
quency found in [a]) if vg = 45 cos vt V.

c) Find the maximum value of ‘R’ for which reso-
nant frequency of the circuit will have real value.

Figure P9.37

300 V 100 V(R)

100 mH 2 mF
io

vg
1

2

 9.38 a) The frequency of the source voltage in the circuit 
in Fig. P9.38 is adjusted until vg is in phase with 
ig. What is the value of v in radians per second?

b) If ig = 80 cos vt mA (where v is the frequency 
found in [a]), what is the steady-state expression 
for vg?

c) Find the minimum value of ‘R’ for which reso-
nant frequency of the circuit will have real value.

Figure P9.38

200 mH

5 mF480 V 300 V(R)vg(t)

1

2

ig

 9.39 The frequency of the sinusoidal voltage source in 
the circuit in Fig. P9.39 is adjusted until ig is in phase 
with vg.

a) What is the value of v in radians per second?

b) If vg = 15 cos vt V (where v is the frequency 
found in [a]), what is the steady-state expression 
for ig?

c) Find the minimum value of ‘R’ for which reso-
nant frequency of the circuit will have real value.
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 9.47 The device in Fig. P9.47 is represented in the fre-
quency domain by a Norton equivalent. When a 
resistor having an impedance of 5 kΩ is connected 
across the device, the value of V0 is (5 - j15) V. 
When a capacitor having an impedance of - j3 kΩ 
is connected across the device, the value of I0 is 
(4.5 - j6) mA. Find the Norton current IN and the 
Norton impedance ZN.

Figure P9.47

V0

I0

Device

1

2

 9.48 Find the Norton equivalent with respect to termi-
nals a, b in the circuit of Fig. P9.48.

Figure P9.48

Vx

2Vx20 V
a

b

2j20 V(240 1 j40) V

21

1

12

2

 9.49 Find the Thévenin equivalent circuit with respect to 
the terminals a,b of the circuit shown in Fig. P9.49.

Figure P9.49

1

2

20 V j10 V

2j100 V

a

b

Vo250 08 V

1

2

50 V

0.03Vo

 9.50 Find the Norton equivalent circuit with respect to 
the terminals a,b for the circuit shown in Fig. P9.50 
when Vs = 5l 0° V.

Figure P9.50

10 V
If

88If

200 V

V2

2j50 V
a

b

1

2
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1

2

1

2
V2
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 9.51 The circuit shown in Fig. P9.51 is operating at a  
frequency of 10 rad>s. Assume a is real and lies  
between -10 and +10, that is, -10 … a … 10.

Section 9.7

 9.43 The sinusoidal voltage source in the circuit in  
Fig. P9.43 is developing a voltage equal to 
50 sin 400t V.

a) Find the Thévenin voltage with respect to the 
terminals a,b.

b) Find the Thévenin impedance with respect to the 
terminals a,b.

c) Draw the Thévenin equivalent.

Figure P9.43

320 V

1

2
31.25 mF 400 mH

a

b

vg

 9.44 Use source transformations to find the Norton 
equivalent circuit with respect to the terminals a,b 
for the circuit shown in Fig. P9.44.

Figure P9.44

j30 V

180  908 V

2j30 V

15 V

a

b

2

1

 9.45 Use source transformations to find the Thévenin 
equivalent circuit with respect to the terminals a,b 
for the circuit shown in Fig. P9.45.

Figure P9.45

250 V 500 V120  08 mA

j150 V

2j400 V

a

b

 9.46 Find the Norton equivalent circuit with respect to 
the terminals a,b for the circuit shown in Fig. P9.46.

Figure P9.46

a

b

40 V

j16 V

2j20 V
20 V

0.4 1 j0.2 A
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Figure P9.55
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 9.56 Use the node-voltage method to find the steady-state 
expression for io in the circuit seen in Fig. P9.56 if 
ig = 5 cos 2500t A and vg = 20 cos (2500t + 90°) V.

Figure P9.56

1.6 mH

25 mF

100 mF

ioig vg

24 V

1

2

 9.57 Use the node-voltage method to find the steady-
state expression for vo(t) in the circuit in Fig. P9.57 if

vg1 = 20 sin (400t + 143.13°) V,

vg2 = 6.01 cos (400t + 33.69°) V.

Figure P9.57

300V

100 mH25 mF

vovg1 vg2
1

2

1

2

1

2

 9.58 Use the node-voltage method to find the phasor 
voltage Vo in the circuit shown in Fig. P9.58. Express 
the voltage in both polar and rectangular form.

Figure P9.58

j8 V

2j16 V
2.4 iD

5 V 20 1 j20Avo

1

2
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2
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 9.59 Use the node-voltage method to find Vo and Io in 
the circuit seen in Fig. P9.59.

Figure P9.59

50 V

j25 V

20 Io

1

2

Vo 2j25 V

Vo

10
Io

1

2
50 V61j13 mA

a) Find the value of a so that the Thévenin impedance 
looking into the terminals a,b is purely resistive.

b) What is the value of the Thévenin impedance for 
the a found in (a)?

c) Can a be adjusted so that the Thévenin impedance 
equals 500 - j500 Ω? If so, what is the value of a?

d) For what values of a will the Thévenin imped-
ance be inductive?

Figure P9.51

1

21 kV avD

a

b

100 mF

1

2

vD

 9.52 Find Zab in the circuit shown in Fig. P9.52 when the 
circuit is operating at a frequency of 100 krad/s.

Figure P9.52

800 nF

1200 mH

1 2

5 iD

60 ViD

a

b

 9.53 Find the Thévenin impedance seen looking into the 
terminals a,b of the circuit in Fig. P9.53 if the fre-
quency of operation is (25>  p) kHz.

Figure P9.53

a

b

2.4 kV

3.3 kV
90 V

iD

39 iD2.5 nF 5 nF

Section 9.8

 9.54 Use the node-voltage method to find Vo in the cir-
cuit in Fig. P9.54.

Figure P9.54

1

2

1

2

j10 V

Vo240  08 V

j10 V

50 V 30 V

 9.55 Use the node-voltage method to find Vo and Io in 
the circuit seen in Fig. P9.55.
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Figure P9.65

200 mH

vo 125 nF

200 V

vg

300 V

300 V

1

2

1

2

 9.66 Use current division to find the steady-state 
expression for io in the circuit in Fig. P9.66 if 
ig = 400 cos 20,000t  mA.

Figure P9.66

io

120 nF 30 mH

120 V
100 V

ig

 9.67 For the circuit in Fig. P9.67, suppose

v1 = 20 cos (2000t - 36.87°) V,

v2 = 10 cos (5000t + 16.26°) V.

a) What circuit analysis technique must be used to 
find the steady-state expression for vo(t)?

b) Find the steady-state expression for vo(t).

Figure P9.67

1

2

200 mF

vo 10 V

2 mH

1

2
v2v1

1

2

 9.68 For the circuit in Fig. P9.68, suppose

va = 10 cos 16,000t V,

vb = 20 cos 4000t V.

a) What circuit analysis technique must be used to 
find the steady-state expression for vo(t)?

b) Find the steady-state expression for vo(t).

Figure P9.68

625 nF

25 mH

400 V

va vo vb
1

2 1

2

1

2

Section 9.9

 9.60 Use the mesh-current method to find the phasor 
current Ig in the circuit in Fig. P9.55.

 9.61 Use the mesh-current method to find the steady-
state expression for io(t) in the circuit in Fig. P9.56.

 9.62 Use the mesh-current method to find the branch cur-
rents Ia, Ib, Ic, and Id in the circuit shown in Fig. P9.62.

Figure P9.62

1 V

1 V

j1 V2j1 V

1

2

1

2
Id

08 A1

08 V

Ib

Ia

Ic

08 V510

 9.63 Use the mesh-current method to find the steady-
state expression for io(t) in the circuit in Fig. P9.63 if

va = 100 cos 50,000t V,

vb = 100 sin(50,000t + 180°) V.

Figure P9.63

10 V

100 mHva vb

2 mF

1

2 1

2

io

 9.64 Use the mesh-current method to find the steady-
state expression for vo in the circuit seen in  
Fig. P9.64 if vg equals 75 cos 5000t V.

Figure P9.64

110 mH

4 mH4 mFi∆

100 i∆

vg 10 V vo

1

2
2

1

Sections 9.5–9.9

 9.65 Use voltage division to find the steady-state  
expression for vo(t) in the circuit in Fig. P9.65 if 
vg = 100 cos 8000t  V.

PSPICE

MULTISIM
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 9.73 The operational amplifier in the circuit shown in  
Fig. P9.73 is ideal. The voltage of the ideal sinusoidal 
source is vg = 30 cos 106t V.

a) How small can Co be before the steady-state 
output voltage no longer has a pure sinusoidal 
waveform?

b) For the value of Co found in (a), write the steady-
state expression for vo.

Figure P9.73

1

2

2

1

Co

100 V

100 V

6 V

10 nF

26 V

vg

25 V

vo

1

2

Section 9.10

 9.74 The value of k in the circuit in Fig. P9.74 is adjusted 
so that Zab is purely resistive when v = 4 krad/s.  
Find Zab.

Figure P9.74

20 V 5 V

25 mH 16 mH 6.25 mF

ka

b

 9.75 For the circuit in Fig. P9.75, find the Thévenin equiv-
alent with respect to the terminals c, d.

Figure P9.75

1

2

5 V

d

45 V

j150 V

j30 V

j6 V

c

425  08
V (rms)

 9.76 a) Find the steady-state expressions for the cur-
rents ig and iL in the circuit in Fig. P9.76 when 
vg = 168 cos 800t V.

b) Find the coefficient of coupling.

c) Find the energy stored in the magnetically cou-
pled coils at t = 625p ms and t = 1250p ms.

PSPICE

MULTISIM

PSPICE

MULTISIM

 9.69 The sinusoidal voltage source in the circuit 
shown in Fig. P9.69 is generating the voltage 
vg = 20 cos 5000t V. If the op amp is ideal, what is 
the steady-state expression for vo(t)?

Figure P9.69

vg

400 V 400 V

0.5 mF

200 V

27 kV

6 V

26 V

vo

1

2

1

2

2

1

 9.70 The 0.5 mF capacitor in the circuit seen in Fig. P9.69 
is replaced with a variable capacitor. The capacitor 
is adjusted until the output voltage leads the input 
voltage by 135 ∘.

a) Find the value of C in microfarads.

b) Write the steady-state expression for vo(t) when 
C has the value found in (a).

 9.71 The op amp in the circuit in Fig. P9.71 is ideal.

a) Find the steady-state expression for vo(t).

b) How large can the amplitude of vg be before the 
amplifier saturates?

Figure P9.71

1

2

2

1

40 kV

vg 5 25 cos 50,000t V

80 kV

20 kV

10 V
250 pF

210 V

vg

80 kV

vo

1

2

 9.72 The op amp in the circuit seen in Fig. P9.72 is ideal. 
Find the steady-state expression for vo(t) when 
vg = 2 cos 106t V.

Figure P9.72

1

2

2

1

40 kV

5 kV 20 kV

100 kV

10 pF

10 V

100 pF
210 V

vg vo

1

2
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Figure P9.80

N2

N1

a

b

Zab

ZL

Ideal

 9.81 a) Show that the impedance seen looking into the 
terminals a,b in the circuit in Fig. P9.81 is given 
by the expression

Zab =
ZL

a1 +
N1

N2
b

2.

b) Show that if the polarity terminal of either one 
of the coils is reversed that

Zab =
ZL

a1-  
N1

N2
b

2.

Figure P9.81

N1

N2

a

b

Zab

ZLIdeal

 9.82 Find the impedance Zab in the circuit in Fig. P9.82 if 
ZL = 200 l-45° Ω.

Figure P9.82

IdealIdeal

a

b

50:1 1:20

Zab
ZL

Section 9.12

 9.83 Show by using a phasor diagram what happens to 
the magnitude and phase angle of the voltage vo 
in the circuit in Fig. P9.83 as Rx is varied from zero 
to infinity. The amplitude and phase angle of the 
source voltage are held constant as Rx varies.

PSPICE

MULTISIM

Figure P9.76

400 mH

100 mH

100 mH
ig iL

vg

80 V

240 V

 9.77 The sinusoidal voltage source in the circuit seen in  
Fig. P9.77 is operating at a frequency of 200 krad>s. 
The coefficient of coupling is adjusted until the peak 
amplitude of i1 is maximum.

a) What is the value of k?

b) What is the peak amplitude of i1 if 
vg = 560 cos(2 * 105t) V?

Figure P9.77

150 V 50 V

1 mH

k

1

2

100 V 200 V

4 mHvg

i1

12.5 nF

 9.78 A series combination of a 300 Ω resistor and a 100 mH 
inductor is connected to a sinusoidal voltage source by 
a linear transformer. The source is operating at a fre-
quency of 1000 rad>s. At this frequency, the internal 
impedance of the source is (100 + j13.74) Ω. The rms 
voltage at the terminals of the source is 50 V when it is 
not loaded. The parameters of the linear transformer 
are R1 = 41.68 Ω, L1 = 180 mH, R2 = 500 Ω, 
L2 = 500 mH, and M = 270 mH.

a) What is the value of the impedance reflected 
into the primary?

b) What is the value of the impedance seen from 
the terminals of the practical source?

Section 9.11

 9.79 At first glance, it may appear from Eq. 9.34 that 
an inductive load could make the reactance seen 
looking into the primary terminals (i.e., Xab) look 
capacitive. Intuitively, we know this is impossible. 
Show that Xab can never be negative if XL is an 
inductive reactance.

 9.80 a) Show that the impedance seen looking into the 
terminals a,b in the circuit in Fig. P9.80 is given 
by the expression

Zab = a1 +
N1

N2
b

2

ZL.

b) Show that if the polarity terminals of either one 
of the coils is reversed,

Zab = a1-  
N1

N2
b

2

ZL.

PSPICE

MULTISIM
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Sections 9.1–9.12

 9.86 a) Find the primary current IP for (c) and (d) in 
Problem 9.89.

b) Do your answers make sense in terms of known 
circuit behavior?

 9.87 a) Calculate the branch currents I1 - I6 in the cir-
cuit in Fig. P9.87.

b) Find the primary current Ip.

Figure P9.87

IP 1 V

20 V

10 V

40 V

2 V

1 V

13.2 0 kV

120 0 V

120 0 V

I1

I5

I6

I4

I3

I2

1 1

2

2
1

2

 9.88 Suppose the 40 Ω resistance in the distribution cir-
cuit in Fig. P9.87 is replaced by a 20 Ω resistance.

a) Recalculate the branch current in the 2 Ω resis-
tor, I2.

b) Recalculate the primary current, Ip.

c) On the basis of your answers, is it desirable to have 
the resistance of the two 120 V loads be equal?

 9.89 A residential wiring circuit is shown in Fig. P9.89. In 
this model, the resistor R3 is used to model a 250 V 
appliance (such as an electric range), and the resis-
tors R1 and R2 are used to model 125 V appliances 
(such as a lamp, toaster, and iron). The branches 
carrying I1 and I2 are modeling what electricians 
refer to as the hot conductors in the circuit, and 
the branch carrying In is modeling the neutral con-
ductor. Our purpose in analyzing the circuit is to 
show the importance of the neutral conductor in 
the satisfactory operation of the circuit. You are to 
choose the method for analyzing the circuit.

a) Show that In is zero if R1 = R2.

b) Show that V1 = V2 if R1 = R2.

c) Open the neutral branch and calculate V1 and 
V2 if R1 = 40 Ω, R2 = 400 Ω, and R3 = 8 Ω.

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

Figure P9.83

R1

R1

Rx

C
vs 5 Vm cos vt vo

1

2

1

2

 9.84 The parameters in the circuit shown in Fig. 9.53 are 
R1 = 0.1 Ω, vL1 = 0.8 Ω, R2 = 24 Ω, vL2 = 32 Ω, 
and VL = 240 + j0 V.

a) Calculate the phasor voltage Vs.

b) Connect a capacitor in parallel with the inductor, 
hold VL constant, and adjust the capacitor until 
the magnitude of I is a minimum. What is the  
capacitive reactance? What is the value of Vs?

c) Find the value of the capacitive reactance that 
keeps the magnitude of I as small as possible and 
that at the same time makes

� Vs � = � VL � = 240 V.

 9.85 a) For the circuit shown in Fig. P9.85, compute Vs 
and Vl.

b) Construct a phasor diagram showing the rela-
tionship between Vs, Vl, and the load voltage of 
120 l0° V.

c) Repeat parts (a) and (b), given that the load 
resistance changes from 7.5 Ω to 2.5 Ω and 
the load reactance changes from 12 Ω to 4 Ω.  
Assume that the load voltage remains constant 
at 120l0° V. How much must the amplitude of 
Vs be increased in order to maintain the load 
voltage at 120 V?

d) Repeat part (c), given that at the same time the 
load resistance and reactance change, a capaci-
tive reactance of -2 Ω is connected across the 
load terminals.

Figure P9.85

120  08 VVs

Vl

0.15 V j6 V

7.5 V j12 V 2j2 V

1

1

2

2

1

2
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d) Close the neutral branch and repeat (c).

e) On the basis of your calculations, explain why 
the neutral conductor is never fused in such a 
manner that it could open while the hot conduc-
tors are energized.

Figure P9.89

IP

R1

j0.02 V0.02 V

0.03 V

0.02 V

R2

R3

Ideal

V1

1

2

V2

1

2

1

2
1

2

14 08 kV

125 08 V

125 08 V

1

2

V3

1

2

I1

j0.03 V

In

j0.02 V

I2

 9.90 Assume the fan motor in Fig. 9.61 is equipped with 
a thermal cutout designed to interrupt the motor 
circuit if the motor current becomes excessive. 
Would you expect the thermal cutout to operate? 
Explain.

 9.91 Explain why fuse B in Fig. 9.61 is not interrupted 
when the fan motor stalls.

PRACTICAL
PERSPECTIVE

PRACTICAL
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CHAPTER CONTENTS

10
CHAPTER 

Sinusoidal Steady-State 
Power Calculations
Nearly all electric energy is supplied by sinusoidal voltages 
and currents. Thus, after our Chapter 9 discussion of sinusoidal 
circuits, we now consider sinusoidal steady-state power calcula-
tions. We are primarily interested in the average power delivered 
to or supplied by a pair of terminals in the sinusoidal steady state. 
We also present other power quantities, including reactive power, 
complex power, and apparent power.

We begin and end this chapter with two concepts that should 
be very familiar to you from previous chapters: the basic equation 
for power (Section 10.1) and maximum power transfer (Section 
10.6). In between, we discuss the general techniques for calculating 
power, which will be familiar from your studies in Chapters 1 and 
4, although some additional mathematical techniques are required 
here to deal with sinusoidal, rather than dc, signals. We also revisit 
the rms value of a sinusoid, briefly introduced in Chapter 9, because 
it is used extensively in power calculations.

A wide variety of problems deal with the delivery of energy 
to do work, ranging from determining the power rating for safely 
and efficiently operating an appliance to designing the vast array 
of generators, transformers, and wires that provide electric en-
ergy to household and industrial consumers. Thus, power engi-
neering is an important and exciting subdiscipline in electrical 
engineering.

10.1 Instantaneous Power p. 404

10.2 Average and Reactive Power p. 405

10.3  The rms Value and Power  
Calculations p. 410

10.4 Complex Power p. 412

10.5 Power Calculations p. 414

10.6 Maximum Power Transfer p. 421

1 Understand the following ac power con-
cepts, their relationships to one another, 
and how to calculate them in a circuit:

• Instantaneous power;

• Average (real) power;

• Reactive power;

• Complex power; and

• Power factor.

2 Understand the condition for maximum real 
power delivered to a load in an ac circuit 
and be able to calculate the load imped-
ance required to deliver maximum real 
power to the load.

3 Be able to calculate all forms of ac power 
in ac circuits with linear transformers and in 
ac circuits with ideal transformers.

CHAPTER OBJECTIVES



Practical Perspective
Vampire Power
Even when we are not using many of the common 
 electrical devices found in our homes, schools, and busi-
nesses, they can still be consuming power. This “standby 
power” can run an internal clock, charge  batteries, 
 display time or other quantities, monitor temperature 
or other  environmental measures, or search for signals 
to receive. Devices such as microwave ovens, DVRs, 
 televisions,  remote controls, and computers all consume 
power when not in use.

The ac adapters used to charge many portable 
 devices are a common source of standby power. Even 

when the device is unplugged from the adapter, the 
adapter can continue to consume power if it is plugged 
into the wall outlet. Because the plug on the adapter 
looks somewhat like vampire fangs, standby power has 
become known as “vampire power.” It is power that is 
used even while we sleep.

How much vampire power do electrical devices in 
our home use over the course of a year? Is there a way to 
reduce or eliminate vampire power? These questions are 
explored in the Practical Perspective example at the end 
of the chapter and in the chapter problems.

Pung/Shutterstock katalinks/Fotolia

Route55/Shutterstock
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10.1 Instantaneous Power
Consider the familiar circuit in Fig. 10.1. Here, v and i are steady-state 
sinusoidal signals, given by

 v = Vm cos1vt + u
v
2 ,

 i = Im cos1vt + ui2 ,

where u
v
 is the voltage phase angle and ui is the current phase angle. Using 

the passive sign convention, we find that the power at any instant of time is

p = vi.

This is instantaneous power. Instantaneous power is measured in watts 
when the voltage is in volts and the current is in amperes.

Because the circuit operates in the sinusoidal steady state, we can 
choose any convenient reference for zero time. It is convenient to define 
zero time at the instant the current passes through a positive maximum. 
This reference system requires a shift of both the voltage and current by 
ui. Thus, the equations for voltage and current become

  v = Vm  cos(vt + u
v

- ui), (10.1)

  i = Im cos vt. (10.2)

When we substitute Eqs. 10.1 and 10.2 into the power equation, the ex-
pression for the instantaneous power becomes

p = VmIm cos1vt + u
v

- ui2  cos vt.

We could use this equation directly to find the average power. Instead, we 
use a couple of trigonometric identities to construct a much more infor-
mative expression. We begin with the trigonometric identity1

 cos a cos b =
1
2

 cos1a - b2 +
1
2

 cos1a + b2

and let a = vt +  u
v

-  ui and b = vt to give

p =
VmIm

2
 cos1u

v
- ui2 +

VmIm

2
 cos12vt + u

v
- ui2 .

Now use the trigonometric identity 

cos1a + b2 = cos a cos b -  sin a sin b 

to expand the second term on the right-hand side of the expression for p, 
which gives

1

2
v

i

Figure 10.1 ▲ The black box representation of a 
circuit used for calculating power.

INSTANTANEOUS POWER

 p =
VmIm

2
 cos1u

v
- ui2 +

VmIm

2
 cos1u

v
-  ui2  cos 2vt 

 -  
VmIm

2
 sin1u

v
-  ui2  sin 2vt. (10.3)

1 See Appendix F.



 10.2 Average and Reactive Power 405

Examine the three terms on the right-hand side of Eq. 10.3. The first 
term is a constant; it is not a function of time. The other two terms are 
sinusoids, each with a frequency that is double the frequency of the volt-
age and current in Eqs. 10.1 and 10.2. You can make these same observa-
tions in the plot of Fig. 10.2, which depicts v, i, and p, assuming u

v
= 60° 

and ui = 0°. You can see that the frequency of the instantaneous power 
is twice the frequency of the voltage or current. Therefore, the instanta-
neous power goes through two complete cycles for every cycle of either 
the voltage or the current.

Also note that the instantaneous power may be negative for a portion 
of each cycle. When the power is negative, the energy stored in the induc-
tors or capacitors is being extracted. The instantaneous power varies with 
time when a circuit operates in the sinusoidal steady state. As a result, 
some motor-driven appliances (such as refrigerators) experience vibra-
tion and require resilient motor mountings to prevent excessive vibration.

In the next section, we use Eq. 10.3 to find the average power at the 
terminals of the circuit in Fig. 10.1 and also introduce the concept of reac-
tive power.

2p 3p 4p
vt

(radians)p

2Vm

2Im

Im

Vm

0

v, i, p

v v

v v

i i

i i

p p

p p

2
VmIm

4

VmIm

2

3VmIm

4

Figure 10.2 ▲ Instantaneous power, voltage, and current versus vt 
for steady-state sinusoidal operation.

AVERAGE (REAL) POWER

 P =
VmIm

2
 cos1u

v
- ui2 , (10.5)

10.2 Average and Reactive Power
As we have already noted, Eq. 10.3 has three terms, which we can rewrite 
as follows:

 p = P + P cos  2vt - Q sin 2vt, (10.4)

where
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P is the average power, and Q is the reactive power. Average power is 
sometimes called real power because it describes the power in a circuit 
that is transformed from electric to nonelectric energy. Although the two 
terms are interchangeable, we primarily use the term average power in 
this text.

It is easy to see why P is called the average power: it is the average of 
the instantaneous power over one period. In equation form,

 P =
1
T

 L
t0 + T

to

p dt, (10.7)

where T is the period of the sinusoidal function. The limits on the integral 
imply that we can initiate the integration process at any convenient time t0 
but that we must terminate the integration exactly one period later. (We 
could integrate over nT periods, where n is an integer, provided we multi-
ply the integral by 1>nT.)

We could find the average power by substituting Eq. 10.3 directly 
into Eq. 10.7 and integrating. But the average value of p is given by the 
first term on the right-hand side of Eq. 10.3 because the integral of both 
cos 2vt and sin 2vt over one period is zero. Thus, the average power is 
given in Eq. 10.5.

We can develop a better understanding of all the terms in Eq. 10.4 
and the relationships among them by examining the power in circuits that 
are purely resistive, purely inductive, or purely capacitive.

Power for Purely Resistive Circuits
If the circuit between the terminals in Fig. 10.1 is purely resistive, the volt-
age and current are in phase, which means that u

v
=  ui. Equation 10.4 

then reduces to

p = P + P cos 2vt.

The instantaneous power for a resistor is called the instantaneous real 
power. Figure 10.3 shows a graph of p for a purely resistive circuit with 
v = 377 rad>s. By definition, the average power, P, is the average of p 
over one period. Looking at the graph, we see that P = 1 for this circuit. 
Note that the instantaneous real power can never be negative, which is 
seen in its equation and is also shown in Fig. 10.3. In other words, power 
cannot be extracted from a purely resistive network. Resistors dissipate 
electric energy in the form of thermal energy.

Power for Purely Inductive Circuits
If the circuit between the terminals in Fig. 10.1 is purely inductive, 
the current lags the voltage by 90° (that is, ui = u

v
- 90°); therefore, 

u
v

- ui = +90°. The expression for the instantaneous power then   
reduces to

p = -Q sin 2vt.

REACTIVE POWER

 Q =
VmIm

2
 sin1u

v
- ui2 . (10.6)
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Figure 10.3 ▲ Instantaneous power and  average 
power for a purely resistive circuit.
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In a purely inductive circuit, the average power is zero, and energy is not trans-
formed from electric to nonelectric form. Instead, the instantaneous power in 
a purely inductive circuit is continually exchanged between the circuit and the 
source driving the circuit, at a frequency of 2v. When p is positive, energy 
is stored in the magnetic fields associated with the inductive elements, and 
when p is negative, energy is extracted from the magnetic fields.

We measure the power of purely inductive circuits using the reactive 
power Q. The name reactive power recognizes an inductor as a reactive el-
ement; its impedance is purely reactive. Note that average power P and re-
active power Q carry the same dimension. To distinguish between average 
and reactive power, we use the units watt (W) for average power and var 
(volt-amp reactive, or VAR) for reactive power. Figure 10.4 plots the in-
stantaneous power for a purely inductive circuit, assuming v = 377 rad>s 
and Q = 1 VAR.

Power for Purely Capacitive Circuits
If the circuit between the terminals in Fig. 10.1 is purely capacitive, the cur-
rent leads the voltage by 90° (that is, ui =  u

v
+  90°); thus, u

v
- ui = -90°. 

The expression for the instantaneous power then becomes

p = -Q sin 2vt.

Again, the average power is zero, and energy is not transformed from 
electric to nonelectric form. Instead, the power is continually exchanged 
between the source driving the circuit and the electric field associated with 
the capacitive elements. Figure 10.5 plots the instantaneous power for a 
purely capacitive circuit, assuming v = 377 rad>s and Q = -1 VAR.

Note that the decision to use the current as the reference (see Eq. 10.2) 
means that Q is positive for inductors (because u

v
- ui = 90°) and negative 

for capacitors (because u
v

- ui = -90°). Power engineers recognize this 
difference in the algebraic sign of Q by saying that inductors demand (or 
absorb) magnetizing vars and capacitors furnish (or deliver) magnetizing 
vars. We say more about this convention later.

The Power Factor
The angle u

v
- ui is used when computing both average and reactive 

power and is referred to as the power factor angle. The cosine of this angle 
is called the power factor, abbreviated pf, and the sine of this angle is 
called the reactive factor, abbreviated rf. Thus
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Figure 10.4 ▲ Instantaneous power, average 
power, and reactive power for a purely inductive 
circuit.
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Figure 10.5 ▲ Instantaneous power, average 
power, and reactive power for a purely capacitive 
circuit.

POWER FACTOR

  pf = cos1u
v

- ui2 , (10.8)

 rf = sin1u
v

- ui2 .

Even if you know the value of the power factor, you cannot determine the 
power factor angle because cos(u

v
- ui) = cos(ui - u

v
). To completely 

describe this angle, we use the phrases lagging power factor and leading 
power factor. Lagging power factor means that current lags voltage—
hence, an inductive load. Leading power factor means that current leads 
voltage—hence, a capacitive load. Both the power factor and the reactive 
factor are convenient quantities to use in describing electrical loads.

Example 10.1 illustrates the interpretation of P and Q using numeri-
cal calculations.
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EXAMPLE 10.1 Calculating Average and Reactive Power

a) Calculate the average power and the reactive 
power at the terminals of the network shown in 
Fig. 10.6 if

 v = 100 cos1vt + 15°2  V,

 i = 4 sin1vt - 15°2  A.

b) State whether the network inside the box is ab-
sorbing or delivering average power.

c) State whether the network inside the box is ab-
sorbing or supplying magnetizing vars.

Solution

a) Because i is expressed in terms of the sine func-
tion, the first step in calculating P and Q is to 
 rewrite i as a cosine function:

 i = 4 cos1vt - 105°2  A.

We now calculate P and Q directly from Eqs. 10.5 
and 10.6, using the passive sign convention. Thus

P =
1
2

 11002 142  cos315° - 1 -105°24 = -100 W,

Q =
1
2

 100142  sin315° - 1 -105°24 = 173.21 VAR.

b) The value of P is negative, so the network inside 
the box is delivering average power to the ter-
minals.

c) The value of Q is positive, so the network inside the 
box is absorbing magnetizing vars at its terminals.

1

2
v

i

Figure 10.6 ▲ A pair of terminals used for calculating 
power.

Objective 1—Understand ac power concepts, their relationships to one another, and how to calcuate them 
in a circuit

 10.1 For each of the following sets of voltage and 
current, calculate the real and reactive power 
in the line between networks A and B in the 
circuit shown. In each case, state whether the 
power flow is from A to B or vice versa. Also 
state whether magnetizing vars are being trans-
ferred from A to B or vice versa.

a) v = 100 cos1vt - 45°2  V;
 i = 20  cos(vt + 15°) A.

b) v = 100 cos(vt - 45°) V;
 i = 20 cos(vt + 165°) A.

c) v = 100 cos(vt - 45°) V;
 i = 20 cos(vt - 105°) A.

d) v = 100 cos vt V;
 i = 20 cos(vt + 120°) A.

Answer: (a) P = 500 W (A to B);
Q = -866.03 VAR (B to A).

(b) P = -866.03 W (B to A);
Q = 500 VAR (A to B).

(c) P = 500 W (A to B);
Q = 866.03 VAR (A to B).

(d) P = -500 W (B to A);
Q = -866.03 VAR  (B to A).

 10.2 Compute the power factor and the reactive 
factor for the network inside the box in  
Fig. 10.6, whose voltage and current are 
 described in Example 10.1.

Hint: Use - i to calculate the power factor and 
reactive factor.

Answer: pf = 0.5 leading; rf = -0.866.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problem 10.1.

BA 1

2
v

i
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Appliance Ratings
Average power is used to quantify the power needs of household appli-
ances. Your monthly electric bill is based on the number of kilowatt-hours 
used by the household. Table 10.1 presents data for some common appli-
ances, including the average hours per month and the number of months 
the appliance is used, the annual kilowatt-hour (kwh) consumption, and 
the annual cost of operation. For example, a coffee maker has a monthly 
use of 30 hours, or one hour per day, is used every month of the year, 
and consumes 60 kwh per year, at a cost of about $10. Therefore, the cof-
fee maker consumes 60 kwh>360 hours = 0.167 kW = 167 W of power 
during the hour it operates each day.

Example 10.2 uses Table 10.1 to determine whether four common ap-
pliances can all be in operation without exceeding the current-carrying 
capacity of the household.

*Draws power in standby mode
Notes:
• Hours in Use per Month is based on a typical four-person household in a northern US state.
• Annual kWh may vary considerably depending on model, age, and use.
• Annual Cost is based on 16 cents per kilowatt hour (kWH).
• Data used with permission from https://www.efficiencyvermont.com/tips-tools/tools/electric-usage-chart-tool.

TABLE 10.1 Annual Energy Requirements of Electric Household Appliances

Appliance
Hours in Use  

per Month
Months  

Used
Annual  
kWH

Annual  
Cost

A/C—central 120 3 1080 $173

Clothes dryer—electric 24 12 901 $144

Clothes washer (does not include cost of hot water) 28 12 108 $17

Coffee maker (residential) 30 12 60 $10

Computer—desktop with monitor * * 127 $20

Computer—laptop * * 23 $4

Dishwasher—heat dry (does not include hot water) 30 12 293 $47

DVD player 60 12 18 $3

Fan—ceiling (does not include lights) 150 6 72 $12

Fan—table/box/floor 60 3 28 $4

Game console (includes standby/phantom load) * * 65 $10

Heating system—electric heat—baseboard, 10 ft 240 5 1500 $240

Humidifier 240 12 360 $58

Lighting—incandescent, 75 Watt 60 12 54 $9

Lighting—CFL, 20 Watt (75W incandescent equivalent) 90 12 22 $3

Lighting—LED, 10 Watt (75W incandescent equivalent) 90 12 12 $2

Microwave 9 12 101 $16

Oven—electric 9 12 284 $45

Refrigerator—19–21.4 cu ft —2001–2008 720 12 533 $85

Refrigerator—19–21.4 cu ft (new ENERGY STAR) 720 12 336 $54

Set-top box, cable/satellite receiver 720 12 249 $40

Television—50”+ non-ENERGY STAR TV * * 215 $34

Water heater—electric
(newer base model .95 energy factor)

n/a 12 4559 $729

https://www.efficiencyvermont.com/tips-tools/tools/electric-usage-chart-tool
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10.3  The rms Value and Power 
Calculations

When we introduced the rms value of a sinusoidal voltage (or current) in 
Section 9.1, we mentioned that it would play an important role in power 
calculations. We now discuss this role.

Assume a sinusoidal voltage is applied to the terminals of a resistor, 
as shown in Fig. 10.7, and that we want to determine the average power 
delivered to the resistor. From Eq. 10.7,

 P =
1
T

 L
t0 + T

t0

Vm
2  cos21vt + f

v
2

R
 dt

 =
1
R

 c 1
T

 L
t0 + T

t0

Vm
2  cos21vt + f

v
2  dt d .

1

2

Vm cos(vt 1 u
v

) R

Figure 10.7 ▲ A sinusoidal voltage applied to the 
terminals of a resistor.

EXAMPLE 10.2 Making Power Calculations Involving Household Appliances

The branch circuit supplying the outlets in a typ-
ical home kitchen is wired with #12 conductor and 
is  protected by either a 20 A fuse or a 20 A circuit 
breaker. Assume that the following 120 V appliances 
are in operation at the same time: a coffee maker, 
microwave, dishwasher, and older refrigerator. Will 
the circuit be interrupted by the protective device?

Solution
We have already estimated that the average 
power used by the coffee maker is 167 W. Using  
Table 10.1, we find that the average power used by 
the other three appliances is

 Pmicrowave =
101

192 1122 = 0.935 kW = 935 W,

 Pdishwasher =
293

1302 1122 = 0.814 kW = 814 W,

 Prefrigerator =
533

17202 1122 = 0.062 kW = 62 W.

The total average power used by the four appliances is

Ptotal = 167 + 935 + 814 + 62 = 1978 W.

The total current in the protective device is

I =
Ptotal

V
=

1978
120

= 16.5 A.

Since the current is less than 20 A, the protective device 
will not interrupt the circuit.

SELF-CHECK: Assess your understanding of this material by trying Chapter Problem 10.2.



 10.3 The rms Value and Power Calculations 411

1

2
Rvs 5 100 V(rms)

1

2
RVs 5 100 V(dc)

Figure 10.8 ▲ The effective value of vs [100 V(rms)] 
delivers the same power to R as the dc voltage vs 
[100 V(dc)].

From Eq. 9.4, we see that the bracketed term is the rms value of the volt-
age squared. Therefore, the average power delivered to R is

P =
V rms

2

R
.

If the resistor has a sinusoidal current, say, Im cos1vt + fi2 , the  average 
power delivered to the resistor is

P = Irms
2 R.

The rms value is also referred to as the effective value of the sinusoi-
dal voltage (or current). The rms value has an interesting property: Given 
an equivalent resistive load, R, and an equivalent time period, T, the rms 
value of a sinusoidal source delivers the same energy to R as does a dc 
source of the same value. For example, a dc source of 100 V delivers the 
same energy in T seconds that a sinusoidal source of 100 V(rms) deliv-
ers, assuming equivalent load resistances (see Problem 10.16). Figure 10.8 
demonstrates this equivalence. The effect of the two sources is identical 
with respect to energy delivery. So we use the terms effective value and 
rms value interchangeably.

The average power given by Eq. 10.5 and the reactive power given by 
Eq. 10.6 can be written in terms of effective values:

 P =
VmIm

2
 cos1u

v
- ui2

 =
Vm12

 
Im12

 cos1u
v

- ui2

  = Vrms Irms cos1u
v

- ui2  (10.9)

and, by similar manipulation,

 Q = Vrms Irmssin1u
v

- ui2 . (10.10)

Using the effective values of sinusoidal signals in power calculations is 
so widespread that we specify the voltage and current ratings of circuits and 
equipment using rms values. For example, the voltage rating of residential 
electric wiring is often 240 V>120 V service. These voltages are the rms val-
ues of the sinusoidal voltages supplied by the utility company, which pro-
vides power at two voltage levels, accommodating low-voltage appliances 
(such as televisions) and higher-voltage appliances (such as electric ranges). 
Appliances such as electric lamps, irons, and toasters all carry rms ratings 
on their nameplates. For example, a 120 V, 100 W lamp has a resistance of 
1202>100, or 144 Ω, and draws an rms current of 120>144, or 0.833 A. The 
peak value of the lamp current is 0.83312, or 1.18 A.

The phasor transform of a sinusoidal function may also be expressed 
as an rms value. The magnitude of the rms phasor is equal to the rms value 
of the sinusoidal function. We indicate that a phasor is based on an rms 
value using either an explicit statement, a parenthetical “rms” adjacent to 
the phasor’s units, or the subscript “rms.”

In Example 10.3, we use rms values to calculate power.
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EXAMPLE 10.3  Determining Average Power Delivered to a Resistor by a 
Sinusoidal Voltage

a) A sinusoidal voltage having a maximum amplitude 
of 625 V is applied to the terminals of a 50 Ω resis-
tor. Find the average power delivered to the resistor.

b) Repeat (a) by first finding the current in the resistor.

Solution

a) The rms value of the sinusoidal  voltage is 625>12, 
or approximately 441.94 V. The average power de-
livered to the 50 Ω resistor is

P =
Vrms

2

R
=

1441.9422

50
= 3906.25 W.

b) The maximum amplitude of the current in the 
resistor is 625>50, or 12.5 A. The rms value of 
the current is 12.5>12, or approximately 8.84 A.  
Hence, the average power delivered to the re-
sistor is

P = 18.8422 50 = 3906.25 W.

Objective 1—Understand ac power concepts, their relationships to one another, and how to calculate them 
in a circuit

 10.3 The periodic triangular current in Example 9.4, 
repeated here, has a peak value of 180 mA. Find 
the average power that this current delivers to a 
5 kΩ resistor.

Answer: 54 W.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 10.14.

2TN2 2TN4

2Ip

Ip

TN4 TN2 3TN4 T
t

etc.

i

10.4 Complex Power
Before discussing the methods for calculating real and reactive power in 
circuits operating in the sinusoidal steady state, we introduce and define 
complex power. Complex power is the complex sum of real power and 
reactive power, or

COMPLEX POWER

 S = P + jQ. (10.11)

As you will see, we can compute the complex power using the voltage and 
current phasors for a circuit. Equation 10.11 can then be used to determine 
the average and reactive power, because P = ℛ5S6  and Q = ℐ5S6 .

Complex power has the same units as average or reactive power. However, 
to distinguish complex power from both average and reactive power, we use 
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the units volt-amps (VA). Thus, we use volt-amps for  complex power, watts for 
average power, and vars for reactive power, as summarized in Table 10.2.

Complex power provides a geometric relationship among several dif-
ferent power quantities. In Eq. 10.11, envision P, Q, and 0 S 0  as the sides 
of a right triangle, as shown in Fig. 10.9. We can show that the angle u in 
the power triangle is the power factor angle u

v
- ui. For the right triangle 

shown in Fig. 10.9,

 tan u =
Q

P
 .

But from the definitions of P and Q (Eqs. 10.5 and 10.6, respectively),

 
Q

P
=

1VmIm>22  sin1u
v

- ui2
1VmIm>22  cos1u

v
- ui2  

 =  tan 1u
v

- ui2 .

Therefore, u = u
v

- ui. The geometric relationships for a right triangle 
mean that the four power triangle dimensions (the three sides and the 
power factor angle) can be determined if any two of the four are known.

The magnitude of complex power is referred to as apparent power. 
Specifically,

TABLE 10.2  Three Power Quantities  
and Their Units

Quantity Units

Complex power volt-amps

Average power watts

Reactive power var

Q 5 reactive power

P 5 average power

@S @ 5 apparent power

u

Figure 10.9 ▲ A power triangle.

APPARENT POWER

 0 S 0 = 2P2 + Q2. (10.12)

Apparent power, like complex power, is measured in volt-amps. The appar-
ent power, or volt-amp, requirement of a device designed to convert electric 
energy to a nonelectric form is more useful than the average power require-
ment. The apparent power represents the volt-amp capacity required to sup-
ply the average power used by the device. As you can see from the power 
triangle in Fig. 10.9, unless the power factor angle is 0° (that is, the device is 
purely resistive, pf = 1, and Q = 0), the volt-amp capacity required by the 
device is larger than the average power used by the device.

Many appliances (including refrigerators, fans, air conditioners, fluo-
rescent lighting fixtures, and washing machines) and most industrial loads 
operate at a lagging power factor. The power factor of these loads can be 
corrected either by adding a capacitor to the device itself or by connecting 
capacitors across the line feeding the load; the latter method is often used 
for large industrial loads. Many of the problems at the end of the chapter 
explore methods for correcting a lagging power factor load and improving 
the operation of a circuit.

Example 10.4 uses a power triangle to calculate several quantities as-
sociated with power in an electrical load.

EXAMPLE 10.4 Calculating Complex Power

An electrical load operates at 240 V(rms). The 
load absorbs an average power of 8 kW at a lagging 
power factor of 0.8.

a) Calculate the complex power of the load.

b) Calculate the impedance of the load, Z.

Q

P

@S @

u

Figure 10.10 ▲ A power triangle.
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 P = 0  S 0  cos u,

 Q = 0  S 0  sin u.

Since cos u = 0.8, we know that sin u = 0.6. 
Therefore

 0 S 0 =
P

 cos u
=

8000
0.8

= 10,000 = 10 kVA,

  Q = 0 S 0  sin u = 110,0002 10.62 = 6 kVAR,

and

S = P + jQ = 8 + j6 kVA.

b) From the problem statement, we know that  
P = 8 kW for the load. Using Eq. 10.9,

 P = Vrms Irms cos1u
v

- ui2
 = 12402Irms 10.82
 = 8000 W.

Solving for Irms,

Irms = 41.67 A(rms).

We already know the angle of the load imped-
ance because it is the power factor angle:

u = cos-110.82 = 36.87°.

We also know that u is positive because the 
power factor is lagging, indicating an inductive 
load. Compute the load impedance magnitude 
using its definition as the ratio of the magnitude 
of the load voltage to the magnitude of the load 
current:

0  Z 0 =
0Vrms 0
0 Irms 0 =

240
41.67

= 5.76.

Hence,

Z = 5.76 l36.87° Ω = 4.608 + j3.456 Ω.

Objective 1—Understand ac power concepts, their relationships to one another, and how to calculate them 
in a circuit

 10.4 A load consisting of a 1.35 kΩ resistor in paral-
lel with a 405 mH inductor is connected across 
the terminals of a sinusoidal voltage source vg, 
where vg = 90 cos 2500t V. Find

a) the average power delivered to the load,

b) the reactive power for the load,

c) the apparent power for the load, and

d) the power factor of the load.

Answer: (a) 3 W;
(b) 4 VAR;
(c) 5 VA;
(d) 0.6 lagging.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 10.17.

10.5 Power Calculations
We now develop additional equations for calculating real, reactive, and 
complex power. We begin by combining Eqs. 10.5, 10.6, and 10.11 to get

 S =
VmIm

2
 cos1u

v
- ui2 + j

VmIm

2
 sin1u

v
- ui2

 =
VmIm

2
 3cos1u

v
- ui2 + j sin1u

v
- ui24

 =
VmIm

2
 ej(u

v
- ui) =

1
2

 VmIm
l(u

v
- ui).

Solution

a) Because the power factor is lagging, we know 
that the load is inductive and that the algebraic 
sign of the reactive power is positive. From the 
power triangle shown in Fig. 10.10,
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If we use the rms values of the sinusoidal voltage and current, the expres-
sion for the complex power becomes

 S = VrmsIrms l(u
v

- ui).

Therefore, if the phasor current and voltage are known at a pair of 
terminals, the complex power associated with that pair of terminals is ei-
ther one half the product of the phasor voltage and the conjugate of the 
phasor current, or the product of the rms phasor voltage and the conju-
gate of the rms phasor current. We can show this for the rms phasor volt-
age and current in Fig. 10.11 as follows:

 S = VrmsIrms l(u
v

- ui)

 = VrmsIrmse
j1u

v
- ui2

 = Vrms e
ju

vIrmse
- jui

so

1

2

Vrms

Irms

Circuit

Figure 10.11 ▲ The phasor voltage and current as-
sociated with a pair of terminals.

COMPLEX POWER, ALTERNATE FORM

 S = VrmsI
*
rms. (10.13)

Note that Irms
* = Irmse

-jui follows from Euler’s identity and the trigono-
metric identities cos1 -u2 = cos1u2  and sin1 -u2 = -sin1u2 :

 Irmse
-jui = Irmscos1 -ui2 + jIrmssin1 -ui2

 = Irmscos1ui2 - jIrmssin1ui2
 = Irms

* .

If the voltage and current phasors are not specified as rms values, the der-
ivation technique used for Eq. 10.13 yields

 S =
1
2

 VI*. (10.14)

Both Eqs. 10.13 and 10.14 use the passive sign convention. If the current 
reference is in the direction of the voltage rise across the terminals, we 
insert a minus sign on the right-hand side of each equation.

Example 10.5 uses Eq. 10.14 in a power calculation, with the phasor 
representation of the voltage and current from Example 10.1

EXAMPLE 10.5 Calculating Power Using Phasor Voltage and Current

a) Calculate the average power and the reactive 
power at the terminals of the network shown in 
Fig. 10.12 if

V = 100 l 15° V,

I = 4 l-105° A.

b) State whether the network inside the box is ab-
sorbing or delivering average power.

Circuit
1

2

V

I

Figure 10.12 ▲ The circuit for Example 10.5.

c) State whether the network inside the box is ab-
sorbing or supplying magnetizing vars.
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Alternate Forms for Complex Power
Equations 10.13 and 10.14 have several useful variations. We use the rms 
form of the equations throughout because voltages and currents are most 
often given as rms values in power computations.

The first variation of Eq. 10.13 replaces the voltage with the product 
of the current times the impedance. We can always represent the circuit 
inside the box of Fig. 10.11 by an equivalent impedance, as shown in Fig. 
10.13. Then,

Vrms = ZIrms.

Replacing the rms voltage phasor in Eq. 10.13 yields

 S = Z IrmsIrms
*

 = 0 Irms 0 2 Z
 = 0 Irms 0 2(R + jX)

  = 0 Irms 0 2R + j 0 Irms 0 2X = P + jQ, (10.15)

from which

 P = 0 Irms 0 2R =
1
2

 Im
2 R, (10.16)

 Q = 0 Irms 0 2X =
1
2

 Im
2 X. (10.17)

In Eqs. 10.15 and 10.17, X is the reactance of either the equivalent induc-
tance or the equivalent capacitance of the circuit. Remember that reac-
tance is positive for inductive circuits and negative for capacitive circuits.

A second variation of Eq. 10.13 replaces the current with the voltage 
divided by the impedance:

 S = Vrmsa
Vrms

Z
 b

*

=
0Vrms 0 2

Z* = P + jQ. (10.18)

Note that if Z is a pure resistive element,

 P =
0Vrms 0 2

R
, (10.19)

and if Z is a pure reactive element,

 Q =
0Vrms 0 2

X
 . (10.20)

Solution

a) From Eq. 10.14,

 S =
1
2

 1100 l 15°2 14 l+105°2 = 200 l 120°

 = -100 + j173.21 VA.

Once we calculate the complex power, we can 
read off both the real and reactive powers, be-
cause S = P + jQ. Thus

 P = -100 W,

 Q = 173.21 var.

b) The value of P is negative, so the network in-
side the box is delivering average power to the 
terminals.

c) The value of Q is positive, so the network inside 
the box is absorbing magnetizing vars at its ter-
minals.

Z
1

2

Vrms

Irms

Figure 10.13 ▲ The general circuit of Fig. 10.11 re-
placed with an equivalent impedance.
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In Eq. 10.20, X is positive for an inductor and negative for a capacitor.
Examples 10.6–10.8 demonstrate various power calculations in cir-

cuits operating in the sinusoidal steady state.

EXAMPLE 10.6 Calculating Average and Reactive Power

In the circuit shown in Fig. 10.14, a load having 
an impedance of 39 + j26 Ω is fed from a volt-
age source through a line having an impedance of 
1 + j4 Ω. The source voltage is 250 V(rms).

a) Calculate the load current phasor IL and voltage 
phasor VL.

b) Calculate the average and reactive power deliv-
ered to the load.

c) Calculate the average and reactive power deliv-
ered to the line.

d) Calculate the average and reactive power sup-
plied by the source.

Solution

a) The line and load impedances are in series across 
the voltage source, so the load current equals the 
voltage divided by the total impedance, or

IL =
250 l 0°
40 + j30

= 4 - j3 = 5 l-36.87° A1rms2 .

Because the voltage is given as an rms value, the 
current value is also rms. The load voltage is the 
product of the load current and load impedance:

 VL = 139 + j262IL = 234 - j13

 = 234.36 l-3.18° V1rms2 .

b) Use Eq. 10.13 to find the average and reactive 
power delivered to the load. Therefore

 S = VLIL
* = 1234 - j132 14 + j32

 = 975 + j650 VA.

Thus, the load is absorbing an average power of 
975 W and a reactive power of 650 var.

c) Because the line current is known, the aver-
age and reactive power delivered to the line 
are most easily calculated using Eqs. 10.16 and 
10.17. Thus

 P = 152 2112 = 25 W,

 Q = 152 2142 = 100 var.

Note that the reactive power associated with 
the line is positive because the line reactance is 
inductive.

d) We can calculate the average and reactive power 
delivered by the source by adding the complex 
power delivered to the line to that delivered to 
the load, or

 S = 25 + j100 + 975 + j650

 = 1000 + j750 VA.

The complex power at the source can also be cal-
culated from Eq. 10.13:

 Ss = -250IL
* .

The minus sign is inserted in Eq. 10.13 whenever 
the current reference is in the direction of a volt-
age rise. Thus

Ss = -25014 + j32 = - 11000 + j7502  VA.

The minus sign implies that both average power 
and magnetizing reactive power are being deliv-
ered by the source. This result agrees with the 
previous calculation of S, as it must, because 
the source supplies all the average and reactive 
power absorbed by the line and load.

Source Line Load

j26 V

j4 V1 V

1

2

VL
IL

39 V
2501

2
08

V(rms)

Figure 10.14 ▲ The circuit for Example 10.6.
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(b)

1

5

(c)

(a)

22.36 kVA

20 kW

10 kVAR26.5658

20 kVA

12 kW

53.138
16 kVAR8 kW

26 kVAR
10 kVA

236.878

Figure 10.16 ▲ (a) The power triangle for load 1;  
(b) The power triangle for load 2; (c) The sum of the  
power triangles.

EXAMPLE 10.7 Calculating Power in Parallel Loads

The two loads in the circuit shown in Fig. 10.15 can 
be described as follows: Load 1 absorbs 8 kW at a 
leading power factor of 0.8. Load 2 absorbs 20 kVA 
at a lagging power factor of 0.6.

a) Determine the power factor of the two loads in 
parallel.

b) Determine the apparent power required to supply 
the loads, the magnitude of the current, Is, and the 
average power loss in the transmission line.

c) Given that the frequency of the source is 60 Hz, 
compute the value of the capacitor that would 
correct the power factor to 1 if placed in parallel 
with the two loads. Recalculate the values in (b) 
for the load with the corrected power factor.

It follows that

S = 20,000 + j10,000 VA,

and

Is
* =

20,000 + j10,000
250

= 80 + j40 A(rms).

Therefore

Is = 80 - j40 = 89.44 l-26.57° A(rms).

Thus, the power factor of the combined load is

pf = cos10 + 26.57°2 = 0.8944 lagging.

The power factor of the two loads in paral-
lel is lagging because the net reactive power is 
positive.

b) The apparent power supplied to the two loads is

0 S 0 = 0 20,000 + j10,000 0 = 22.36 kVA.

The magnitude of the current supplying this ap-
parent power is

0 Is 0 = 0 80 - j40 0 = 89.44 A(rms).

The average power lost in the line results from 
the current in the line resistance:

Pline = 0 Is 0 2R = 189.442 210.052 = 400 W.

Note that the power supplied totals 
20,000 + 400 = 20,400 W, even though the 
loads require a total of only 20,000 W.

1

2

0.05 V j0.50 V

1

2

Vs

Is

L1 I1 L2 I2
250 08
V(rms)

Figure 10.15 ▲ The circuit for Example 10.7.

Solution

a) All voltage and current phasors in this problem 
are rms values. Note from the circuit diagram in 
Fig. 10.15 that Is = I1 + I2. The total complex 
power absorbed by the two loads is

 S = 12502Is
*

 = 12502 1I1 + I22*

 = 12502I1
* + 12502I2

*

 = S1 + S2.

We can sum the complex powers geometrically, 
using the power triangles for each load, as shown 
in Fig. 10.16. By hypothesis,

 S1 = 8000 - j
80001 .62

1 .82  

 = 8000 - j6000 VA,

 S2 = 20,0001 .62 + j 20,0001 .82

 = 12,000 + j16,000 VA.



 10.5 Power Calculations 419

c) As we can see from the power triangle in  
Fig. 10.16(c), we can correct the power factor 
to 1 if we place a capacitor in parallel with the 
 existing loads that supplies 10 kVAR of magne-
tizing  reactive power. The value of the capacitor 
is  calculated as follows. First, find the capacitive 
reactance from Eq. 10.20:

 X =
0Vrms 0 2

Q
 

 =
12502 2

-10,000
 

 = -6.25 Ω.

Recall that the reactive impedance of a capacitor 
is -1>vC, and v = 2p1602 = 376.99 rad>s, be-
cause the source frequency is 60 Hz. Thus,

C =
-1
vX

=
-1

1376.992 1 -6.252 = 424.4 mF.

Adding the capacitor as the third load is repre-
sented in geometric form as the sum of the two 
power triangles shown in Fig. 10.17. When the 
power factor is 1, the apparent power and the av-
erage power are the same, as seen from the power 
triangle in Fig. 10.17(c). Therefore, once the power 
factor has been corrected, the apparent power is

0 S 0 = P = 20 kVA.

The magnitude of the current that supplies this 
apparent power is

0 Is 0 =
20,000

250
= 80 A(rms).

The average power lost in the line is thus re-
duced to

P line = 0 Is 0 2R = 1802 210.052 = 320 W.

Now, the power supplied totals 

20,000 + 320 =  20,320 W. 

Note that the addition of the capacitor has re-
duced the line loss by 20%, from 400 W to 320 W.

1 210 kVAR

5

(a) (b)

(c)

22.36 kVA

20 kW

20 kW

10 kVAR26.5658

Figure 10.17 ▲ (a) The sum of the power triangles 
for loads 1 and 2; (b) The power triangle for a  
424.4 mF capacitor at 60 Hz; (c) The sum of the 
power triangles in (a) and (b).

EXAMPLE 10.8  Balancing Power Delivered with Power Absorbed in an AC 
Circuit

a) Calculate the total average and reactive power 
delivered to each impedance in the circuit shown 
in Fig. 10.18.

b) Calculate the average and reactive powers asso-
ciated with each source in the circuit.

c) Verify that the average power delivered equals 
the average power absorbed and that the magne-
tizing reactive power delivered equals the mag-
netizing reactive power absorbed.

Solution

a) The complex power delivered to the 11 + j22Ω 
impedance is

 S1 =
1
2

 V1I1
* = P1 + jQ1

 =
1
2

 178 - j1042 1 -26 + j522

 =
1
2

 13380 + j67602

 = 1690 + j3380 VA.

j2 V

12 V

2j16 V

1

2

1 V

39 I2
1

2
I2Vs

I1

j3 V1 V

I3

V11 2

V2

1

2

V31 2

Vs 5 150 08 V

V1 5 (78 2 j104) V I1 5 (226 2 j52) A

I2 5 (22 1 j6) A

I35 (224 2 j58) A

V2 5 (72 1 j104) V

V3 5 (150 2 j130) V

Figure 10.18 ▲ The circuit, with solution, for Example 10.8.
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Thus, this impedance is absorbing an aver-
age power of 1690 W and a reactive power of  
3380 VAR. The complex power delivered to the 
112 - j162Ω impedance is

 S2 =
1
2

 V2I2
* = P2 + jQ2

 =
1
2

 172 + j1042 1 -2 - j62

 = 240 - j320 VA.

Therefore, the impedance in the vertical branch 
is absorbing 240 W and delivering 320 VAR. The 
complex power delivered to the 11 + j32Ω im-
pedance is

 S3 =
1
2

 V3I3
* = P3 + jQ3

 =
1
2

 1150 - j1302 1 -24 + j582

 = 1970 + j5910 VA.

This impedance is absorbing 1970 W and  
5910 VAR.

b) The complex power associated with the indepen-
dent voltage source is

 Ss = -
1
2

 VsI1
* = Ps + jQs

 = -
1
2

 11502 1 -26 + j522

 = 1950 - j3900 VA.

Note that the independent voltage source is ab-
sorbing an average power of 1950 W and deliv-
ering 3900 VAR. The complex power associated 
with the current-controlled voltage source is

 Sx =
1
2

 139I22 1I2
*2 = Px + jQx

 =
1
2

 1 -78 + j2342 1 -24 + j582

 = -5850 - j5070 VA.

Both average power and magnetizing reactive 
power are being delivered by the dependent 
source.

c) The total power absorbed by the passive imped-
ances and the independent voltage source is

Pabsorbed = P1 + P2 + P3 + Ps = 5850 W.

The dependent voltage source is the only circuit 
element delivering average power. Thus

Pdelivered = 5850 W.

Magnetizing reactive power is being absorbed by 
the two horizontal branches. Thus

Qabsorbed = Q1 + Q3 = 9290 VAR.

Magnetizing reactive power is being delivered by 
the independent voltage source, the capacitor in 
the vertical impedance branch, and the depen-
dent voltage source. Therefore

Qdelivered = 9290 VAR.

Objective 1—Understand ac power concepts, their relationships to one another, and how to calculate them 
in a circuit

 10.5 The load impedance in the circuit shown is 
shunted by a capacitor having a capacitive reac-
tance of -52 Ω. Calculate:
a) the rms phasors VL and IL,
b) the average power and magnetizing reactive 

power absorbed by the 139 + j262Ω load 
impedance,

c) the average power and magnetizing reac-
tive power absorbed by the 11 + j42Ω line 
impedance,

d) the average power and magnetizing reactive 
power delivered by the source, and

e) the magnetizing reactive power delivered by 
the shunting capacitor.

ASSESSMENT PROBLEMS

1

2

Source Load

1 V

39 V

j26 V

j4 V

VL
IL

1

2

Line

250 08 V(rms)
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10.6 Maximum Power Transfer
Recall from Chapter 4 that certain systems—for example, those that 
transmit information via electric signals—need to transfer a maximum 
amount of power from the source to the load. We now  determine the 
condition for maximum power transfer in sinusoidal steady-state net-
works, beginning with Fig. 10.19. We must determine the load impedance 
ZL that maximizes the average power delivered to terminals a and b.  
Any linear network can be replaced by a Thévenin equivalent circuit, so 
we will use the circuit in Fig. 10.20 to find the value of ZL that results in 
maximum average power delivered to ZL.

For maximum average power transfer, ZL must equal the conjugate of 
the Thévenin impedance; that is,

Answer: (a) 252.20 l-4.54° V1rms2 , 
5.38 l-38.23° A1rms2 ;

(b) 1129.09 W, 752.73 VAR;
(c) 23.52 W, 94.09 VAR;
(d) 1152.62 W, -376.36 VAR;
(e) 1223.18 VAR.

 10.6 The voltage at the terminals of a load is  
250 V(rms). The load is absorbing an average 
power of 40 kW and delivering a magnetizing 
reactive power of 30 kVAR. Derive two equiva-
lent impedance models of the load.

Answer:  1 Ω in series with 0.75 Ω of capacitive reac-
tance; 1.5625 Ω in parallel with 2.083 Ω of 
capacitive reactance.

 10.7 Find the phasor voltage Vs in the circuit shown 
if loads L1 and L2 are absorbing 15 kVA at 0.6 pf 
lagging and 6 kVA at 0.8 pf leading, respective-
ly. Express Vs in polar form.

SELF-CHECK: Also try Chapter Problems 10.18, 10.24, and 10.27.

08 V(rms)

j1 V

Vs

1

2

L1 L2
1

2
200

ZL

a
Generalized linear
network operating
in the sinusoidal
steady state

b

Figure 10.19 ▲ A circuit describing maximum 
power transfer.

1

2

a

b

I

ZTh

VTh ZL

Figure 10.20 ▲ The circuit shown in Fig. 10.19, with 
the network replaced by its Thévenin equivalent.

CONDITION FOR MAXIMUM AVERAGE  
POWER TRANSFER

 ZL = ZTh
* . (10.21)

We derive Eq. 10.21 by a straightforward application of elementary calcu-
lus. We begin by expressing ZTh and ZL in rectangular form:

 ZTh = RTh + jXTh,

 ZL = RL + jXL.

In these impedance equations, the reactance term carries its own alge-
braic sign—positive for inductance and negative for capacitance. We as-
sume that the Thévenin voltage amplitude is an rms value. We also use the 
Thévenin voltage as the reference phasor, that is, the phasor whose phase 
angle is 0°. Then, from Fig. 10.20, the rms value of the load current I is

I =
VTh

(RTh + RL) + j(XTh + XL)
 .

Answer: 251.64 l15.91° V(rms).
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The average power delivered to the load is

P = 0 I 0 2RL.

Therefore,

 P =
0VTh 0 2RL

(RL + RTh)2 + (XL + XTh)2 . (10.22)

In Eq. 10.22, remember that VTh, RTh, and XTh are fixed quantities, whereas 
RL and XL are independent variables. Therefore, to maximize P, we must 
find the values of RL and XL that make both 0P>0RL and 0P>0XL zero.

From Eq. 10.22,

 
0P
0XL

=
- 0VTh 0 22RL(XL + XTh)

[(RL + RTh)2 + (XL + XTh)2]2,

 
0P
0RL

=
0VTh 0 2[1RL + RTh2 2 + 1XL + XTh2 2 - 2RL1RL + RTh2 ]

[1RL + RTh2 2 + 1XL + XTh2 2]2  .

From its equation, 0P>0XL is zero when

XL = -XTh.

From its equation, 0P>0RL is zero when

RL = 2RTh
2 + 1XL + XTh2 2.

Note that when we combine the expressions for XL and RL, both partial 
derivatives are zero when ZL = ZTh

* .

The Maximum Average Power Absorbed
When ZL = ZTh

* , we can use the circuit in Fig. 10.20 to calculate the 
maximum average power that is delivered to ZL. The rms load current is 
VTh>2RL because ZL = ZTh

* , and the maximum average power delivered 
to the load is

 Pmax =
0VTh 0 2RL

4RL
2 =

1
4

 
0VTh 0 2

RL
 . (10.23)

If the Thévenin voltage phasor is expressed using its maximum amplitude 
rather than its rms amplitude, Eq. 10.23 becomes

 Pmax =
1
8

 
0Vm 0 2
RL

 . (10.24)

Maximum Power Transfer When ZL is Restricted
Maximum average power can be delivered to ZL only if ZL can be set 
equal to the conjugate of ZTh. In some situations, this is not possible. First, 
RL and XL may be restricted to a limited range of values. To maximize 
power in this situation, set XL as close to -XTh as possible and then adjust 

RL as close to 2RTh
2 + 1XL + XTh2 2 as possible (see Example 10.10).
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A second type of restriction occurs when the magnitude of ZL can be 
varied, but its phase angle cannot. Under this restriction, maximum power 
is delivered to the load when the magnitude of ZL is set equal to the mag-
nitude of ZTh; that is, when

0ZL 0 = 0ZTh 0 .
The proof of this is left to you as Problem 10.45.

For purely resistive networks, maximum power transfer occurs when 
the load resistance equals the Thévenin resistance. Note that we first derived 
this result in the introduction to maximum power transfer in Chapter 4.

Examples 10.9–10.11 calculate the load impedance ZL that produces 
maximum average power transfer to the load, for several different situa-
tions. Example 10.12 finds the condition for maximum power transfer to a 
load for a circuit with an ideal transformer.

EXAMPLE 10.9  Determining Maximum Power Transfer without Load 
Restrictions

a) For the circuit shown in Fig. 10.21, determine the 
impedance ZL that results in maximum average 
power transferred to ZL.

b) What is the maximum average power transferred 
to the load impedance determined in (a)?

Solution

a) To begin, determine the Thévenin equivalent 
with respect to the load terminals a, b. After two 
source transformations involving the 20 V source, 
the 5 Ω resistor, and the 20 Ω resistor, we simpli-
fy the circuit shown in Fig. 10.21 to the one shown 
in Fig. 10.22. Use voltage division in the simpli-
fied circuit to get

 VTh =
- j6 

4 + j3 - j6
 116l0°2

 = 19.2 l-53.13° = 11.52 - j15.36 V.

To find the Thévenin impedance, deactivate the 
source in Fig. 10.22 and calculate the impedance 
seen looking into the terminals a and b. Thus,

ZTh = - j6 } 14 + j32  =
1 - j62 14 + j32

4 + j3 - j6

 = 5.76 - j1.68 Ω.

For maximum average power transfer, the load 
impedance must be the conjugate of ZTh, so

ZL = 5.76 + j1.68 Ω.

b) We calculate the maximum average power deliv-
ered to ZL using the circuit in Fig. 10.23, which 
has the Thévenin equivalent of the original net-
work attached to the load impedance calculated 
in part (a). From Fig. 10.23, the rms magnitude of 
the load current I is

Irms =
19.2>12

215.762 = 1.1785 A(rms).

The average power delivered to the load is

P = I rms
2 15.762 = 8 W.

1

2

5 V

20 V

j3 V

2j6 V

a

b

ZLV
20 08

Figure 10.21 ▲ The circuit for Example 10.9.

1

2

4 V j3 V

2j6 V

a

b

1

2

VThV
16 08

Figure 10.22 ▲ A simplification of Fig. 10.21 by source 
transformations.

I
1

2V

5.76 V

5.76 V

2j1.68 V

1j1.68 V

a

b

19.2 253.138

Figure 10.23 ▲ The circuit shown in Fig. 10.21, 
with the original network replaced by its Thévenin 
equivalent.
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EXAMPLE 10.10  Determining Maximum Power Transfer with Load Impedance 
Restriction

a) For the circuit shown in Fig. 10.24, what value of ZL 
results in maximum average power transfer to ZL? 
What is the maximum power in milliwatts?

b) Assume that the load resistance can be varied 
between 0 and 4000 Ω and that the capacitive re-
actance of the load can be varied between 0 and 
-2000 Ω. What settings of RL and XL transfer 
the most average power to the load? What is the 
maximum average power that can be transferred 
under these restrictions?

Solution

a) If there are no restrictions on RL and XL, max-
imum average power is delivered to the load if 
the load impedance equals the conjugate of the 
Thévenin impedance. Therefore we set

RL = 3000 Ω and XL = -4000 Ω,

or

ZL = 3000 - j4000 Ω.

Because the source voltage is an rms value, the 
average power delivered to ZL is

P =
1
4

 
102

3000
=

25
3

 mW = 8.33 mW.

b) Now RL and XL are restricted, so first we 
set XL as close to -4000 Ω as possible; thus, 
XL = -2000 Ω. Next, we set RL as close to 2RTh

2 + 1XL + XTh2 2 as possible. Thus

RL = 230002 + 1 -2000 + 40002 2 = 3605.55 Ω.

Since RL can be varied from 0 to 4000 Ω, we can 
set RL to 3605.55 Ω. Therefore, the load imped-
ance value is

ZL = 3605.55 - j2000 Ω.

For this value of ZL, the value of the load current 
is

Irms =
10 l0°

6605.55 + j2000
= 1.4489 l-16.85° mA(rms).

The average power delivered to the load is

P = (1.4489 * 10-3)213605.552 = 7.57 mW.

This is the maximum power delivered to a load 
with the specified restrictions on RL and XL. 
Note that this is less than the 8.33 mW that can 
be delivered if there are no restrictions, as we 
found in part (a).

1

2

3000 V

b

aj4000 V

RL

jXL

ZL

08
V(rms)

10

Figure 10.24 ▲ The circuit for Examples 10.10 and 
10.11.

EXAMPLE 10.11  Finding Maximum Power Transfer with Impedance Angle 
Restrictions

A load impedance having a constant phase angle of 
-36.87° is connected across the terminals a and b 
in the circuit shown in Fig. 10.24. The magnitude 
of ZL is varied until the average power delivered is 
maximized under the given restriction.

a) Specify ZL in rectangular form.

b) Calculate the average power delivered to ZL.

Solution

a) When only the magnitude of ZL can be varied, 
maximum power is delivered to the load when 

the magnitude of ZL equals the magnitude of 
ZTh. So,

0ZL 0 = 0ZTh 0 = 0 3000 + j4000 0 = 5000 Ω.

Therefore,

ZL = 5000 l-36.87° = 4000 - j3000 Ω.

b) When ZL equals 4000 - j3000 Ω, the load cur-
rent is

Irms =
10

7000 + j1000
= 1.4142 l-8.13° mA(rms),
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and the average power delivered to the load is

P = 11.4142 * 10-32 2140002 = 8 mW.

This quantity is the maximum power that can 
be delivered by this circuit to a load impedance 

whose angle is constant at -36.87°. Again, 
this quantity is less than the maximum power  
that can be delivered if there are no restrictions 
on ZL.

Objective 2—Understand the condition for maximum real power delivered to a load in an ac circuit

 10.8 The source current in the circuit shown is 
3 cos 5000t A.
a) What impedance should be connected across 

terminals a and b for maximum average 
power transfer?

b) What is the average power transferred to the 
impedance in (a)?

c) Assume that the load is restricted to pure re-
sistance. What size resistor connected across 
a and b will result in the maximum average 
power transferred?

d) What is the average power transferred to the 
resistor in (c)?

3.6 mH

20 V

4 V

ig 5 mF

a

b

Answer: (a) 20 - j10 Ω;
(b) 18 W;
(c) 22.36 Ω;
(d) 17 W.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 10.43, 10.49, and 10.50.

EXAMPLE 10.12  Finding Maximum Power Transfer in a Circuit with an Ideal 
Transformer

The variable resistor in the circuit in Fig. 10.25 is 
adjusted until maximum average power is delivered 
to RL.

a) What is the value of RL in ohms?

b) What is the maximum average power (in watts) 
delivered to RL?

Solution

a) We first find the Thévenin equivalent with re-
spect to the terminals of RL. We determine the 
open-circuit voltage using the circuit in Fig. 10.26. 
The variables V1, V2, I1, and I2 have been added 
to aid the discussion.

1

2

a

b

20 V

60 V

4 : 1

08
V(rms)

I1

I2

V1

1

2

V2

2

1
VTh

1

2

Ideal840

Figure 10.26 ▲ The circuit used to find the Thévenin 
voltage.

1

2

a

b

RL

20 V

60 V Ideal
4 : 1

V(rms)
840 08

Figure 10.25 ▲ The circuit for Example 10.12.
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The ideal transformer imposes the following 
constraints on the variables V1, V2, I1, and I2:

V2 =
1
4

 V1,  I1 = -
1
4

 I2.

The open-circuit value of I2 is zero; hence, I1 is 
zero. It follows that

V1 = 840 l0° V(rms),  V2 = 210 l0° V(rms).

From Fig. 10.26 we note that VTh is the negative 
of V2, because there is no current in the 20 Ω 
 resistor. Hence

VTh = -210 l0° V(rms).

We determine the short-circuit current using the 
circuit in Fig. 10.27. Since I1 and I2 are mesh cur-
rents, write a KVL equation for each mesh:

 840 l0° = 80I1 - 20I2 + V1,

 0 = 20I2 - 20I1 + V2.

Combine these two KVL equations with the con-
straint equations to get

 840 l0° = -40I2 + V1,

 0 = 25I2 +
V1

4
 .

Solving for the short circuit value of I2 yields

I2 = -6 A(rms).

Therefore, the Thévenin resistance is

RTh =
-210
-6

= 35 Ω.

Maximum power will be delivered to RL when 
RL equals 35 Ω.

b) We determine the maximum power delivered 
to RL using the Thévenin equivalent circuit in  
Fig. 10.28. From this circuit, the rms current in the 
load resistor is (-210>70) A(rms). Therefore,

Pmax = a -210
70

 b
2

1352 = 315 W.

1

2

a

b

20 V

60 V

4 : 1

08
V(rms)

I1

I2

V1

1

2

V2

2

1Ideal840

Figure 10.27 ▲ The circuit used to calculate the 
short circuit current.

2

1

35 V

b

a

35 V08
V(rms)
210

Figure 10.28 ▲ The Thévenin equivalent loaded for maximum 
power transfer.

Objective 3—Be able to calculate all forms of ac power in ac circuits with linear transformers and ideal 
transformers

 10.9 Find the average power delivered to the 
100 Ω resistor in the circuit shown if 
vg = 660 cos 5000t V.

vg 100 V

10 mH

20 mH8 mH

34 V

1

2

Answer: 612.5 W.

 10.10 a) Find the average power delivered to the 
400 Ω resistor in the circuit shown if 
vg = 248 cos 10,000t V.

b) Find the average power delivered to the 
375 Ω resistor.

c) Find the power developed by the ideal 
voltage source. Check your result by showing 
that the power absorbed equals the power 
developed.

ASSESSMENT PROBLEMS
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Practical Perspective
Vampire Power
Vampire power, or standby power, may cost you more than you think. 
The average household has about 40 electrical products that draw power, 
even when they are turned off. Approximately 5% of typical residential 
power consumption can be attributed to standby power. Table 10.3 pro-
vides the power consumption for several different devices. Notice that 
when a device is “off” it is often still consuming power.

Consider a typical mobile phone charger. According to the values 
given in Table 10.3, when the charger is detached from the phone it 
consumes only a fraction of the power required when the charger is 

50 mH

400 V375 V

40 mH 100 mH

vg
1

2

Answer: (a) 50 W;
(b) 49.2 W;
(c) 99.2 W, 50 + 49.2 = 99.2 W.

 10.11 Solve Example 10.12 if the polarity dot on the 
coil connected to terminal a is at the top.

Answer: (a) 15 Ω;
(b) 735 W.

 10.12 Solve Example 10.12 if the voltage source is 
reduced to 146 l0° V(rms) and the turns ratio 
is reversed to 1:4.

Answer: (a) 1460 Ω;
(b) 58.4 W.

SELF-CHECK: Also try Chapter Problems 10.56, 10.59, and 10.60.

TABLE 10.3 Average power consumption of common electrical devices

Electrical device+ Power [W]*

Mobile phone charger

 Attached to phone, phone charging 3.68

 Plugged into wall outlet but not into phone 0.26

Notebook computer AC adapter

 Attached to computer, computer charging 44.28

 Attached to computer, computer sleeping 15.77

 Attached to computer, computer off 8.9

 Plugged into wall outlet but not into computer 4.42

DVD player

 On and playing 9.91

 On and not playing 7.54

 Off 1.55

Microwave oven

 Ready with door closed 3.08

 Ready with door open 25.79

 Cooking 1433.0

Inkjet multifunction printer

 On 9.16

 Off 5.26
*Data in this table from Lawrence Berkeley National Laboratory report (http://standby.lbl.gov/standby.html).
+This value is the average of the power measured for many types of each device.
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attached to the phone and the phone is charging. Suppose you charge 
your phone for three hours each day but leave the charger plugged into 
the wall outlet 24 hours a day. Recall that the electric company charges 
you based on the number of kilowatt-hours (kWh) you use in a given 
month. A device that uses 1000 W of power continuously over one hour 
has consumed 1 kWh. Let’s calculate the number of kilowatt-hours 
used by the phone charger in one month:

P3kWh4 =
303313.682 + 2110.262 4

1000
= 1.8 kWh.

Now do the calculation again, this time assuming that you unplug the 
charger when it is not being used to charge the phone:

P3kWh4 =
303313.682 + 21102 4

1000
= 0.33 kWh.

Keeping the charger plugged in when you are not using it consumes 
more than 5 times the power needed to charge your phone every day. 
You can therefore minimize the cost of vampire power by unplugging 
electrical devices if they are not being used.

Why does the phone charger consume power when not plugged 
into the phone? The electronic circuitry in your phone uses 5 V(dc) 
sources to supply power. The phone charger must transform the  
120 V(rms) signal supplied by the wall outlet into a signal that can be 
used to charge the phone. Phone chargers can use linear transformers, 
together with other circuitry, to output the voltage needed by the phone.

Consider the circuit in Fig. 10.29. The linear transformer is part of 
the circuitry used to reduce the voltage supplied by the source to the 
level required by the phone. The additional components needed to 
complete this task are not shown in the circuit. When the phone is un-
plugged from the circuit in Fig. 10.29, but the circuit is still connected to 
the 120 V(rms) source, there is still a path for the current, as shown in 
Fig. 10.30. The current is

I =
120

Rs + R1 + jvL1
 .

The real power, delivered by the voltage source and supplied to the 
resistors, is

P = 1Rs + R12 0 I 0 2.
This is the vampire power being consumed by the phone charger even 
when it is not connected to the phone.

SELF-CHECK: Assess you understanding of this Practical Perspective 
by trying Chapter Problems 10.67–10.69.

120
V(rms)

Rs MR1

L1

R2

L2
1
2

phone

Figure 10.29 ▲ A linear transformer used in a phone 
charger.

1
2

120
V(rms)

jvM

jvL2jvL1

Rs

I

R1 R2

Figure 10.30 ▲ The phone charger circuit when the 
phone is not connected.
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Summary

• Instantaneous power is the product of the instantaneous 
terminal voltage and current, or p = {vi. The positive 
sign is used when the reference direction for the current 
is from the positive to the negative reference polarity of 
the voltage. The frequency of the instantaneous power 
is twice the frequency of the voltage (or current). (See 
page 404.)

• Average power is the average value of the instantaneous 
power over one period. It is the power converted from 
electric to nonelectric form and vice versa, so it is also 
called real power. Average power is given by

 P =
1
2

 VmIm  cos1u
v

- ui2

 = VrmsIrms  cos1u
v

- ui2 .

(See page 405.)

• Reactive power is the electric power exchanged between 
the magnetic field of an inductor and the source that 
drives it or between the electric field of a capacitor and 
the source that drives it. Reactive power is never con-
verted to nonelectric power. Reactive power is given by

 Q =
1
2

 VmIm  sin1u
v
 - ui2

 = VrmsIrms  sin1u
v

- ui2 .

Both average power and reactive power can be ex-
pressed in terms of either peak (Vm, Im) or rms (Vrms,Irms) 
current and voltage. RMS values, also called effective 
values, are widely used in both household and industrial 
applications. (See page 406.)

• The power factor is the cosine of the phase angle be-
tween the voltage and the current:

pf =  cos1u
v

- ui2 .

The terms lagging and leading, added to the description 
of the power factor, indicate whether the current is lag-
ging or leading the voltage and thus whether the load is 
inductive or capacitive. (See page 407.)

• The reactive factor is the sine of the phase angle  
between the voltage and the current:

rf =  sin1u
v

- ui2 .

(See page 407.)

• Complex power is the complex sum of the real and re-
active powers, or

 S = P + j Q

 =
1
2

 VI* = VrmsIrms
*

 = 0 Irms 0 2Z =
0Vrms 0 2

Z*  .

(See page 412.)

• Apparent power is the magnitude of the complex power:

0 S 0 = 2P2 + Q2.

(See page 413.)

• The watt is used as the unit for both instantaneous and 
real power. The var (volt amp reactive, or VAR) is used 
as the unit for reactive power. The volt-amp (VA) is 
used as the unit for complex and apparent power. (See 
page 413.)

• Maximum power transfer occurs in circuits operat-
ing in the sinusoidal steady state when the load im-
pedance is the conjugate of the Thévenin impedance 
as viewed from the terminals of the load impedance. 
(See page 421.)

Problems

Sections 10.1–10.2

 10.1 The following sets of values for v and i pertain to 
the circuit seen in Fig. 10.1. For each set of values, 
 calculate P and Q and state whether the circuit 
 inside the box is absorbing or delivering (1) average 
power and (2) magnetizing vars.

a)  v = 250  cos  (vt + 45°) V,
 i = 4 sin (vt + 60°) A.

b)  v = 18 cos (vt + 30°)  V,
 i = 5 cos (vt - 75°) A.

c)  v = 150 sin (vt + 25°) V,
 i = 2 cos (vt + 50°) A.

d)  v = 80 cos  (vt + 120°) V,
 i = 10 cos (vt + 170°) A.
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Figure P10.8
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 10.9 Find the average power dissipated in the 
30  Ω  resistor in the circuit seen in Fig. P10.9 if 
 ig = 6  cos  20,000t  A.

Figure P10.9

30 Vig

30 iD

iD

1 2

0.5 mH

1.25 mF

 10.10 The load impedance in Fig. P10.10 absorbs 2.5 kW 
and generates 5 kVAR. The sinusoidal voltage 
source develops 7.5 kW.

a) Find the values of inductive line reactance that 
will satisfy these constraints.

b) For each value of line reactance found in (a), 
show that the magnetizing vars developed equals 
the magnetizing vars absorbed.

Figure P10.10

ZL

LoadSource Line

500  08  
V(rms)

20 V

1

2

jX V

Section 10.3

 10.11 Find the rms value of the periodic current shown in 
Fig. P10.11.

Figure P10.11
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 10.2 a) A college student wakes up on a warm day. The 
central air conditioning is on, and the room feels 
comfortable. She turns on the dishwasher, takes 
some milk out of the old refrigerator, and puts 
some oatmeal in the microwave oven to cook. 
If all of these appliances in her dorm room are 
supplied by a 120 V(rms) branch circuit protect-
ed by a 50 A(rms) circuit breaker, will the break-
er interrupt her morning?

b) Her roommate wakes up and moves wet clothes 
from the washer to the dryer. Now does the cir-
cuit breaker interrupt their morning?

 10.3 Show that the maximum value of the instantaneous 
power given by Eq. 10.3 is P + 2P2 + Q2 and that 
the minimum value is P - 2P2 + Q2.

 10.4 A load consisting of a 240  Ω resistor in parallel 
with a (5>18) mF capacitor is connected across the 
terminals of a sinusoidal voltage source vg, where 
vg = 120  cos  5000t  V .

a) What is the peak value of the instantaneous 
power delivered by the source?

b) What is the peak value of the instantaneous 
power absorbed by the source?

c) What is the average power delivered to the load?

d) What is the reactive power delivered to the 
load?

e) Does the load absorb or generate magnetizing 
vars?

f) What is the power factor of the load?

g) What is the reactive factor of the load?

 10.5 a) Calculate the real and reactive power associ-
ated with each circuit element in the circuit in 
Fig. P9.60.

b) Verify that the average power generated equals 
the average power absorbed.

c) Verify that the magnetizing vars generated equal 
the magnetizing vars absorbed.

 10.6 Repeat Problem 10.5 for the circuit shown in Fig. P9.64.

 10.7 Find the average power delivered by the  ideal 
current source in the circuit in Fig. P10.7 if 
ig = 80 cos 1250t  mA.

Figure P10.7

16 H 40 nF

10 kV

ig

 10.8 The op amp in the circuit shown in Fig. P10.8 is 
 ideal. Calculate the average power delivered to the 
1  kΩ resistor when vg = cos  1000t V.
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 10.16 A dc voltage equal to Vdc V is applied to a resistor 
of R Ω. A sinusoidal voltage equal to vs V is also ap-
plied to a resistor of R Ω. Show that the dc voltage 
will deliver the same amount of energy in T seconds 
(where T is the period of the sinusoidal voltage) as 
the sinusoidal voltage provided Vdc equals the rms 
value of vs. (Hint: Equate the two expressions for 
the energy delivered to the resistor.)

Sections 10.4–10.5

 10.17 a) Find VL (rms) and u for the circuit in Fig. P10.17 
if the load absorbs 2500 VA at a lagging power 
factor of 0.8.

b) Construct a phasor diagram of each solution ob-
tained in (a).

Figure P10.17
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250 u8 V(rms) VL Load

1

2

1
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08

 10.18 a) Find the average power, the reactive power, and 
the apparent power supplied by the voltage source 
in the circuit in Fig. P10.18 if vg = 40 cos  106t V.

b) Check your answer in (a) by showing 
Pdev = ΣPabs.

c) Check your answer in (a) by showing 
Qdev = ΣQabs.

Figure P10.18
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2

40 V

25 nF 80 mH
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 10.19 The current Ig in the frequency-domain circuit 
shown in Fig. P10.19 is 50 l0° mA(rms).
a) Find the average and reactive power for the 

 current source.
b) Is the current source absorbing or delivering 

 average power?
c) Is the current source absorbing or delivering 

magnetizing vars?
d) Find the average and reactive powers associated 

with each impedance branch in the circuit.
e) Check the balance between delivered and 

 absorbed average power.
f) Check the balance between delivered and 

 absorbed magnetizing vars.
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 10.12 The periodic current shown in Fig. P10.11 dissipates 
an average power of 1280 W in a resistor. What is 
the value of the resistor?

 10.13 a) Find the rms value of the periodic voltage shown 
in Fig. P10.13

b) Suppose the voltage in part (a) is applied to the 
terminals of a 20 Ω resistor. Calculate the aver-
age power dissipated by the resistor.

c) When the voltage in part (a) is applied to a dif-
ferent resistor, that resistor dissipates 20 mW of 
average power. What is the value of the resistor?

Figure P10.13
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 10.14 a) Find the rms value of the periodic voltage shown 
in Fig. P10.14.

b) If this voltage is applied to the terminals of a 4 Ω 
resistor, what is the average power dissipated in 
the resistor?

Figure P10.14
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 10.15 a) A personal computer with a monitor and key-
board requires 40 W at 115 V(rms). Calculate the 
rms value of the current carried by its power cord.

b) A laser printer for the personal computer in (a) 
is rated at 90 W at 115 V(rms). If this printer is 
plugged into the same wall outlet as the com-
puter, what is the rms value of the current drawn 
from the outlet?
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Figure P10.23
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 10.24 Three loads are connected in parallel across a 125 V 
(rms) line, as shown in Fig. P10.24. Load 1 absorbs 8 kW 
and 9 kVAR; Load 2 absorbs 5 kVA at 0.6 leading; 
Load 3 absorbed 4 kW at unity power factor.

a) Find the impedance that is equivalent to the 
three parallel loads.

b) Find the power factor of the equivalent load as 
seen from the line’s input terminals.

Figure P10.24
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 10.25 The three loads in Problem 10.28 are fed from a line 
having a series impedance 0.02 + j0.05 Ω, as shown 
in Fig. P10.25.

a) Calculate the rms value of the voltage (Vs) at the 
sending end of the line.

b) Calculate the average and reactive powers asso-
ciated with the line impedance.

c) Calculate the average and reactive powers at the 
sending end of the line.

d) Calculate the efficiency (h) of the line if the effi-
ciency is defined as

h = (Pload>Psending end) * 100.

Figure P10.25
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 10.26 Consider the circuit described in Problem 9.78.

a) What is the rms magnitude of the voltage across 
the load impedance?

b) What percentage of the average power devel-
oped by the practical source is delivered to the 
load impedance?

Figure P10.19
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 10.20 Find the average power, the reactive power, and the 
apparent power absorbed by the load in the circuit 
in Fig. P10.20 if vg equals 150 cos  250t V.

Figure P10.20
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 10.21 The two loads shown in Fig. P10.21 can be described as 
follows: Load 1 absorbs an average power of 10 kW 
and delivers 4 kVAR of reactive power; Load 2 has 
an impedance of (60 + j80) Ω. The voltage at the 
terminals of the loads is 100012 cos 100pt V.

a) Find the rms value of the source voltage.

b) By how many microseconds is the load voltage 
out of phase with the source voltage?

c) Does the load voltage lead or lag the source 
 voltage?

Figure P10.21
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 10.22 Two 480 V (rms) loads are connected in parallel. The 
two loads draw a total average power of 40,800 W at 
a power factor of 0.8 lagging. One of the loads draws 
20 kVA at a power factor of 0.96 leading. What is the 
power factor of the other load?

 10.23 The three parallel loads in the circuit shown in 
Fig. 10.23 can be described as follows: Load 1 is 
absorbing an average power of 6 kW and deliv-
ering reactive power of 8 kvars; Load 2 is absorb-
ing an average power of 9 kW and reactive power  
of 3 kvars; Load 3 is a 25 Ω  resistor in parallel 
with a capacitor whose reactance is -5 Ω. Find 
the rms magnitude and the phase angle of Vg if 
Vo = 250l0° V(rms).

PSPICE

MULTISIM
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Will the service to this residence be interrupted? Why 
or why not?

 10.30 The three loads in the circuit seen in Fig. P10.30 
are S1 = 6 + j3 kVA, S2 = 7.5 - j4.5 kVA, 
S3 = 12 + j9 kVA.

a) Calculate the complex power associated with 
each voltage source, Vg1 and Vg2.

b) Verify that the total real and reactive power 
 delivered by the sources equals the total real and 
reactive power absorbed by the network.

Figure P10.30
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 10.31 A group of small appliances on a 60 Hz system 
 requires 40 kVA at 0.85 pf lagging when operated at 
250 V (rms). The impedance of the feeder supplying 
the appliances is 0.02 + j 0.16 Ω. The voltage at the 
load end of the feeder is 250 V (rms).

a) What is the rms magnitude of the voltage at the 
source end of the feeder?

b) What is the average power loss in the feeder?

c) What size capacitor (in microfarads) across the 
load end of the feeder is needed to improve the 
load power factor to unity?

d) After the capacitor is installed, what is the rms 
magnitude of the voltage at the source end of 
the feeder if the load voltage is maintained at 
250 V(rms)?

e) What is the average power loss in the feeder 
for (d)?

 10.32 a) Find the average power dissipated in the line in 
Fig. P10.32.

b) Find the capacitive reactance that when con-
nected in parallel with the load will make the 
load look purely resistive.

c) What is the equivalent impedance of the load 
in (b)?

d) Find the average power dissipated in the line 
when the capacitive reactance is connected 
across the load.

e) Express the power loss in (d) as a percentage of 
the power loss found in (a).

 10.27 The three loads in the circuit in Fig. P10.27 can be 
described as follows: Load 1 is a 240 Ω resistor in 
series with an inductive reactance of 70 Ω; load 2 
is a capacitive reactance of 120 Ω in series with a 
160 Ω resistor; and load 3 is a 30 Ω resistor in series 
with a capacitive reactance of 40 Ω. The frequency 
of the voltage source is 60 Hz.

a) Give the power factor and reactive factor of 
each load.

b) Give the power factor and reactive factor of the 
composite load seen by the voltage source.

Figure P10.27
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 10.28 The three loads in the circuit seen in Fig. P10.28 are 
described as follows: Load 1 is absorbing 7.5 kW and 
2.5 kVAR; Load 2 is absorbing 10 kVA at a power 
factor of 0.28 leading; Load 3 is a 12.5 Ω resistor in 
parallel with an inductance whose reactance is 50 Ω.

a) Calculate the average power and the magnetiz-
ing reactive power delivered by each source if 
Vg1 = Vg2 = 250l0° V(rms).

b) Check your calculations by showing your results 
are consistent with the requirements

 aPdev = aPabs;

 aPdev = aPabs.

Figure P10.28
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 10.29 Suppose the circuit shown in Fig. P10.28 represents 
a residential distribution circuit in which the imped-
ances of the service conductors are negligible and 
Vg1 = Vg2 = 120l0° V(rms). The three loads in the 
circuit are L1 (a new refrigerator, a coffee maker, and 
a microwave oven); L2 (2 incandescent lamps, a hu-
midifier, and a ceiling fan); and L3 (a clothes washer 
and a clothes dryer). Assume that all of these appli-
ances are in operation at the same time. The service 
 conductors  are protected with 20 A circuit breakers. 
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b) Find the magnitude of the voltage at the sending 
end of the line before and after the load is added.

 10.36 a) Find the six branch currents Ia - If in the circuit 
in Fig. P10.36.

b) Find the complex power in each branch of the 
circuit.

c) Check your calculations by verifying that the 
 average power developed equals the average 
power dissipated.

d) Check your calculations by verifying that the 
magnetizing vars generated equal the magnetiz-
ing vars absorbed.

Figure P10.36
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 10.37 a) Find the average power delivered to the 8 Ω 
 resistor in the circuit in Fig. P10.37.

b) Find the average power developed by the ideal 
sinusoidal voltage source.

c) Find Zab.

d) Show that the average power developed equals 
the average power dissipated.

Figure P10.37
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 10.38 a) Find the average power delivered by the sinu-
soidal current source in the circuit of Fig. P10.38.

b) Find the average power delivered to the 40 Ω 
 resistor.

Figure P10.38
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 10.33 The steady-state voltage drop between the load and 
the sending end of the line seen in Fig. P10.33 is 
 excessive. A capacitor is placed in parallel with the 
150 kVA load and is adjusted until the steady-state 
voltage at the sending end of the line has the same 
magnitude as the voltage at the load end, that is, 
 4800 V (rms). The 150 kVA load is operating at a pow-
er factor of 0.8 lag. Calculate the size of the capacitor 
in microfarads if the circuit is operating at 60 Hz. In 
selecting the capacitor, keep in mind the need to keep 
the power loss in the line at a reasonable level.

Figure P10.33
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 10.34 A factory has an electrical load of 800 kW at a lag-
ging power factor of 0.6. An additional variable 
power factor load is to be added to the factory. The 
new load will add 160 kW to the real power load of 
the factory. The power factor of the added load is to 
be adjusted so that the overall power factor of the 
factory is 0.96 lagging.

a) Specify the reactive power associated with the 
added load.

b) Does the added load absorb or deliver magne-
tizing vars?

c) What is the power factor of the additional load?

d) Assume that the voltage at the input to the fac-
tory is 1200 V (rms). What is the rms magnitude 
of the current into the factory before the vari-
able power factor load is added?

e) What is the rms magnitude of the current into 
the factory after the variable power factor load 
has been added?

 10.35 Assume the factory described in Problem 10.34 is fed 
from a line having an impedance of 0.05 + j0.4 Ω. The 
voltage at the factory is maintained at 1200 V (rms).

a) Find the average power loss in the line before 
and after the load is added.
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a) Find the impedance that should be connected 
across a, b for maximum average power transfer.

b) Find the maximum average power transferred to 
the load of (a).

c) Construct the impedance of part (a) using com-
ponents from Appendix H if the source frequency 
is 500 Hz.

Figure P10.42

A circuit
operating in
the sinusoidal
steady
state b

a
1

2
Vab

 10.43 a) Determine the load impedance for the circuit 
shown in Fig. P10.43 that will result in maximum 
average power being transferred to the load if 
v = 8 krad>s.

b) Determine the maximum average power de-
livered to the load from part (a) if vg =
10 cos 8000t V.

c) Repeat part (a) when ZL. consists of two com-
ponents from Appendix H whose values yield 
a maximum average power closest to the value 
calculated in part (b).

Figure P10.43
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 10.44 The load impedance ZL for the circuit shown in  
Fig. P10.44 is adjusted until maximum average power  
is delivered to ZL.

a) Find the maximum average power delivered  
to ZL.

b) What percentage of the total power developed 
in the circuit is delivered to ZL?

Figure P10.44
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 10.45 Prove that if only the magnitude of the load im-
pedance can be varied, the most average power is 

 10.39 a) Find the average power dissipated in each resis-
tor in the circuit in Fig. P10.39.

b) Check your answer by showing that the total 
power developed equals the total power ab-
sorbed.

Figure P10.39
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 10.40 The sinusoidal voltage source in the circuit in  
Fig. P10.40 is developing an rms voltage of 2000 V. 
The 4 Ω load in the circuit is absorbing four times 
as much average power as the 25 Ω load. The two 
loads are matched to the sinusoidal source that has 
an internal impedance of 500l 0° Ω.

a) Specify the numerical values of a1 and a2.

b) Calculate the power delivered to the 25 Ω load.

c) Calculate the rms value of the voltage across the 
4 Ω resistor.

Figure P10.40
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 10.41 Suppose an impedance equal to the conjugate of 
the Thévenin impedance is connected to the termi-
nals c, d of the circuit shown in Fig. P9.75.

a) Find the average power developed by the sinu-
soidal voltage source.

b) What percentage of the power developed by the 
source is lost in the linear transformer?

 10.42 The phasor voltage Vab in the circuit shown in  
Fig. P10.42 is 300 l0° V (rms) when no external 
load is connected to the terminals a, b. When a load 
having an impedance of 200 - j500 Ω is connected 
across a, b, the value of Vab is 156 - j42 V (rms).
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c) If the capacitor is removed from the circuit, what 
is the percentage increase in line loss?

Figure P10.48
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 10.49 The peak amplitude of the sinusoidal voltage source 
in the circuit shown in Fig. P10.49 is 180 V, and its 
frequency is 5000 rad>s. The load resistor can be 
varied from 0 to 4000 Ω, and the load capacitor can 
be varied from 0.1 mF to 0.5 mF.

a) Calculate the average power delivered to the 
load when Ro = 2000 Ω and Co = 0.2 mF.

b) Determine the settings of Ro and Co that will re-
sult in the most average power being transferred 
to Ro.

c) What is the average power in (b)? Is it greater 
than the power in (a)?

d) If there are no constraints on Ro and Co, what is 
the maximum average power that can be deliv-
ered to a load?

e) What are the values of Ro and Co for the condi-
tion of (d)?

f) Is the average power calculated in (d) larger 
than that calculated in (c)?

Figure P10.49
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 10.50 a) Assume that Ro in Fig. P10.49 can be varied 
between 0 and 10 kΩ. Repeat (b) and (c) of 
 Problem 10.49.

b) Is the new average power calculated in (a) 
 greater than that found in Problem 10.49(a)?

c) Is the new average power calculated in (a) less 
than that found in 10.49(d)?

 10.51 a) Find the steady-state expression for the cur-
rents ig and iL in the circuit in Fig. P10.51 when 
vg = 400cos  400t V.

b) Find the coefficient of coupling.

c) Find the energy stored in the magnetically cou-
pled coils at t = 1.25p ms and t = 2.5p ms.
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transferred to the load when 0ZL 0 = 0ZTh 0 . (Hint:  
In deriving the expression for the load’s average 
power, write the load impedance (ZL) in the form 
ZL = 0ZL 0 cos u + j 0ZL 0 sin u, and note that only 
0ZL 0  is variable.)

 10.46 The variable resistor in the circuit shown in 
Fig. P10.46 is adjusted until the average power it 
 absorbs is maximum.

a) Find R.

b) Find the maximum average power.

c) Find a resistor in Appendix H that would have 
the most average power delivered to it.

Figure P10.46
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 10.47 The variable resistor Ro in the circuit shown in  
Fig. P10.47 is adjusted until maximum average pow-
er is delivered to Ro.

a) What is the value of Ro in ohms?

b) Calculate the average power delivered to Ro.

c) If Ro is replaced with a variable impedance Zo, 
what is the maximum average power that can be 
delivered to Zo?

d) In (c), what percentage of the circuit’s devel-
oped power is delivered to the load Zo?

Figure P10.47
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 10.48 The sending-end voltage in the circuit seen in  
Fig. P10.48 is adjusted so that the rms value of the 
load voltage is always 4000 V. The variable capaci-
tor is adjusted until the average power dissipated in 
the line resistance is minimum.

a) If the frequency of the sinusoidal source is 
60 Hz, what is the value of the capacitance in 
 microfarads?

b) If the capacitor is removed from the circuit, what 
percentage increase in the magnitude of Vs is 
necessary to maintain 4000 V at the load?
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 10.56 For the frequency-domain circuit in Fig. P10.56,  
calculate:

a) the rms magnitude of Vo;

b) the average power dissipated in the 9 Ω resistor;

c) the percentage of the average power generated 
by the ideal voltage source that is delivered to 
the 9 Ω load resistor.

Figure P10.56
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 10.57 The 9 Ω resistor in the circuit in Fig. P10.56 is re-
placed with a variable impedance Zo. Assume Zo is 
adjusted for maximum average power transfer to Zo.

a) What is the maximum average power that can 
be delivered to Zo?

b) What is the average power developed by the 
ideal voltage source when maximum average 
power is delivered to Zo?

c) Choose single components from Appendix H to 
form an impedance that dissipates average pow-
er closest to the value in part (a). Assume the 
source frequency is 60 Hz.

 10.58 The impedance ZL in the circuit in Fig. P10.58 is ad-
justed for maximum average power transfer to ZL. 
The internal impedance of the sinusoidal voltage 
source is 4 + j7 Ω.

a) What is the maximum average power delivered 
to ZL?

b) What percentage of the average power delivered 
to the linear transformer is delivered to ZL?

d) Find the power delivered to the 375 Ω resistor.
e) If the 375 Ω resistor is replaced by a variable re-

sistor RL, what value of RL will yield maximum 
average power transfer to RL?

f) What is the maximum average power in (e)?
g) Assume the 375 Ω resistor is replaced by a vari-

able impedance ZL. What value of ZL will result 
in maximum average power transfer to ZL?

h) What is the maximum average power in (g)?

Figure P10.51
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 10.52 The value of the parameters in the circuit shown 
in Fig. P10.52 are L1 = 4 mH; L2 = 1 mH;  
k = 0.75; Rg = 2 Ω; and RL = 14 Ω. If  
vg = 5422 cos 1000t V, find

a) the rms magnitude of vo;

b) the average power delivered to RL;

c) the percentage of the average power generated 
by the ideal voltage source that is delivered to RL.

Figure P10.52
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 10.53 Assume the coefficient of coupling in the circuit in 
Fig. P10.52 is adjustable.

a) Find the value of k that makes vo equal to zero.

b) Find the power developed by the source when k 
has the value found in (a).

 10.54 Assume the load resistor (RL) in the circuit in  
Fig. P10.52 is adjustable.
a) What value of RL will result in the maximum av-

erage power being transferred to RL?
b) What is the value of the maximum power 

 transferred?

 10.55 Find the impedance seen by the ideal voltage source 
in the circuit in Fig. P10.55 when Zo is adjusted for 
maximum average power transfer to Zo.

Figure P10.55
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 10.59 Find the average power delivered to the 5 kΩ resis-
tor in the circuit of Fig. P10.59.

Figure P10.59
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d) What is the maximum average power that can 
be delivered to Ro?

Figure P10.63
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 10.64 The variable load resistor RL in the circuit shown in 
Fig. P10.64 is adjusted for maximum average power 
transfer to RL.

a) Find the maximum average power.

b) What percentage of the average power devel-
oped by the ideal voltage source is delivered 
to RL when RL is absorbing maximum average 
power?

c) Test your solution by showing that the power 
developed by the ideal voltage source equals the 
power dissipated in the circuit.

Figure P10.64
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 10.65 Repeat Problem 10.64 for the circuit shown in  
Fig. P10.65.

Figure P10.65
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 10.66 a) If N1 equals 1000 turns, how many turns should 
be placed on the N2 winding of the ideal trans-
former in the circuit seen in Fig. P10.66 so that 
maximum average power is delivered to the 
6800 Ω load?

b) Find the average power delivered to the 6800 Ω 
resistor.

c) What percentage of the average power deliv-
ered by the ideal voltage source is dissipated in 
the linear transformer?

PSPICE

MULTISIM

PSPICE

MULTISIM

 10.60 The ideal transformer connected to the 5 kΩ load in 
Problem 10.59 is replaced with an ideal transformer 
that has a turns ratio of 1:a.

a) What value of a results in maximum average 
power being delivered to the 5 kΩ resistor?

b) What is the maximum average power?

 10.61 The load impedance ZL in the circuit in Fig. P10.61 
is adjusted until maximum average power is trans-
ferred to ZL.

a) Specify the value of ZL if N1 = 3600 turns and 
N2 = 600 turns.

b) Specify the values of IL and VL when ZL is ab-
sorbing maximum average power.

Figure P10.61
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 10.62 a) Find the turns ratio N1>N2 for the ideal transform-
er in the circuit in Fig. P10.62 so that maximum 
average power is delivered to the 400 Ω load.

b) Find the average power delivered to the 400 Ω 
load.

c) Find the voltage V1.

d) What percentage of the power developed by the 
ideal current source is delivered to the 400 Ω re-
sistor?

Figure P10.62
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 10.63 The sinusoidal voltage source in the circuit in  
Fig. P10.63 is operating at a frequency of 20 krad>s.  
The variable capacitive reactance in the circuit is 
adjusted until the average power delivered to the 
100 Ω resistor is as large as possible.

a) Find the value of C in microfarads.

b) When C has the value found in (a), what is the 
average power delivered to the 100 Ω resistor?

c) Replace the 100 Ω resistor with a variable resis-
tor Ro. Specify the value of Ro so that maximum 
average power is delivered to Ro.
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adapter is unplugged from the wall outlet for 19 
hours.

 10.68 a) Suppose you use your microwave oven for  
12 minutes each day. The remaining time, the 
oven is ready with the door closed. Use the val-
ues in Table 10.3 to calculate the total number 
of kilowatt-hours used by the microwave oven 
in one month.

b) What percentage of the power used by the mi-
crowave oven in one month is consumed when 
the oven is ready with the door closed?

 10.69 Determine the amount of power, in watts, con-
sumed by the transformer in Fig. 10.30. Assume that 
the voltage source is ideal (Rs = 0 Ω), R1 = 5 Ω, 
and L1 = 250 mH. The frequency of the 120 V(rms) 
source is 60 Hz.

 10.70 Repeat Problem 10.69, but assume that the linear 
transformer has been improved so that R1 = 50 mΩ.  
All other values are unchanged.

 10.71 Repeat Problem 10.69 assuming that the linear 
transformer in Fig. 10.30 has been replaced by an 
ideal transformer with a turns ratio of 30:1. (Hint:  
you shouldn’t need to make any calculations to de-
termine the amount of power consumed.)

Figure P10.66
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 10.67 a) Use the values in Table 10.3 to calculate the 
number of kilowatt-hours consumed in one 
month by a notebook computer AC adapter if 
every day the computer is charging for 5 hours 
and sleeping for 19 hours..

b) Repeat the calculation in part (a) assuming that 
the computer is charging for 5 hours and off for 
19 hours.

c) Repeat the calculation in part (a) assuming that 
the computer is charging for 5 hours and discon-
nected from the AC adapter for 19 hours, but the 
AC adapter remains plugged into the wall outlet.

d) Repeat the calculation in part (a) assuming that 
the computer is charging for 5 hours and the AC 
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11
CHAPTER 

Balanced  
Three-Phase Circuits
We use three-phase circuits to generate, transmit, dis-
tribute, and consume large blocks of electric power. The com-
prehensive analysis of such systems is a field of study in its own 
right; we cannot cover it in a single chapter. Fortunately, an un-
derstanding of the steady-state sinusoidal behavior of balanced 
three-phase circuits is sufficient for engineers who do not special-
ize in power systems. We analyze balanced three-phase circuits 
using several shortcuts based on circuit-analysis techniques dis-
cussed in earlier chapters.

The basic structure of a three-phase system consists of volt-
age sources connected to loads by means of transformers and 
transmission lines. To analyze such a circuit, we can reduce it 
to a voltage source connected to a load via a line. The omission 
of the transformer simplifies the discussion without jeopardiz-
ing a basic understanding of the three-phase system. Figure 11.1 
on page 442 shows a basic circuit. A defining characteristic of a 
balanced three-phase circuit is that it contains a set of balanced 
three-phase voltages at its source. We begin by considering these 
voltages, and then we move to the voltage and current relation-
ships for the Y-Y and Y-∆ circuits. After considering voltage and 
current in such circuits, we conclude with sections on power and 
power measurement.

11.1 Balanced Three-Phase Voltages p. 442

11.2 Three-Phase Voltage Sources p. 443

11.3 Analysis of the Wye-Wye Circuit p. 444

11.4  Analysis of the Wye-Delta Circuit  
p. 450

11.5  Power Calculations in Balanced  
Three-Phase Circuits p. 453

11.6  Measuring Average Power in  
Three-Phase Circuits p. 458

1 Know how to analyze a balanced,  
three-phase wye-wye connected circuit.

2 Know how to analyze a balanced,  
three-phase wye-delta connected circuit.

3 Be able to calculate power (average, 
 reactive, and complex) in any three-phase 
circuit.

CHAPTER OBJECTIVES



Practical Perspective
Transmission and Distribution of Electric Power
In this chapter, we introduce circuits that are designed 
to handle large blocks of electric power. These are the 
circuits used to transport electric power from generating 
plants to both industrial and residential customers. We 
 introduced a very basic residential customer circuit in the 
design perspective for Chapter 1. Now we introduce the 
type of circuit that delivers electric power to an entire res-
idential subdivision.

One of the requirements imposed on electric  utilities 
is to maintain the rms voltage level at the customer’s 
premises. Whether lightly loaded, as at 3:00 a.m., or 
heavily loaded, as at midafternoon on a hot, humid day, 
the utility must supply the same rms voltage. To sat-
isfy this requirement, utility systems place capacitors 
at strategic locations in the distribution network. The 
 capacitors supply magnetizing vars close to the loads 

requiring them, adjusting the power factor of the load. 
We illustrate this concept after we have analyzed bal-
anced three-phase circuits.

Douglas Sacha/Moment/Getty Images
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11.1 Balanced Three-Phase Voltages
A set of balanced three-phase voltages consists of three sinusoidal 
voltages that have identical amplitudes and frequencies but are out of 
phase with each other by exactly 120°. We refer to the three phases as 
a, b, and c, and use the a-phase as the reference phase. The three volt-
ages are referred to as the a-phase voltage, the b-phase voltage, and the 
c-phase voltage.

Only two possible phase relationships can exist between the a-phase volt-
age and the b- and c-phase voltages. One possibility is for the b-phase voltage 
to lag the a-phase voltage by 120°, in which case the c-phase voltage must 
lead the a-phase voltage by 120°. This phase relationship is known as the 
abc (or positive) phase sequence. Using phasor notation, we see that the 
abc phase sequence is

 Va = Vm l0° ,  

(11.1)Vb = Vm l-120°,

Vc = Vm l+120°.

The only other possibility is for the b-phase voltage to lead the a-phase 
voltage by 120°, in which case the c-phase voltage must lag the a-phase 
voltage by 120°. This phase relationship is known as the acb (or negative) 
phase sequence. In phasor notation, the acb phase sequence is

 Va = Vm l0°,  

(11.2)Vb = Vm l+120°,

Vc = Vm l-120°.

Figure 11.2 shows the phasor diagrams of the voltages in Eqs. 11.1 
and 11.2. The phase sequence is the clockwise order of the subscripts 
around the diagram, starting from Va. You can use the phasor diagrams 
to show that the sum of the three phasor voltages in a balanced set is 
zero. This important characteristic can also be derived from Eq. 11.1 or 
11.2 to give

Va + Vb + Vc = 0.

Because the sum of the phasor voltages is zero, the sum of the instanta-
neous voltages also is zero; that is,

va + vb + vc = 0.

Now that we know the nature of a balanced set of three-phase volt-
ages, we can state the first of the analytical shortcuts alluded to in the 
introduction to this chapter: if we know the phase sequence and one volt-
age in the set, we know the entire set. Thus, for a balanced three-phase 
system, once we determine the voltages (or currents) in one phase, we can 
use the 120° phase angle difference and the phase sequence to find the 
voltages or currents in the remaining two phases.

SELF-CHECK: Assess your understanding of three-phase voltages by 
trying Chapter Problems 11.1 and 11.2.

Three-phase
line

Three-phase
load

Three-phase
voltage
source

Figure 11.1 ▲ A basic three-phase circuit.

Va

Vb

Vc

Vb

Va

Vc

Figure 11.2 ▲ Phasor diagrams of a balanced 
set of three-phase voltages. (a) The abc (positive) 
 sequence. (b) The acb (negative) sequence.



 11.2 Three-Phase Voltage Sources 443

11.2 Three-Phase Voltage Sources
A three-phase voltage source is a generator with three separate windings 
distributed around the periphery of the stator. Each winding comprises 
one phase of the generator. The rotor of the generator is an electromag-
net driven at synchronous speed by a prime mover, such as a steam or 
gas turbine. Rotation of the electromagnet induces a sinusoidal voltage 
in each winding. The phase windings are designed so that the sinusoi-
dal voltages induced in them are equal in amplitude and out of phase 
with each other by 120°. The phase windings are stationary with respect 
to the rotating electromagnet, so the frequency of the voltage induced 
in each winding is the same. Figure 11.3 shows a sketch of a two-pole 
three-phase source.

There are two ways of interconnecting the separate phase wind-
ings to form a three-phase source: as a wye (Y) or as a delta (∆). 
Figure 11.4 shows both, with ideal voltage sources modeling the phase 
windings of the three-phase generator. The common terminal in the 
Y-connected source, labeled n in Fig. 11.4(a), is called the neutral ter-
minal of the source, which may or may not be available for external 
connections.

When constructing a circuit model of a three-phase generator, we 
need to consider the impedance of each phase winding. Sometimes it is 
so small (compared with other impedances in the circuit) that we don’t 
include it in the generator model; the model then consists solely of ideal 
voltage sources, as in Fig. 11.4. If the impedance of each phase winding is 
not negligible, we connect an inductive winding impedance in series with 
an ideal sinusoidal voltage source in each phase. Because the winding con-
struction in each phase is the same, we make the winding impedances in 
each phase identical. Figure 11.5 shows two models of a three-phase gen-
erator, one using a Y connection and the other using a ∆ connection. In 
both models, R

w
 is the winding resistance, and X

w
 is the inductive reac-

tance of the winding.
Because both three-phase sources and three-phase loads can be either 

Y-connected or ∆-connected, the basic circuit in Fig. 11.1 represents four 
different configurations:

Source Load

Y Y

Y ∆

∆ Y

∆ ∆

We begin by analyzing the Y-Y circuit. The remaining three config-
urations can be reduced to a Y-Y equivalent circuit, so analysis of 
the Y-Y circuit is the key to solving all balanced three-phase arrange-
ments. We then illustrate how to transform a Y-∆ circuit to a Y-Y 
circuit and leave the analysis of the ∆-Y and ∆-∆ circuits to you in the 
Problems.
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Figure 11.3 ▲ A sketch of a three-phase voltage 
source.
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Figure 11.4 ▲ The two basic connections of an 
ideal three-phase source. (a) A Y-connected source. 
(b) A ∆-connected source.
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What happens to the KCL equation if the three-phase circuit in 
Fig. 11.6 is balanced? To answer this question, we must formally define 
a balanced three-phase circuit. A three-phase circuit is balanced if it 
 satisfies the following criteria:

11.3 Analysis of the Wye-Wye Circuit
Figure 11.6 illustrates a general Y-Y circuit, in which we included a fourth 
conductor that connects the source neutral to the load neutral. A fourth 
conductor is possible only in the Y-Y arrangement. For convenience, 
we transformed the Y connections into “tipped-over tees.” In Fig. 11.6, 
Zga, Zgb, and Zgc represent the internal impedance associated with each 
phase winding of the voltage generator; Zla, Zlb and Zlc represent the im-
pedance of the lines connecting a phase of the source to a phase of the 
load; Z0 is the impedance of the neutral conductor connecting the source 
neutral to the load neutral; and ZA, ZB, and ZC represent the impedance 
of each phase of the load.

We can describe this circuit with a single KCL equation. Using the 
source neutral as the reference node and letting VN denote the node volt-
age between the nodes N and n, we get

VN

Z0
+

VN - Va′n

ZA + Zla + Zga
+

VN - Vb′n

ZB + Zlb + Zgb
+

VN - Vc′n

ZC + Zlc + Zgc
= 0.
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a

a

Va
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Vc Vb
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Figure 11.5 ▲ A model of a three-phase source 
with winding impedance: (a) a Y-connected source; 
and (b) a ∆-connected source.
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1
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2 1

I0
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Figure 11.6 ▲ A three-phase Y-Y system.

CONDITIONS FOR A BALANCED  
THREE-PHASE CIRCUIT

1. The voltage sources form a balanced three-phase set.

2. The impedance of each phase of the voltage source is the same.

3. The impedance of each line is the same.

4. The impedance of each phase of the load is the same.
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There is no restriction on the impedance of the neutral conductor; its 
value has no effect on whether the system is balanced.

The circuit in Fig. 11.6 is balanced if

1. Va′n, Vb′n, and Vc′n are a set of balanced three-phase voltages.

2. Zga = Zgb = Zgc.

3. Zla = Zlb = Zlc.

4. ZA = ZB = ZC.

If the circuit in Fig. 11.6 is balanced, we can rewrite the KCL equation at 
VN as

 VNa 1
Z0

+
3

Zf

b =
Va′n + Vb′n + Vc′n

Zf

, (11.3)

where

Zf = ZA + Zla + Zga = ZB + Zlb + Zgb = ZC + Zlc + Zgc.

The right-hand side of Eq. 11.3 is zero because by hypothesis the numer-
ator is a set of balanced three-phase voltages and Zf is not zero. The only 
value of VN that satisfies Eq. 11.3 is zero. Therefore, for a balanced three-
phase circuit,

 VN = 0. (11.4)

When a three-phase circuit is balanced, VN is zero, so the volt-
age between the source neutral, n, and the load neutral, N, is zero. 
Consequently, the current in the neutral conductor is zero, so we can 
either remove the neutral conductor from a balanced Y-Y configura-
tion (I0 = 0) or replace it with a short circuit between the nodes n and 
N (VN = 0). Both equivalents are convenient to use when modeling bal-
anced three-phase circuits.

If the three-phase circuit in Fig. 11.6 is balanced, the three line 
 currents are

 IaA =
Va′n - VN

ZA + Zla + Zga
=

Va′n

Zf

, (11.5)

IbB =
Vb′n - VN

ZB + Zlb + Zgb
=

Vb′n

Zf

,

IcC =
Vc′n - VN

ZC + Zlc + Zgc
=

Vc′n

Zf

 .

From these equations, we see that the three line currents form a bal-
anced set; that is, the current in each line is equal in amplitude and 
frequency and is 120° out of phase with the other two line currents. 
Thus, if we calculate the current IaA and we know the phase sequence, 
we have a shortcut for finding IbB and IcC. This is the same shortcut 
used to find the b- and c-phase source voltages from the a-phase source 
voltage.
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Terminology
We use Fig. 11.6 to define some important terms.

• Line voltage is the voltage across any pair of lines. In Fig. 11.6, the 
three line voltages at the load are VAB, VBC, and VCA.

• Phase voltage is the voltage across a single phase. In Fig. 11.6, the 
three phase voltages at the load are VAN, VBN, and VCN.

• Line current is the current in a single line. In Fig. 11.6, the three line 
currents are IaA, IbB, and IcC.

• Phase current is the current in a single phase. In Fig. 11.6, the three 
phase currents for the load are IAN, IBN, and ICN.

From Fig. 11.6 you can see that when the load is Y-connected; the line 
current and phase current in each phase are identical, but the line voltage 
and phase voltage in each phase are different.

The Greek letter phi (f) is widely used in the literature to de-
note a per-phase quantity. Thus, Vf, If, Zf, Pf, and Qf are interpreted 
as voltage-per-phase, current-per-phase, impedance-per-phase, real  
power-per-phase, and reactive power-per-phase, respectively.

Since three-phase systems are designed to handle large blocks of elec-
tric power, all voltage and current specifications are rms values. When 
voltage ratings are given, they refer specifically to the rating of the line 
voltage. Thus, when a three-phase transmission line is rated at 345 kV, 
the value of the line-to-line voltage is 345,000 V(rms). In this chapter, we 
express all voltages and currents as rms values.

Constructing a Single-Phase Equivalent Circuit
We can use Eq. 11.5 to construct an equivalent circuit for the a-phase 
of the balanced Y-Y circuit. From this equation, the line current in the 
a-phase is the voltage generated in the a-phase winding of the genera-
tor divided by the total impedance in the a-phase of the circuit. Thus, 
Eq. 11.5 describes the circuit shown in Fig. 11.7, in which the neutral 
 conductor has been replaced by a short circuit. The circuit in Fig. 11.7 
is the  single-phase equivalent circuit for a balanced three-phase circuit. 
Once we solve this circuit, we can write down the voltages and currents 
in the other two phases, using the relationships among the phases. Thus, 
drawing a  single-phase equivalent circuit is an important first step in ana-
lyzing a balanced three-phase circuit.

Note that the current in the neutral conductor in Fig. 11.7 is IaA. This 
is not the same as the current in the neutral conductor of the balanced 
three-phase circuit, which is

I0 = IaA + IbB + IcC.

Thus, the circuit shown in Fig. 11.7 gives the correct value of the line 
current but only the a-phase component of the neutral current. In a bal-
anced three-phase circuit, the line currents form a balanced three-phase 
set, and I0 = 0.

Once we know the line current (IaA) in Fig. 11.7, we know the 
phase current (IAN) because they are equal. We can also use Ohm’s 
law to calculate the phase voltage (VAN) from the phase current and 

a9

n

a A

N

IaAVa9n

Zga Zla

ZA
1

2

Figure 11.7 ▲ A single-phase equivalent circuit.
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the load impedance. But how do we calculate the line voltage, VAB? 
The line voltage is not even shown in the single-phase equivalent cir-
cuit in Fig. 11.7. In a Y-connected load, the line voltages and the phase 
voltages are related. Using Fig. 11.8, we can describe those relation-
ships using KVL:

VAB = VAN - VBN,

VBC = VBN - VCN,

VCA = VCN - VAN.

To derive the relationship between the line voltages and the phase 
voltages, we assume a positive, or abc, sequence. Using the phase voltage 
in the a-phase as the reference,

VAN = Vf l0°,

VBN = Vf l-120°,

VCN = Vf l+120°,

where Vf represents the magnitude of the phase voltage. Substituting the 
phase voltages into the equations for the line voltages yields

 VAB = Vf l0° - Vf l-120° = 13Vf l30°, (11.6)

 VBC = Vf l-120° - Vf l120° = 13Vf l-90°, (11.7)

 VCA = Vf l120° - Vf l0° = 13Vf l150°. (11.8)

Equations 11.6–11.8 reveal that

1. The magnitude of the line voltage is 13 times the magnitude of the 
phase voltage.

2. The line voltages form a balanced three-phase set.

3. The set of line voltages leads the set of phase voltages by 30°.

We leave it to you to demonstrate that for a negative sequence, the 
only change is that the set of line voltages lags the set of phase volt-
ages by 30°. The phasor diagrams shown in Fig. 11.9 summarize these 
observations. Here, again, is a shortcut in the analysis of a balanced 
system: If you know any phase voltage in the circuit, say VBN, you 
can determine the  corresponding line voltage, which is VBC, and vice 
versa.

Example 11.1 shows how to use a single-phase equivalent circuit to 
solve a balanced three-phase Y-Y circuit.
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Figure 11.8 ▲ Line-to-line and line-to-neutral 
voltages.
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Figure 11.9 ▲ Phasor diagrams showing the 
 relationship between line-to-line and line-to- 
neutral voltages in a balanced system. (a) The abc 
 sequence. (b) The acb sequence.
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EXAMPLE 11.1 Analyzing a Wye-Wye Circuit

A balanced three-phase Y-connected generator with 
positive sequence has an impedance of 0.2 + j 0.5 Ω >f 
and an internal voltage of 120 V>f. The generator 
feeds a balanced three-phase Y-connected load hav-
ing an impedance of 39 + j 28 Ω >f. The impedance 
of the line connecting the generator to the load is 
0.8 + j 1.5 Ω >f. The internal voltage of the generator 
in the a-phase is the reference phasor.

a) Construct the a-phase equivalent circuit of the 
system.

b) Calculate the three line currents IaA, IbB, and IcC.

c) Calculate the three phase voltages at the load, 
VAN, VBN, and VCN.

d) Calculate the line voltagesVAB, VBC, and VCA at 
the terminals of the load.

e) Calculate the phase voltages at the terminals of 
the generator, Van, Vbn, and Vcn.

f) Calculate the line voltages Vab, Vbc, and Vca at the 
terminals of the generator.

g) Repeat (a)–(f) for a negative phase sequence.

Solution

a) Figure 11.10 shows the single-phase equivalent 
circuit.

b) The a-phase line current is the voltage in the a-phase 
divided by the total impedance in the a-phase:

 IaA =
120 l0°

(0.2 + 0.8 + 39) + j(0.5 + 1.5 + 28)
 

 =
120 l0°
40 + j30

 

 = 2.4 l-36.87° A.

For a positive phase sequence,

 IbB = 2.4 l-156.87° A,

 IcC = 2.4 l83.13° A.

c) The line current and the phase current in the 
a-phase are equal. The phase voltage across the 
load in the a-phase is the product of the single- 
phase impedance of the load and the phase  
current in the load:

 VAN = (39 + j 28)(2.4 l-36.87°)

 = 115.22 l-1.19° V.

For a positive phase sequence,

 VBN = 115.22 l-121.19° V,

 VCN = 115.22 l118.81° V.

d) For a positive phase sequence, the magnitude of 
the line voltages is 13 times the magnitude of 
the phase voltages, and the line voltages lead the 
phase voltages by 30°. Thus

 VAB = (13 l30°)VAN

 = 199.58 l28.81° V,

 VBC = 199.58 l-91.19° V,

 VCA = 199.58 l148.81° V.

e) The phase voltage of the source in the a-phase is 
the voltage of the ideal source minus the voltage 
across the source impedance. Therefore,

 Van = 120 - (0.2 + j0.5)(2.4 l-36.87°)

 = 120 - 1.29 l31.33°

 = 118.90 - j0.67

 = 118.90 l-0.32° V.

For a positive phase sequence,

 Vbn = 118.90 l-120.32° V,

 Vcn = 118.90 l119.68° V.
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Figure 11.10 ▲ The single-phase equivalent circuit for 
Example 11.1.
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f) The line voltages at the source terminals are

 Vab = (13 l30°)Van

 = 205.94 l29.68° V,

 Vbc = 205.94 l-90.32° V,

 Vca = 205.94 l149.68° V.

g) Changing the phase sequence has no effect on 
the single-phase equivalent circuit. The three line 
currents are

 IaA = 2.4 l-36.87° A,

 IbB = 2.4 l83.13° A,

 IcC = 2.4 l-156.87° A.

The phase voltages at the load are

 VAN = 115.22 l-1.19° V,

 VBN = 115.22 l118.81° V,

 VCN = 115.22 l-121.19° V.

For a negative phase sequence, the line voltages 
lag the phase voltages by 30°:

 VAB = (13 l-30°)VAN

 = 199.58 l-31.19° V,

 VBC = 199.58 l88.81° V,

 VCA = 199.58 l-151.19° V.

The phase voltages at the terminals of the 
 generator are

 Van = 118.90 l-0.32° V,

 Vbn = 118.90 l119.68° V,

 Vcn = 118.90 l-120.32° V.

The line voltages at the terminals of the gener-
ator are

 Vab = (13 l-30°)Van

 = 205.94 l-30.32° V,

 Vbc = 205.94 l89.68° V,

 Vca = 205.94 l-150.32° V.

Objective 1—Know how to analyze a balanced, three-phase wye-wye circuit

 11.1 The voltage from A to N in a balanced three-
phase circuit is 240 l-30° V. If the phase 
sequence is positive, what is the value of VBC?

Answer: 415.69 l-120° V.

 11.2 The c-phase voltage of a balanced three-phase 
Y-connected system is 450 l-25° V. If the 
phase sequence is negative, what is the value 
of VAB?

Answer: 779.42 l65° V.

 11.3 The phase voltage at the terminals of a bal-
anced three-phase Y-connected load is 2400 V. 
The load has an impedance of 16 + j12 Ω >f 
and is fed from a line having an impedance of 
0.10 + j0.80 Ω >f. The Y-connected source at 
the sending end of the line has a phase se-
quence of acb and an internal impedance of 
0.02 + j0.16 Ω >f. Use the a-phase voltage at 

the load as the reference and calculate (a) the 
line currents IaA, IbB, and IcC; (b) the line volt-
ages at the source, Vab, Vbc, and Vca; and (c) the 
internal phase-to-neutral voltages at the source, 
Va′n, Vb′n, and Vc′n.

Answer: (a) IaA = 120 l-36.87° A,

IbB = 120 l83.13° A, and

IcC = 120 l-156.87° A;

(b) Vab = 4275.02 l-28.38° V,

Vbc = 4275.02 l91.62° V, and

Vca = 4275.02 l-148.38° V;

(c) Va′n = 2482.05 l1.93° V,

Vb′n = 2482.05 l121.93° V, and

Vc′n = 2482.05 l-118.07° V.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 11.9, 11.11, and 11.12.
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11.4 Analysis of the Wye-Delta Circuit
A balanced, three-phase, Y@∆ circuit is shown in Fig. 11.11. From this 
 circuit you can see that the line voltage and the phase voltage in each 
phase of the load are the same. For example, VAN = VAB. But the line 
current and the phase current in each phase of the load are not the same. 
This is an important difference when comparing the Y@∆ circuit with the 
Y-Y circuit, where the line and phase currents are the same in each phase 
of the load but the line and phase voltages are different.

When the load in a three-phase circuit is connected in a delta, it can 
be transformed into a wye by using the delta-to-wye transformation dis-
cussed in Section 9.6. When the load is balanced, the impedance of each 
leg of the wye is one-third the impedance of each leg of the delta, or
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Figure 11.11 ▲ A balanced three-phase Y-Δ system.
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Figure 11.12 ▲ A single-phase equivalent circuit.

which follows directly from Eqs. 9.21–9.23. After the ∆ load has been re-
placed by its Y equivalent, the a-phase can be modeled by the single-phase 
equivalent circuit shown in Fig. 11.12.

We use this circuit to calculate the line currents, and we then use the 
line currents to find the currents in each phase of the original ∆-connected 
load. The relationship between the line currents and the phase currents in 
each phase of the delta can be derived using the circuit shown in Fig. 11.11. 
We assume a positive phase sequence and let If represent the magnitude 
of the phase current. Then

 IAB = If l0°,

 IBC = If l-120°,

 ICA = If l120°.

In writing these equations, we arbitrarily selected IAB as the reference 
phasor.
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We can write the line currents in terms of the phase currents by apply-
ing KCL at the nodes labeled A, B, and C in Fig. 11.11:

  IaA = IAB - ICA  (11.10)

 = If l0° - If l120°

 = 13If l-30°,

  IbB = IBC - IAB  (11.11)

 = If l-120° - If l0°

 = 13If l-150°,

  IcC = ICA - IBC  (11.12)

 = If l120° - If l-120°

 = 13If l90°.

Comparing the line currents and the phase currents reveals that the mag-
nitude of the line currents is 13 times the magnitude of the phase cur-
rents and that the set of line currents lags the set of phase currents by 30°.

We leave it to you to verify that, for a negative phase sequence, the 
line currents are still 13 times larger than the phase currents, but they 
lead the phase currents by 30°. Thus, we have a shortcut for calculating 
line currents from phase currents (or vice versa) for a balanced three-
phase ∆-connected load. Figure 11.13 summarizes this shortcut graph-
ically. Example 11.2 analyzes a balanced three-phase circuit having a 
Y-connected source and a ∆-connected load, using a single-phase equiv-
alent circuit.

IaAIbB

IcC

IAB308

IAB
308

ICA

308

IBC

308

IBC

308

ICA
308

IcC

IaAIbB

(a)

(b)

Figure 11.13 ▲ Phasor diagrams showing the rela-
tionship between line currents and phase currents 
in a ∆-connected load. (a) The positive sequence. 
(b) The negative sequence.

EXAMPLE 11.2 Analyzing a Wye-Delta Circuit

The Y-connected source in Example 11.1 feeds a  
∆-connected load through a distribution line having 
an impedance of 0.3 + j0.9 Ω >f. The load imped-
ance is 118.5 + j85.8 Ω >f. Use the internal voltage 
of the generator in the a-phase as the reference.

a) Construct a single-phase equivalent circuit of the 
three-phase system.

b) Calculate the line currents IaA, IbB, and IcC.

c) Calculate the phase voltages at the load terminals.

d) Calculate the phase currents of the load.

e) Calculate the line voltages at the source terminals.

Solution

a) Figure 11.14 shows the single-phase equivalent 
circuit. The load impedance of the Y equivalent is

118.5 + j 85.8
3

= 39.5 + j28.6 Ω >f.

b) The a-phase line current is the source voltage in 
the a-phase divided by the sum of the impedanc-
es in the a-phase:

 IaA =
120 l0°

(0.2 + 0.3 + 39.5) + j(0.5 + 0.9 + 28.6)
 

 =
120 l0°
40 + j30

= 2.4 l-36.87° A.
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Figure 11.14 ▲ The single-phase equivalent circuit 
for Example 11.2.
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Hence

 IbB = 2.4 l-156.87° A,

 IcC = 2.4 l83.13° A.

c) Because the load is ∆ connected, the phase 
 voltages are the same as the line voltages. To 
calculate the line voltages, we first calculate 
VAN using the single-phase equivalent circuit in 
Fig. 11.14:

 VAN = (39.5 + j28.6)(2.4l-36.87°)

 = 117.04 l-0.96° V.

Because the phase sequence is positive, the line 
voltage VAB is

 VAB = (13 l30°) VAN

 = 202.72 l29.04° V.

Therefore

 VBC = 202.72 l-90.96° V,

 VCA = 202.72 l149.04° V.

d) The phase currents of the load can be calculated 
directly from the line currents:

 IAB = a 113
 l30°b  IaA

 = 1.39 l-6.87° A.

Once we know IAB, we also know the other load 
phase currents:

 IBC = 1.39 l-126.87° A,

 ICA = 1.39 l113.13° A.

Note that we can check the calculation of IAB by 
using the previously calculated VAB and the im-
pedance of the ∆-connected load; that is,

 IAB =
VAB

Zf

=
202.72l29.04°
118.5 + j85.8

 

 = 1.39 l-6.87° A.

e) To calculate the line voltage at the terminals of 
the source, we first calculate Van. Figure 11.14 
shows that Van is the voltage drop across the line 
impedance plus the load impedance, so

 Van = (39.8 + j29.5)(2.4 l-36.87°)

 = 118.90 l-0.32° V.

The line voltage Vab is

Vab = (13 l30°)Van

= 205.94 l29.68° V.

Therefore

 Vbc = 205.94 l-90.32° V,

 Vca = 205.94 l149.68° V.

Objective 2—Know how to analyze a balanced, three-phase wye-delta connected circuit

 11.4 The current ICA in a balanced three-phase  
∆-connected load is 8 l-15° A. If the phase 
sequence is positive, what is the value of IcC?

Answer: 13.86 l-45° A.

 11.5 A balanced three-phase ∆-connected load is 
fed from a balanced three-phase circuit. The 
reference for the b-phase line current is toward 
the load. The value of the current in the b-phase 
is 12 l65° A. If the phase sequence is negative, 
what is the value of IAB?

Answer: 6.93 l-85° A.

 11.6 The line voltage VAB at the terminals 
of a balanced three-phase ∆-connected 
load is 4160 l0° V. The line current IaA is 
69.28 l-10° A.
a) Calculate the per-phase impedance of 

the load if the phase sequence is  
positive.

b) Repeat (a) for a negative phase sequence.

Answer: (a) 104 l-20° Ω;

(b) 104 l40° Ω.

ASSESSMENT PROBLEMS
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11.5  Power Calculations in Balanced 
Three-Phase Circuits

So far, we have analyzed balanced three-phase circuits using a single-phase 
equivalent circuit to determine line currents, phase currents, line voltages, 
and phase voltages. We now calculate power for balanced three-phase 
 circuits. We begin by considering the average power delivered to a  balanced 
Y-connected load.

Average Power in a Balanced Wye Load
Figure 11.15 shows a Y-connected load, along with its pertinent currents 
and voltages. We calculate the average power associated with any one 
phase by using the techniques introduced in Chapter 10. Using Eq. 10.9, 
we express the average power associated with the a-phase as

 PA = 0VAN 0 0 IaA 0  cos(u
vA - uiA), (11.13)

where u
vA and uiA denote the phase angles of VAN and IaA, respectively. 

Using the notation introduced in Eq. 11.13, we can find the power associ-
ated with the b- and c-phases:

 PB = 0VBN 0 0 IbB 0   cos(u
vB - uiB), (11.14)

 PC = 0VCN 0 0 IcC 0   cos(u
vC - uiC). (11.15)

In Eqs. 11.13–11.15, all phasor currents and voltages use the rms value of 
the sinusoidal function they represent.

In a balanced three-phase system, the magnitude of each line-to- 
neutral voltage is the same, as is the magnitude of each phase current. The 
argument of the cosine functions is also the same for all three phases. We 
introduce the following notation to take advantage of these observations:

Vf = 0VAN 0 = 0VBN 0 = 0VCN 0 ,
If = 0 IaA 0 = 0 IbB 0 = 0 IcC 0 ,

and

uf = u
vA - uiA = u

vB - uiB = u
vC - uiC.

Moreover, for a balanced system, the power delivered to each phase 
of the load is the same, so

PA = PB = PC = Pf = VfIf cos uf,

where Pf represents the average power per phase. The total average 
power delivered to the balanced Y-connected load is simply three times 
the power per phase, or

 PT = 3Pf = 3VfIf cos uf. (11.16)

 11.7 The line voltage at the terminals of a balanced  
∆-connected load is 110 V. Each phase of the 
load consists of a 3.667 Ω resistor in parallel 
with a 2.75 Ω inductive impedance. What is the 

magnitude of the current in the line feeding 
the load?

Answer: 86.60 A.

SELF-CHECK: Also try Chapter Problems 11.14–11.16.
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Figure 11.15 ▲ A balanced Y load used to intro-
duce average power calculations in three-phase 
circuits.
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Expressing the total power in terms of the rms magnitudes of the line 
voltage and current is also desirable. If we let VL and IL represent the rms 
magnitudes of the line voltage and current, respectively, we can modify 
Eq. 11.16 as follows:

TOTAL REAL POWER IN A BALANCED  
THREE-PHASE LOAD

 PT = 3a VL13
bIL cos uf = 13VLIL cos uf. (11.17)

In deriving Eq. 11.17, we recognized that, for a balanced Y-connected 
load, the magnitude of the phase voltage is the magnitude of the line volt-
age divided by 13, and that the magnitude of the line current is equal to 
the magnitude of the phase current. When using Eq. 11.17 to calculate 
the total power delivered to the load, remember that uf is the phase angle 
between the phase voltage and current.

Reactive and Complex Power in a Balanced Wye Load
We can also calculate the reactive power and complex power associated 
with any phase of a Y-connected load using the techniques introduced in 
Chapter 10. For a balanced load, the expressions for the reactive power are

Qf = VfIf sin uf,

TOTAL REACTIVE POWER IN A BALANCED  
THREE-PHASE LOAD

 QT = 3Qf = 13VLIL sin uf. (11.18)

Use Eq. 10.13 to express the complex power of any phase. For a bal-
anced Y-connected load,

Sf = VANIaA
* = VBNIbB

* = VCNIcC
* = VfIf

* ,

where Vf and If represent a phase voltage and current for the same phase. 
Thus, in general,

Sf = Pf + jQf = VfIf
* ,

TOTAL COMPLEX POWER IN A BALANCED  
THREE-PHASE LOAD

 ST = 3Sf = 13VLIL luf.  (11.19)

Power Calculations in a Balanced Delta Load
If the load is ∆-connected, the calculation of power—reactive or 
 complex—is basically the same as that for a Y-connected load. 
Figure 11.16 shows a ∆-connected load, along with its pertinent currents 
and voltages. The power associated with each phase is

 PA = 0VAB 0 0 IAB 0  cos(u
vAB - uiAB),

 PB = 0VBC 0 0 IBC 0  cos(u
vBC - uiBC),

C
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Figure 11.16 ▲ A ∆-connected load used to 
 discuss power calculations.
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 PC = 0VCA 0 0 ICA 0  cos(u
vCA - uiCA).

For a balanced load,

 0VAB 0 = 0VBC 0 = 0VCA 0 = Vf,

 0 IAB 0 = 0 IBC 0 = 0 ICA 0 = If,

u
vAB - uiAB = u

vBC - uiBC = u
vCA - uiCA = uf,

and

PA = PB = PC = Pf = VfIf cos uf.

Thus, whether you have a balanced Y- or ∆-connected load, the average 
power per phase is equal to the product of the rms magnitude of the phase 
voltage, the rms magnitude of the phase current, and the cosine of the 
angle between the phase voltage and current.

The total average power delivered to a balanced ∆-connected load is

  PT = 3Pf = 3VfIf cos uf  

 = 3VLa
IL13

b   cos uf

 = 13VLIL cos uf.

Note that this equation is the same as Eq. 11.17. The expressions for reac-
tive power and complex power also are the same as those developed for 
the Y load:

 Qf = VfIf sin uf;

 QT = 3Qf = 3VfIf sin uf;

 Sf = Pf + jQf = VfIf
* ;

 ST = 3Sf = 13VLIL luf.

Instantaneous Power in Three-Phase Circuits
Although we are primarily interested in average, reactive, and complex 
power calculations, computing the total instantaneous power is also im-
portant. In a balanced three-phase circuit, this power has an interesting 
property: it is invariant with time! Thus, the torque developed at the shaft 
of a three-phase motor is constant, which in turn means less vibration in 
machinery powered by three-phase motors.

Let the instantaneous line-to-neutral voltage vAN be the reference, 
and, as before, uf is the phase angle u

vA - uiA. Then, for a positive phase 
sequence, the instantaneous power in each phase is

 pA = vANiaA = VmIm cos vt cos(vt - uf),

 pB = vBNibB = VmIm cos(vt - 120°) cos(vt - uf - 120°),

 pC = vCNicC = VmIm cos(vt + 120°) cos(vt - uf + 120°),

where Vm and Im represent the maximum amplitude of the phase voltage 
and line current, respectively. The total instantaneous power is the sum of 
the instantaneous phase powers, which reduces to 1.5VmIm cos uf; that is,

pT = pA + pB + pC = 1.5VmIm cos  uf.
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Note that this result is consistent with Eq. 11.16 since Vm = 12Vf and 
Im = 12If (see Problem 11.31).

Examples 11.3–11.5 illustrate power calculations in balanced three-
phase circuits.

EXAMPLE 11.3 Calculating Power in a Three-Phase Wye-Wye Circuit

a) Calculate the average power per phase delivered 
to the Y-connected load of Example 11.1.

b) Calculate the total average power delivered to 
the load.

c) Calculate the total average power lost in the line.

d) Calculate the total average power lost in the gen-
erator.

e) Calculate the total number of magnetizing vars 
absorbed by the load.

f) Calculate the total complex power delivered by 
the source.

Solution

a) From Example 11.1, Vf = 115.22 V, If = 2.4 A, 
and uf = -1.19 -  (-36.87) = 35.68°. Therefore

 Pf = (115.22)(2.4) cos  35.68°

 = 224.64 W.

The power per phase may also be calculated 
from If

2 Rf, or

Pf = (2.4)2(39) = 224.64 W.

b) The total average power delivered to the load is 
PT = 3Pf = 673.92 W. We calculated the line volt-
age in Example 11.1, so we can also use Eq. 11.17:

 PT = 13(199.58)(2.4) cos  35.68°

 = 673.92 W.

c) The total power lost in the line is

Pline = 3(2.4)2(0.8) = 13.824 W.

d) The total internal power lost in the generator is

Pgen = 3(2.4)2(0.2) = 3.456 W.

e) The total number of magnetizing vars absorbed 
by the load is

 QT = 13(199.58)(2.4) sin  35.68°

 = 483.84 VAR.

f) The total complex power associated with the 
source is

 ST = 3Sf = -3(120)(2.4) l36.87°

 = -691.20 - j518.40 VA.

The minus sign indicates that the average power 
and magnetizing reactive power are being delivered 
to the circuit. We check this result by calculating the 
total average and reactive power absorbed by the 
circuit:

 P = 673.92 + 13.824 + 3.456

 = 691.20 W (check),

 Q = 483.84 + 3(2.4)2(1.5) + 3(2.4)2(0.5)

 = 483.84 + 25.92 + 8.64

 = 518.40 VAR (check).

EXAMPLE 11.4 Calculating Power in a Three-Phase Wye-Delta Circuit

a) Calculate the total complex power delivered to 
the ∆-connected load of Example 11.2.

b) What percentage of the average power at the 
sending end of the line is delivered to the load?

Solution

a) Using the a-phase values from the solution of 
Example 11.2, we obtain

 Vf = VAB = 202.72 l29.04° V,

 If = IAB = 1.39 l-6.87° A.
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Using Eq. 11.19, we have

 ST = 3(202.72 l29.04°)(1.39 l6.87°)

 = 682.56 + j494.21 VA.

b) The total average power at the sending end of the 
distribution line equals the total average power 
delivered to the load plus the total average power 
lost in the line; therefore

 Pinput = 682.56 + 3(2.4)2(0.3)

 = 687.74 W.

The fraction of the average power reaching the 
load is 682.56>687.74, or 99.25%. Nearly 100% 
of the average power at the input is delivered to 
the load because the resistance of the line is quite 
small compared to the load resistance.

EXAMPLE 11.5 Calculating Three-Phase Power with an Unspecified Load

A balanced three-phase load requires 480 kW at a 
lagging power factor of 0.8. The load is fed from a 
line having an impedance of 0.005 + j0.025 Ω >f. 
The line voltage at the terminals of the load is 600 V.

a) Construct a single-phase equivalent circuit of the 
system.

b) Calculate the magnitude of the line current.

c) Calculate the magnitude of the line voltage at the 
sending end of the line.

d) Calculate the power factor at the sending end of 
the line.

Solution

a) Figure 11.17 shows the single-phase equivalent 
circuit. We arbitrarily selected the line-to-neutral 
voltage at the load as the reference.

b) The line current IaA
*  appears in the equation for 

the complex power of the load:

a 60013
bIaA

* = (160 + j120)103 VA.

Solving for IaA
*  we get

IaA
* = 577.35 l36.87° A.

Therefore,

IaA = 577.35 l-36.87° A.

The magnitude of the line current is the magni-
tude of IaA, so IL = 577.35 A.

We obtain an alternative solution for IL from 
the expression

 PT = 13VLIL cos uf

 = 13(600)IL(0.8)

 = 480,000 W;

 IL =
480,00013(600)(0.8)

 

 =
100013

 

 = 577.35 A.

c) To calculate the magnitude of the line voltage at the 
sending end, we first calculate Van. From Fig. 11.17,

 Van = VAN + Z/IaA

 =
60013

+ (0.005 + j0.025)(577.35 l-36.87°)

 = 357.51 l1.57° V.

Thus

 VL = 13 0Van 0
 = 619.23 V.

d) The power factor at the sending end of the line is 
the cosine of the phase angle between Van. and IaA:

 pf =  cos [1.57° - (-36.87°)]

 =  cos  38.44°

 = 0.783 lagging.

1

2

0.005 V j0.025 V

N

A
1

2

Van 160 kW at 0.8 lag

a

n

IaA 600
3

08 V

Figure 11.17 ▲ The single-phase equivalent circuit for  
Example 11.5.
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An alternative method for calculating the power 
factor is to first calculate the complex power at 
the sending end of the line:

 Sf = (160 + j120)103 + (577.35)2(0.005 + j0.025)

 = 161.67 + j128.33 kVA

 = 206.41 l38.44° kVA.

The power factor is

 pf =  cos  38.44°

 = 0.783 lagging.

Finally, if we calculate the total complex power at 
the sending end, after first calculating the magni-
tude of the line current, we can use this value to 
calculate VL. That is,

 13VLIL = 3(206.41) * 103,

 VL =
3(206.41) * 10313(577.35)

,

 = 619.23 V.

Objective 3—Be able to calculate power (average, reactive, and complex) in any three-phase circuit

 11.8 The three-phase average power rating of the 
central processing unit (CPU) on a main-
frame digital computer is 22,659 W. The 
three-phase line supplying the computer  
has a line voltage rating of 208 V. The line 
current is 73.8 A. The computer absorbs  
magnetizing VARs.
a) Calculate the total magnetizing reactive 

power absorbed by the CPU.
b) Calculate the power factor.

Answer: (a) 13,909.50 VAR;
(b) 0.852 lagging.

 11.9 The complex power associated with each phase 
of a balanced load is 144 + j192 kVA. The line 
voltage at the terminals of the load is 2450 V.
a) What is the magnitude of the line current 

feeding the load?
b) The load is delta connected, and the imped-

ance of each phase consists of a resistance in 
parallel with a reactance. Calculate R and X.

c) The load is wye connected, and the imped-
ance of each phase consists of a resistance in 
series with a reactance. Calculate R and X.

Answer: (a) 169.67 A;
(b) R = 41.68 Ω, X = 31.26 Ω;
(c) R = 5 Ω, X = 6.67 Ω.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 11.25 and 11.27.

11.6  Measuring Average Power in 
Three-Phase Circuits

The instrument used to measure power in three-phase circuits is the elec-
trodynamometer wattmeter. It contains two coils. One coil, called the 
 current coil, is stationary and is designed to carry a current proportional 
to the load current. The second coil, called the potential coil, is movable 
and carries a current proportional to the load voltage. The important fea-
tures of the wattmeter are shown in Fig. 11.18.

The average deflection of the pointer attached to the movable coil 
is proportional to the product of the rms current in the current coil, the 
rms voltage impressed on the potential coil, and the cosine of the phase 
angle between the voltage and current. The pointer deflects in a direc-
tion that depends on the instantaneous polarity of the current-coil  current 
and the potential-coil voltage. Therefore, each coil has one terminal 
with a polarity mark—usually a plus sign—but sometimes the double 
polarity mark  {  is used. The wattmeter deflects upscale when (1) the 

Pointer

Watt
scale

Potential-coil
terminals

Current-coil
terminals

Figure 11.18 ▲ The key features of the 
 electrodynamometer wattmeter.
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polarity-marked terminal of the current coil is toward the source, and 
(2) the  polarity-marked terminal of the potential coil is connected to the 
same line in which the current coil has been inserted.

The Two-Wattmeter Method
Consider a general network inside a box, with power supplied by n con-
ducting lines. Such a system is shown in Fig. 11.19. If we wish to mea-
sure the total power at the terminals of the box, we need to know n - 1 
currents and voltages. This follows because if we choose one terminal as 
a reference, there are only n - 1 independent voltages. Likewise, only 
n - 1 independent currents can exist in the n conductors entering the 
box. Thus, the total power is the sum of n - 1 product terms; that is, 
p = v1i1 + v2i2 + g + vn - 1in - 1.

Applying this general observation, we can see that for a three- 
conductor circuit, whether balanced or not, we need only two wattmeters 
to measure the total power. For a four-conductor circuit, we need three 
wattmeters if the three-phase circuit is unbalanced, but only two wattme-
ters if it is balanced, because in the latter case there is no current in the 
neutral line. Thus, only two wattmeters are needed to measure the total 
average power in any balanced three-phase system.

The two-wattmeter method determines the magnitude and algebraic 
sign of the average power indicated by each wattmeter. We can describe 
the basic problem using the circuit shown in Fig. 11.20, where the two 
wattmeters are indicated by the shaded boxes and labeled W1 and W2. The 
coil notations cc and pc stand for current coil and potential coil, respec-
tively. The current coils of the wattmeters are inserted in lines aA and cC, 
making line bB the reference line for the two potential coils. The load is 
Y-connected, and its per-phase impedance is Zf = 0Z 0  lu. This is a gen-
eral representation, as any ∆-connected load can be represented by its Y 
equivalent; furthermore, for the balanced case, the impedance angle u is 
unaffected by the ∆-to-Y transformation.

We now develop general equations for the readings of the two watt-
meters, making the following assumptions.

• The current drawn by the potential coil of the wattmeter is negligible 
compared with the line current measured by the current coil.

• The loads can be modeled by passive circuit elements, so the phase 
angle of the load impedance (u in Fig. 11.20) lies between -90° (pure 
capacitance) and +90° (pure inductance).

• The phase sequence is positive.

From our introductory discussion of the average deflection of the 
wattmeter and the placement of wattmeter 1 in Fig. 11.20, we note that the 
wattmeter reading, W1, is

  W1 = 0VAB 0 0 IaA 0   cos u1 (11.20)

 = VLIL  cos u1.

It follows that

  W2 = 0VCB 0 0 IcC 0   cos u2 (11.21)

 = VLIL  cos u2.

In Eq. 11.20, u1 is the phase angle between VAB and IaA, and in Eq. 11.21, 
u2 is the phase angle between VCB and IcC.

n
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1

2

v1

1

2

v2 1

2

v3

1

General
network

i1

i2

i3

Figure 11.19 ▲ A general circuit whose power is 
supplied by n conductors.
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Figure 11.20 ▲ A circuit used to analyze the 
two-wattmeter method of measuring average 
power delivered to a balanced load.



460 Balanced Three-Phase Circuits 

To calculate W1 and W2, we express u1 and u2 in terms of the  impedance 
angle u, which is also the same as the phase angle between the phase 
 voltage and current. For a positive phase sequence,

  u1 = u + 30° = uf + 30°, (11.22)

  u2 = u - 30° = uf - 30°. (11.23)

The derivation of Eqs. 11.22 and 11.23 is left as an exercise (see  
Problem 11.46). When we substitute Eqs. 11.22 and 11.23 into Eqs. 11.20 
and 11.21, respectively, we get

 W1 = VLIL cos(uf + 30°),

 W2 = VLIL cos(uf - 30°).

To find the total power, we add W1 and W2; thus

  PT = W1 + W2 = 2VLIL cos uf cos 30° (11.24)

 = 13VLIL cos uf,

which is the expression for the total average power in a three-phase cir-
cuit, given in Eq. 11.17. Therefore, we have confirmed that the sum of the 
two wattmeter readings is the total average power.

A closer look at the expressions for W1 and W2 reveals the following 
about the readings of the two wattmeters:

1. If the power factor is greater than 0.5, both wattmeters read positive.

2. If the power factor equals 0.5, one wattmeter reads zero.

3. If the power factor is less than 0.5, one wattmeter reads negative.

4. Reversing the phase sequence will interchange the readings on the 
two wattmeters.

Example 11.6 and Problems 11.41–11.52 illustrate these observations.

EXAMPLE 11.6 Computing Wattmeter Readings in Three-Phase Circuits

Calculate the reading of each wattmeter in the cir-
cuit in Fig. 11.20 if the phase voltage at the load is 
120 V and

a) Zf = 8 + j6 Ω;

b) Zf = 8 - j6 Ω;

c) Zf = 5 + j5 13 Ω; and

d) Zf = 10 l-75° Ω.

e) Verify for (a)–(d) that the sum of the wattmeter 
readings equals the total power delivered to the 
load.

Solution

a)  Zf = 10 l36.87° Ω, VL = 120 13 V, 

  IL = 120>10 = 12 A.

 W1 = (12013)(12) cos(36.87° + 30°) = 979.75 W,

 W2 = (12013)(12) cos(36.87° - 30°) = 2476.25 W.

The power factor is  cos  36.87° = 0.8, so as ex-
pected, both wattmeter readings are positive.
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b) Zf = 10 l-36.87° Ω, VL = 120 13 V, 

  IL = 120>10 = 12 A.

 W1 = (12013)(12) cos(-36.87° + 30°) = 2476.25 W,

 W2 = (12013)(12) cos(-36.87° - 30°) = 979.75 W.

The power factor is  cos  -36.87° = 0.8, so as ex-
pected, both wattmeter readings are positive. But 
the readings on the wattmeters are interchanged 
when compared to the results of part (a) because 
the sign of the power factor angle changed, which 
has the same impact on the wattmeter readings 
as a change in phase sequence.

c) Zf = 5(1 + j13) = 10 l60° Ω, VL = 120 13 V, 

and IL = 12 A.

 W1 = (12013)(12) cos(60° + 30°) = 0,

 W2 = (12013)(12) cos(60° - 30°) = 2160 W.

The power factor is  cos  60° = 0.5, so as ex-
pected, one of the wattmeter readings is zero.

d) Zf = 10 l-75° Ω, VL = 12013 V, IL = 12 A.

 W1 = (12013)(12) cos(-75° + 30°) = 1763.63 W,

 W2 = (12013)(12) cos(-75° - 30°) = -645.53 W.

The power factor is  cos  -75° = 0.26, so as ex-
pected, one wattmeter reading is negative.

e) For each load impedance value, the real power 
delivered to a single phase of the load is IL

2 RL, 

where RL is the resistive impedance of the load. 
Since the three-phase circuit is balanced, the to-
tal real power delivered to the three-phase load 
is 3IL

2 RL.

For the impedance in part (a), 

PT = 3(12)2(8) =  3456 W,

 W1 + W2 = 979.75 + 2476.25 = 3456 W.

For the impedance in part (b), 

PT = 3(12)2(8) =  3456 W,

 W1 + W2 = 2476.25 + 979.75 = 3456 W.

For the impedance in part (c), 

PT = 3(12)2(5) =  2160 W,

 W1 + W2 = 0 + 2160 = 2160 W.

For the impedance in part (d), 

Zf = 2.5882 -  j9.6593 Ω so

 PT = 3(12)212.58822 = 1118.10 W,

W1 + W2 = 1763.63 - 645.53 = 1118.10 W.

SELF-CHECK: Assess your understanding of the 
two-wattmeter method by trying Chapter Problems 
11.41 and 11.45.

Practical Perspective
Transmission and Distribution of Electric Power
At the start of this chapter we noted that utilities must maintain the rms 
voltage level at their customer’s premises. Although the acceptable 
deviation from a nominal level may vary among different utilities, we 
will assume that the tolerance is {5%. Thus, a nominal rms voltage of 
120 V could range from 114 V to 126 V. We also pointed out that strate-
gically located capacitors can be used to support voltage levels.

The circuit shown in Fig. 11.21 represents a substation in a munic-
ipal system. We assume that the system is balanced, the line-to-line 
voltage at the substation is 13.8 kV, the impedance of the distribution 
line is 0.6 + j4.8 Ω >f, and the load at the substation at 3:00 p.m. on a 
hot, humid day in July is 3.6 MW and 3.6 magnetizing MVAR.

Generator
Plant

Sub
Station

3-f line

Figure 11.21 ▲ A substation connected to a power 
plant via a three-phase line.
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Using the line-to-neutral voltage at the substation as a reference, 
the single-phase equivalent circuit for the system in Fig. 11.21 is shown 
in Fig. 11.22. The line current can be calculated from the expression for 
the complex power at the substation. Thus,

13,80013
 IaA

* = (1.2 + j1.2)106.

It follows that

IaA
* = 150.61 + j150.61 A

or

IaA = 150.61 - j150.61 A.

The line-to-neutral voltage at the generating plant is the voltage drop 
across the load, VAN, plus the voltage across the transmission line, so

 Van =
13,80013

 l0° + (0.6 + j4.8)(150.61 - j150.61)

 = 8780.74 + j632.58 = 8803.50 l4.12° V.

Therefore, the magnitude of the line voltage at the generating plant is

0Vab 0 = 13(8803.50) = 15,248.11 V.

We are assuming the utility is required to keep the voltage level 
within {5% of the nominal value. This means the magnitude of the line-
to-line voltage at the power plant should not exceed 14.5 kV nor be less 
than 13.1 kV. The magnitude of the line voltage at the generating plant 
exceeds 14.5 kV, so could cause problems for customers.

To address this problem, connect a capacitor bank to the substa-
tion bus that supplies the magnetizing vars required by the load. Now 
the generator does not need to supply this reactive power, the load has 
a unity power factor, and the line current IaA becomes

IaA = 150.61 + j0 A.

Therefore, the voltage at the generating plant necessary to maintain a 
line-to-line voltage of 13,800 V at the substation is

 Van =
13,80013

 l0° + (0.6 + j4.8)(150.61 + j0)

 = 8057.80 + j722.94 = 8090.17 l5.13° V.
Hence

0Vab 0 = 13(8090.17) = 14,012.58 V.

This voltage level falls within the allowable range of 13.1 kV to 14.5 kV.

SELF-CHECK: Assess your understanding of this Practical Perspective 
by trying Chapter Problems 11.53(a)–(b) and 11.54, 11.57, and 11.58.

1

2

1

2

a A

Nn

Van

0.6 V j4.8 V

1.2
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1.2
MVAR

13,800 08 V
3

Figure 11.22 ▲ A single phase equivalent circuit for 
the system in Fig. 11.21.
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Summary

• A set of balanced three-phase voltages consists of three 
sinusoidal voltages that have identical amplitudes and 
frequencies but are out of phase with each other by ex-
actly 120°. For the abc (or positive) phase sequence,

Va = Vm l0°, Vb = Vm l-120°, Vc = Vm l120°.

For the acb (or negative) phase sequence,

Va = Vm l0°, Vb = Vm l120°, Vc = Vm l-120°.

(See page 442)

• Three-phase systems can be unbalanced or balanced. A 
three-phase system is balanced when the following con-
ditions are satisfied:

1. The voltage sources form a balanced three-phase set.

2. The impedance of each phase of the voltage source 
is the same.

3. The impedance of each line is the same.

4. The impedance of each phase of the load is the same.

(See page 445.)

• A single-phase equivalent circuit is used to calculate the 
line current and the phase voltage in one phase of the Y-Y 
structure. The a-phase is normally chosen for this purpose. 
If the structure is not Y-Y, any ∆ connections should be 
transformed into equivalent Y connections before creat-
ing a single-phase equivalent circuit. (See page 446.)

• Once we know the line current and phase voltage in the 
a-phase equivalent circuit, we can use analytical short-
cuts to find any current or voltage in a balanced three-
phase circuit, based on the following facts:

• The b- and c-phase currents and voltages are iden-
tical to the a-phase current and voltage except for a 

120° shift in phase. The direction of the phase shift 
depends on the phase sequence.

• The set of line voltages is out of phase with the set of 
phase voltages by {30°. The plus sign corresponds 
to the positive phase sequence, while the minus sign 
corresponds to the negative phase sequence.

• In a Y-Y circuit, the magnitude of a line voltage is 13 
times the magnitude of a phase voltage.

• The set of line currents is out of phase with the set 
of phase currents in ∆-connected sources and loads 
by |30°. The minus sign corresponds to the positive 
phase sequence, while the plus sign corresponds to 
the negative phase sequence.

• The magnitude of a line current is 13 times the 
 magnitude of a phase current in a ∆-connected 
source or load.

(See pages 447 and 451.)

• The techniques for calculating per-phase average pow-
er, reactive power, and complex power are identical to 
those introduced in Chapter 10. (See page 453.)

• The total real, reactive, and complex power can be de-
termined either by multiplying the corresponding per-
phase quantity by 3 or by using the expressions based on 
line current and line voltage, as given by Eqs. 11.17, 11.18, 
and 11.19. (See page 454.)

• The total instantaneous power in a balanced three-phase 
circuit is constant and equals 1.5VmImpf. (See page 455.)

• A wattmeter measures the average power delivered to a 
load by using a current coil connected in series with the 
load and a potential coil connected in parallel with the 
load. (See page 458.)

• The total average power in a balanced three-phase cir-
cuit can be measured by summing the readings of two 
wattmeters connected in two different phases of the cir-
cuit. (See page 460.)
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Problems

Section 11.1

 11.1  What is the phase sequence of each of the following 
sets of voltages?

a) va = 137 cos (vt + 63°) V, 
vb = 137 cos (vt - 57°) V, 
vc = 137 cos (vt + 183°) V. 

b) va = 820 cos (vt - 36°) V, 
vb = 820 cos (vt + 84°) V, 
vc = 820 sin (vt - 66°) V. 

 11.2  For each set of voltages, state whether or not the volt-
ages form a balanced three-phase set. If the set is bal-
anced, state whether the phase sequence is positive or 
negative. If the set is not balanced, explain why.

a) va = 48 cos (314t - 45°) V, 
 vb = 48 cos (314t - 165°) V,
 vc = 48 cos (314t + 75°) V.

b)  va = 188 cos (250t + 60°) V,
vb = -188 cos 250t V,
 vc = 188 cos (250t - 60°) V.

c)  va = 426 cos 100t V,
 vb = 462 cos (100t + 120°) V,
 vc = 426 cos (100t - 120°) V.

d)  va = 1121 cos (2000t - 20°) V,
 vb = 1121 sin (2000t - 50°) V,
 vc = 1121 cos (2000t + 100°) V.

e)  va = 540 sin 630t V,
vb = 540 cos (630t - 120°) V,
 vc = 540 cos (630t + 120°) V.

f)  va = 144 cos (800t + 80°) V,
 vb = 144 sin (800t - 70°) V,
 vc = 144 sin (800t + 50°) V.

 11.3  Verify that the sum of the three voltage phasors is 
zero for either Eq. 11.1 or Eq. 11.2.

PSPICE

MULTISIM

All phasor voltages in the following Problems are stated in terms of the rms value.
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Section 11.2

 11.4  Refer to the circuit in Fig. 11.5(b). Assume that there 
are no external connections to the terminals a, b, c. 
Assume further that the three windings are from a 
three-phase generator whose voltages are those de-
scribed in Problem 11.2(b). Determine the current 
circulating in the ∆-connected generator.

 11.5  Repeat Problem 11.4 but assume that the three-phase 
voltages are those described in Problem 11.2(c).

Section 11.3

 11.6  a) Is the circuit in Fig. P11.6 a balanced or unbal-
anced three-phase system? Explain.

b) Find Io.

PSPICE

MULTISIM

Figure: P11.7  
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 11.7  a) Find I0 in the circuit in Fig. P11.7.

b) Find VAN.

c) Find VAB.

d) Is the circuit a balanced or unbalanced three-
phase system?
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of the source as the reference. Specify the magnitude 
and phase angle of the following quantities: (a) the 
three line currents, (b) the three line voltages at the 
source, (c) the three phase voltages at the load, and (d) 
the three line voltages at the load.

Section 11.4

 11.13  A balanced ∆-connected load has an impedance 
of 216 - j288 Ω >f. The load is fed through a line 
having an impedance of 3 + j5 Ω >f. The phase 
voltage at the terminals of the load is 7.2 kV. 
The phase sequence is negative. Use VAB as the 
 reference.

a) Calculate the three phase currents of the load.

b) Calculate the three line currents.

c) Calculate the three line voltages at the sending 
end of the line.

 11.14  A balanced, three-phase circuit is characterized as 
follows:

• Y@∆ connected;

• Source voltage in the b-phase is 150>135° V;

• Source phase sequence is acb;

• Line impedance is 1 + j2 Ω >f;

• Load impedance is 147 + j84 Ω >f.

a) Draw the single-phase equivalent for the a-phase.

b) Calculate the a-phase line current.

c) Calculate the a-phase line voltage for the three-
phase load.

 11.15  An acb sequence balanced three-phase Y-connected 
source supplies power to a balanced, three-phase ∆- 
connected load with an impedance of 12 + j9 Ω >f.  
The source voltage in the b-phase is 240l-50° V. 
The line impedance is 1 + j1 Ω >f. Draw the single 
phase equivalent circuit for the a-phase and use it to 
find the current in the a-phase of the load.

 11.16  In a balance three-phase system, the source is a 
balanced Y with an abc phase sequence and a line 
voltage Vab = 208>50° V. The load is a balanced Y 
in parallel with a balanced ∆. The phase impedance 
of the Y is (8 + j6) Ω >f and the phase impedance 
of the ∆ is (6 - j12) Ω >f. The line impedance is 
1.4 + j0.8 Ω >f. Draw the single-phase equivalent 
circuit and use it to calculate the line voltage at the 
load in the a-phase.

 11.17  A balanced Y-connected load having an impedance 
of 60 - j45 Ω >f is connected in parallel with a bal-
anced ∆-connected load having an impedance of 
9022l45° Ω >f. The paralleled loads are fed from 
a line having an impedance of 2 + j2 Ω >f. The 
magnitude of the line-to-line voltage of the ∆-load 
is 300 23 V.

 11.8  Find the rms value of Io in the unbalanced three-
phase circuit seen in Fig. P11.8.

Figure P11.8
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 11.9  The time-domain expressions for three line-to- 
neutral voltages at the terminals of a Y-connected 
load are

 vAN = 288 cos (vt - 45°) V,

 vBN = 288 cos (vt - 165°) V,

 vCN = 288 cos (vt + 75°) V.

What are the time-domain expressions for the three 
line-to-line voltages vAB, vBC, and vCA?

 11.10  A balanced three-phase circuit has the following 
characteristics:

• Y-Y connected;

• The line voltage at the source is 
Vab =  11013l-60° V;

• The phase sequence is positive;

• The line impedance is 3 + j2 Ω >f;

• The load impedance is 37 + j28 Ω >f.

a) Draw the single phase equivalent circuit for the 
a-phase.

b) Calculate the line current in the a-phase.

c) Calculate the line voltage at the load in the 
a-phase.

 11.11  The magnitude of the line voltage at the terminals 
of a balanced Y-connected load is 6600 V. The load 
impedance is 240 - j70 Ω >f. The load is fed from a 
line that has an impedance of 0.5 + j4 Ω >f.

a) What is the magnitude of the line current?

b) What is the magnitude of the line voltage at the 
source?

 11.12  The magnitude of the phase voltage of an ideal 
 balanced three-phase Y-connected is 125 V. The source 
is  connected to a balanced Y-connected load by a distri-
bution line that has an impedance of (0.2 + j0.9) Ω >f.  
The load impedance is (29.8 + j9.1) Ω >f. The phase 
sequence of the source is acb. Use the a-phase voltage 
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 11.21  A balanced three-phase ∆-connected source is shown 
in Fig. P11.21.

a) Find the Y-connected equivalent circuit.

b) Show that the Y-connected equivalent circuit  
delivers the same open-circuit voltage as the 
original ∆-connected source.

c) Apply an external short circuit to the terminals 
A, B, and C. Use the ∆-connected source to find 
the three line currents IaA, IbB, and IcC.

d) Repeat (c) but use the Y-equivalent source to 
find the three line currents.

a) Calculate the magnitude of the phase current in 
the Y-connected load.

b) Calculate the magnitude of the phase current in 
the ∆-connected load.

c) Calculate the magnitude of the current in the 
line feeding the loads.

d) Calculate the magnitude of the line voltage at 
the sending end of the line.

 11.18  A three-phase ∆-connected generator has an 
internal impedance of 9 + j90 mΩ >f. When the 
load is removed from the generator, the mag-
nitude of the terminal voltage is 13,800 V. The 
generator feeds a ∆-connected load through 
a transmission line with an impedance of 
(30 + j150) mΩ >f. The per-phase impedance of 
the load is 15.21 + j8.55 Ω .

a) Construct a single-phase equivalent circuit.

b) Calculate the magnitude of the line current.

c) Calculate the magnitude of the line voltage at 
the terminals of the load.

d) Calculate the magnitude of the line voltage at 
the terminals of the source.

e) Calculate the magnitude of the phase current in 
the load.

f) Calculate the magnitude of the phase current in 
the source.

 11.19  The impedance Z in the balanced three-phase cir-
cuit in Fig. P11.19 is 100 - j75 Ω. Find

a) IAB, IBC, and ICA,

b) IaA, IbB, and IcC,

c) Iba, Icb, and Iac.

Figure P11.19
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 11.20   For the circuit shown in Fig. P11.20, find

a) the phase currents IAB, IBC, and ICA,

b) the line currents IaA, IbB, and IcC
when Z1 = 2.4 - j0.7 Ω, Z2 = 8 + j6 Ω, and 
Z3 = 20 + j0 Ω.

PSPICE

MULTISIM

 11.22  The ∆-connected source of Problem 11.21 is con-
nected to a Y-connected load by means of a balanced 
three-phase distribution line. The load impedance 
is 1192 + j1584 Ω >f. and the line impedance is 
6.5 + j15 Ω >f.

a) Construct a single-phase equivalent circuit of 
the system.

b) Determine the magnitude of the line voltage at 
the terminals of the load.
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 11.27  A three-phase positive sequence Y-connected 
source supplies 21 kVA with a power factor of 0.8 
lagging to a parallel combination of a Y-connected 
load and a ∆-connected load. The Y-connected load 
uses 12 kVA at a power factor of 0.6 lagging and has 
an a-phase current of 10> - 30° A.

a) Find the complex power per phase of the  
∆-connected load.

b) Find the magnitude of the line voltage.

 11.28  A balanced three-phase distribution line has an im-
pedance of 5 + j10 Ω >f. This line is used to supply 
three balanced three-phase loads that are connect-
ed in parallel. The three loads are L1 = 180 kVA 
at 0.866 pf lag, L2 = 150 kVA at 0.28 pf lead, 
and L3 = 72.12 kW at unity pf. The magnitude 
of the line voltage at the terminals of the loads is 
180013 V.

a) What is the magnitude of the line voltage at the 
sending end of the line?

b) What is the percent efficiency of the distribution 
line with respect to average power?

 11.29  The three tools described below are part of a uni-
versity’s machine shop. Each piece of equipment is 
a balanced three-phase load rated at 220 V. Calcu-
late (a) the magnitude of the line current supplying 
these three tools and (b) the power factor of the 
combined load.

• Drill press: 10.2 kVA at 0.87 pf lag.

• Lathe: 4.2 kW at 0.91 pf lag.

• Band saw: line current 36.8 A, 7.25 kVAR.

 11.30  Calculate the complex power in each phase of the 
unbalanced load in Problem 11.20.

c) Determine the magnitude of the phase current 
in the ∆-source.

d) Determine the magnitude of the line voltage at 
the terminals of the source.

Section 11.5

 11.23  a) Find the rms magnitude and the angle of ICA in 
the circuit shown in Fig. P11.23.

b) What percent of the average power delivered by 
the three-phase source is dissipated in the three-
phase lode?

Figure P11.23  
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 11.24  A balanced three-phase source is supply-
ing 90 kAV at 0.8 lagging to two balanced Y- 
connected parallel loads. The distribution line 
connecting the source to the load has negligi-
ble impedance. Load 1 is purely resistive and 
absorbs 60 kW. Find the per-phase  impedance 
of load 2 if the line voltage is 12023 V 
and the impedance components are in series.

 11.25  In a balanced three-phase system, the source has an 
abc sequence, is Y-connected, and Van = 120>20°   V.  
The source feeds two loads, both of which are 
Y-connected. The impedance of load is 4 + j3 Ω >f.  
The complex power for the a-phase of load 2 is 
900>53.13° VA. Find the total complex power sup-
plied by the source.

 11.26  The line-to-neutral voltage at the terminals of the 
balanced three-phase load in the circuit shown in 
Fig. P11.26 is 1600 V. At this voltage, the load is ab-
sorbing 480 kVA at 0.8 pf lag.

a) Use VAN as the reference and express Ina in polar 
form.

b) Calculate the complex power associated with 
the ideal three-phase source.

c) Check that the total average power delivered 
equals the total average power absorbed.

d) Check that the total magnetizing reactive power 
delivered equals the total magnetizing reactive 
power absorbed.
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 11.38  A balanced three-phase source is supplying 540 kVA 
at 0.96 pf lag to two balanced ∆-connected parallel 
loads. The distribution line connecting the source to 
the load has negligible impedance. The power asso-
ciated with load 1 is 38.4 - j208.8 kVA.

a) Determine the types of components and their 
impedances in each phase of load 2 if the line 
voltage is 160013 V and the impedance compo-
nents are in series.

b) Repeat (a) with the impedance components in 
parallel.

 11.39  The total power delivered to a balanced three-
phase load when operating at a line voltage of 
250013 V is 900 kW at a lagging power factor of 
0.6. The  impedance of the distribution line supply-
ing the load is 1 + j3 Ω >f. Under these operating 
conditions, the drop in the magnitude of the line 
voltage between the sending end and the load end 
of the line is excessive. To compensate, a bank of 
Y-connected capacitors is placed in parallel with the 
load. The capacitor bank is designed to furnish 1125 
kVAR of magnetizing reactive power when operat-
ed at a line voltage of 250013 V.

a) What is the magnitude of the voltage at the send-
ing end of the line when the load is operating 
at a line voltage of 250013 V and the capacitor 
bank is disconnected?

b) Repeat (a) with the capacitor bank connected.

c) What is the average power efficiency of the line 
in (a)?

d) What is the average power efficiency in (b)?

e) If the system is operating at a frequency of  
60 Hz, what is the size of each capacitor in mi-
crofarads?

 11.40  A balanced bank of delta-connected capacitors 
is connected in parallel with the load described in 
Assessment Problem 11.9. The effect is to place a 
capacitor in parallel with the load in each phase. 
The line voltage at the terminals of the load thus 
remains at 2450 V. The circuit is operating at a fre-
quency of 60 Hz. The capacitors are adjusted so 
that the magnitude of the line current feeding the 

 11.31  Show that the total instantaneous power in a bal-
anced three-phase circuit is constant and equal to 
1.5VmIm cos uf, where Vm and Im represent the max-
imum amplitudes of the phase voltage and phase 
current, respectively.

 11.32  The total apparent power supplied in a balanced, 
three-phase Y@∆ system is 5400 VA. The line volt-
age is 240 V. If the line impedance is negligible and 
the power factor angle of the load is -36.86°, deter-
mine the impedance of the load.

 11.33  A balanced three-phase load absorbs 150 kVA 
at a leading power factor of 0.96 when the line  
voltage at the terminals of the load is 600 V. Find 
four equivalent circuits that can be used to model 
this load.

 11.34  At full load, a commercially available 200 hp, three-
phase induction motor operates at an efficiency of 
97% and a power factor of 0.8 lag. The motor is sup-
plied from a three-phase outlet with a line-voltage 
rating of 208 V.

a) What is the magnitude of the line current drawn 
from the 208 V outlet? (1 hp = 746 W.)

b) Calculate the reactive power supplied to the 
motor.

 11.35  A three-phase line has an impedance of 
0.1 + j0.8 Ω >f. The line feeds two balanced three-
phase loads connected in parallel. The first load is ab-
sorbing a total of 630 kW and absorbing 840 kVAR 
magnetizing vars. The second load is Y-connected 
and has an impedance of 15.36 - j4.48 Ω >f.The 
line-to-neutral voltage at the load end of the line is 
4000 V. What is the magnitude of the line voltage at 
the source end of the line?

 11.36  Three balanced three-phase loads are connected 
in parallel. Load 1 is Y-connected with an imped-
ance of 400 + j300 Ω >f; load 2 is ∆-connected with 
an impedance of 2400 + j1800 Ω >f; and load 3 is 
172.8 + j2203.2 kVA. The loads are fed from a dis-
tribution line with an impedance of 2 + j16 Ω >f. 
The magnitude of the line-to-neutral voltage at the 
load end of the line is 2413 kV.

a) Calculate the total complex power at the send-
ing end of the line.

b) What percentage of the average power at the 
sending end of the line is delivered to the 
loads?

 11.37  The output of the balanced positive-sequence three-
phase source in Fig. P11.37 is 41.6 kVA at a lagging 
power factor of 0.707. The line voltage at the source 
is 240 V.

a) Find the magnitude of the line voltage at the load.

b) Find the total complex power at the terminals of 
the load.

Figure P11.37
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 11.46  Derive Eqs. 11.22 and 11.23.

 11.47  a) Calculate the complex power associat-
ed with each phase of the balanced load in  
Problem 11.19.

b) If the two-wattmeter method is used to measure 
the average power delivered to the load, specify 
the reading of each meter.

 11.48  The two-wattmeter method is used to measure 
the power delivered to the unbalanced load in 
Problem 11.20. The current coil of wattmeter 1 is 
placed in line aA and that of wattmeter 2 is placed 
in line bB.

a) Calculate the reading of wattmeter 1.

b) Calculate the reading of wattmeter 2.

c) Show that the sum of the two wattmeter read-
ings equals the total power delivered to the un-
balanced load.

 11.49  The balanced three-phase load shown in Fig. P11.49 
is fed from a balanced, positive-sequence, three-
phase Y-connected source. The impedance of the 
line connecting the source to the load is negligi-
ble. The line-to-neutral voltage of the source is 
7200 V.

a) Find the reading of the wattmeter in watts.

b) Explain how you would connect a second watt-
meter in the circuit so that the two wattmeters 
would measure the total power.

c) Calculate the reading of the second wattmeter.

d) Verify that the sum of the two wattmeter read-
ings equals the total average power delivered to 
the load.

 parallel combination of the load and capacitor bank 
is at its minimum.

a) What is the size of each capacitor in microfarads?

b) Repeat (a) for wye-connected capacitors.

c) What is the magnitude of the line current?

Section 11.6

 11.41  The two-wattmeter method is used to measure the 
power at the load end of the line in Example 11.1. 
Calculate the reading of each wattmeter.

 11.42  The wattmeters in the circuit in Fig. 11.20 read as fol-
lows: W1 = 40,823.09 W, and W2 = 103,176.91 W. 
The magnitude of the line voltage is 240013 V. The 
phase sequence is positive. Find Zf.

 11.43  In the balanced three-phase circuit shown in 
Fig. P11.43, the current coil of the wattmeter is con-
nected in line aA, and the potential coil of the watt-
meter is connected across lines b and c. Show that 
the wattmeter reading multiplied by 13 equals the 
total reactive power associated with the load. The 
phase sequence is positive.

Figure P11.43
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 11.44  The line-to-neutral voltage in the circuit in Fig. P11.43 
is 680 V, the phase sequence is positive, and the load 
impedance is 16 - j  12 Ω >f.

a) Calculate the wattmeter reading.

b) Calculate the total reactive power associated 
with the load.

 11.45  The two wattmeters in Fig. 11.20 can be used to 
compute the total reactive power of the load.

a) Prove this statement by showing that 13(W2 - W1) = 13VLIL sin uf.

b) Compute the total reactive power from the 
wattmeter readings for each of the loads in  
Example 11.6. Check your computations by cal-
culating the total reactive power directly from 
the given voltage and impedance.

 11.50  a) Calculate the reading of each wattmeter in the 
circuit shown in Fig. P11.50. The value of Zf is 
40 l-30° Ω.

b) Verify that the sum of the wattmeter readings 
equals the total average power delivered to the 
∆-connected load.
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Sections 11.1–11.6

 11.53 Refer to the Practical Perspective example:

a) Construct a power triangle for the substation load 
before the capacitors are connected to the bus.

b) Repeat (a) after the capacitors are connected to 
the bus.

c) Using the line-to-neutral voltage at the substa-
tion as a reference, construct a phasor diagram 
that depicts the relationship between VAN and 
Van before the capacitors are added.

d) Assume a positive phase sequence and construct 
a phasor diagram that depicts the relationship 
between VAB and Vab.

 11.54  Refer to the Practical Perspective example. Assume 
the frequency of the utility is 60 Hz.

a) What is the mF rating of each capacitor if the  
capacitors are delta-connected?

b) What is the mF rating of each capacitor if the  
capacitors are wye-connected?

 11.55  Choose a single capacitor from Appendix H that is 
closest to the mF rating of the wye-connected capac-
itor from Problem 11.54(b).

a) How much reactive power will a capacitor bank 
using this new value supply?

b) What line-to-line voltage at the generating 
plant will be required when this new capacitor 
bank is connected to the substation bus?

 11.56  Choose a single capacitor from Appendix H that is 
closest to the mF rating of the delta-connected ca-
pacitor from Problem 11.54(a).

a) How much reactive power will a capacitor bank 
using this new value supply?

b) What line-to-line voltage at the generating plant 
will be required when this new capacitor bank is 
connected to the substation bus?

 11.57  In the Practical Perspective example, what happens 
to the voltage level at the generating plant if the 
substation is maintained at 13.8 kV, the substation 
load is removed, and the added capacitor bank re-
mains connected?

 11.58  In the Practical Perspective example, calculate the 
total line loss in kW before and after the capacitors 
are connected to the substation bus.

 11.59  Assume the load on the substation bus in the 
Practical Perspective example drops to 180 kW 
and 480 magnetizing kVAR. Also assume the 
 capacitors remain connected to the substation.

a) What is the magnitude of the line-to-line voltage 
at the generating plant that is required to maintain 
a line-to-line voltage of 13.8 kV at the substation?

b) Will this power plant voltage level cause prob-
lems for other customers?
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PERSPECTIVE
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 11.51  a) Calculate the reading of each wattme-
ter in the circuit shown in Fig. P11.51 when 
Z = 13.44 + j46.08 Ω.

b) Check that the sum of the two wattmeter read-
ings equals the total power delivered to the load.

c) Check that 13(W1 - W2) equals the total mag-
netizing vars delivered to the load.

Figure P11.51
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 11.52  a) Find the reading of each wattmeter in the cir-
cuit shown in Fig. P11.52 if ZA = 20 l30° Ω, 
ZB = 60 l0° Ω, and ZC = 40 l-30° Ω.

b) Show that the sum of the wattmeter readings 
equals the total average power delivered to the 
unbalanced three-phase load.

Figure P11.50
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c) What is the total line loss in kW when the 
 capacitors stay on line after the load drops to 
180 + j480 kVA?

d) What is the total line loss in kW when the 
 capacitors are removed after the load drops to 
180 + j480 kVA?

e) Based on your calculations, would you recom-
mend disconnecting the capacitors after the load 
drops to 180 + j480 kVA? Explain.

 11.60  Assume in Problem 11.59 that when the load drops 
to 180 kW and 480 magnetizing kVAR the capacitor 
bank at the substation is disconnected. Also  assume 
that the line-to-line voltage at the substation is 
maintained at 13.8 kV.

a) What is the magnitude of the line-to-line voltage 
at the generating plant?

b) Is the voltage level found in (a) within the 
 acceptable range of variation?

PRACTICAL
PERSPECTIVE
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12
CHAPTER 

Introduction to the 
Laplace Transform
We now introduce the Laplace transform, which forms 
the basis of a powerful technique that is widely used to analyze 
linear, lumped-parameter circuits. We need the Laplace trans-
form analysis technique because we can use it to solve the follow-
ing types of problems.

• Finding the transient behavior of circuits whose describing 
equations consist of more than a single node-voltage or 
mesh-current differential equation. In other words, ana-
lyzing multiple-node and multiple-mesh circuits that are 
described by sets of linear differential equations.

• Determining the transient response of circuits whose signal 
sources vary in ways more complicated than the simple dc 
level jumps considered in Chapters 7 and 8.

• Calculating the transfer function for a circuit and using it 
to find the steady-state sinusoidal response of that circuit 
when the frequency of the sinusoidal source is varied. We 
discuss the transfer function in Chapter 13.

• Relating the time-domain behavior of a circuit to its 
 frequency-domain behavior, in a systematic fashion.

In this chapter, we define the Laplace transform, discuss its per-
tinent characteristics, and present a systematic method for trans-
forming expressions from the frequency domain to the time domain.

12.1  Definition of the Laplace Transform  
p. 474

12.2 The Step Function p. 475

12.3 The Impulse Function p. 477

12.4 Functional Transforms p. 480

12.5 Operational Transforms p. 481

12.6 Applying the Laplace Transform p. 486

12.7 Inverse Transforms p. 488

12.8 Poles and Zeros of F(s) p. 498

12.9  Initial- and Final-Value Theorems  
p. 500

1 Be able to calculate the Laplace transform 
of a function using the definition of Laplace 
transform, the Laplace transform table, 
and/or a table of operational transforms.

2 Be able to calculate the inverse Laplace 
transform using partial fraction expansion 
and the Laplace transform table.

3 Be able to find and plot the poles and zeros 
for a rational function in the s-domain.

4 Understand and know how to use the 
initial-value theorem and the final-value 
theorem.

CHAPTER OBJECTIVES



Practical Perspective
Transient Effects
As we learned in Chapter 9, power delivered from 
 electrical wall outlets in the United States can be mod-
eled as a sinusoidal voltage or current source, where the 
frequency of the sinusoid is 60 Hz. We used the phasor 
transform, introduced in Chapter 9, to find the steady-
state response of a circuit to a sinusoidal source.

But in many cases, we need to consider the complete 
response of a circuit to a sinusoidal source. Remember that 
the complete response has two parts—the steady-state 
response that takes the same form as the input to the cir-
cuit, and the transient response that decays to zero as time 
progresses. When a circuit’s source is a 60 Hz sinusoid, 
the steady-state response is also a 60 Hz sinusoid whose 
magnitude and phase angle can be calculated using pha-
sor circuit analysis. The transient response depends on the 
components that make up the circuit, the values of those 
components, and the way the components are intercon-
nected. Once the source is switched into the circuit, the 
voltage and current for every circuit component are the sum 
of a transient expression and a steady-state expression.

The transient part of the voltage and current 
eventually decays to zero. But, initially, the sum of 
the transient part and the steady-state part might ex-
ceed the voltage or current rating of the circuit com-
ponent. This is why it is important to determine the 
complete response of a circuit. The Laplace transform 
techniques introduced in this chapter can be used to 
find the complete response of a circuit to a sinusoidal 
source.

Consider the RLC circuit shown below, comprised 
of components from Appendix H and powered by a 
60  Hz sinusoidal source. As detailed in Appendix H, 
the 10 mH inductor has a current rating of 40 mA. The 
amplitude of the sinusoidal source has been chosen so 
that this rating is not exceeded in the steady state. Once 
we have presented the Laplace transform method, we 
will be able to determine whether this current rating 
is exceeded when the source is first switched on and 
both the transient and steady-state components of the 
inductor current exist.
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12.1  Definition of the Laplace 
Transform

The Laplace transform of a function is given by the expression

LAPLACE TRANSFORM

 ℒ5f(t)6 = L
∞

0
f(t)e-st dt, (12.1)

where the symbol ℒ5 f(t)6  is read “the Laplace transform of f(t).”
The Laplace transform of f(t) is also denoted F(s); that is,

 F(s) = ℒ5 f(t)6 . (12.2)

This notation emphasizes that when the integral in Eq. 12.1 has been eval-
uated, the resulting expression is a function of s. In our applications, t rep-
resents the time domain and s represents the frequency domain. Note that 
the dimension of s must be reciprocal time, or frequency, because the ex-
ponent of e in the integral of Eq. 12.1 must be dimensionless. The Laplace 
transform transforms the problem from the time domain to the frequency 
domain. Once we solve the problem in the frequency domain, we inverse- 
transform the solution back to the time domain.

Recall that the phasor is also a transform. As we know from Chapter 9, 
it converts a sinusoidal signal into a complex number for easier, algebraic 
computation of circuit values. After determining the phasor value of a sig-
nal, we transform it back to its time-domain expression. Both the Laplace 
transform and the phasor transform exhibit an essential feature of mathe-
matical transforms: They create a new domain to make the mathematical 
manipulations easier. After finding the unknown in the new domain, we 
inverse-transform it back to the original domain.

In circuit analysis, we use the Laplace transform to transform a set 
of integrodifferential equations in the time domain to a set of algebraic 
equations in the frequency domain. We can therefore find the solution for 
an unknown quantity by solving a set of algebraic equations.

Before we illustrate some of the important properties of the Laplace 
transform, some general comments are in order. First, note that the in-
tegral in Eq. 12.1 is improper because the upper limit is infinite. Thus, 
we are confronted immediately with the question of whether the integral 
converges. In other words, does a given f(t) have a Laplace transform? 
Obviously, the functions of primary interest in engineering analysis have 
Laplace transforms; otherwise we would not be interested in the trans-
form. In linear circuit analysis, we excite circuits with sources that have 
Laplace transforms. Excitation functions such as t t or et2, which do not 
have Laplace transforms, are of no interest here.

Second, because the lower limit on the integral is zero, the Laplace 
transform ignores f(t) for negative values of t. That is, F(s) is determined 
by the behavior of f(t) only for positive values of t. To emphasize that 
the lower limit is zero, Eq. 12.1 is frequently referred to as the one-sided, 
or unilateral, Laplace transform. In the two-sided, or bilateral, Laplace 
transform, the lower limit is - ∞ . We do not use the bilateral form here; 
hence, F(s) is understood to be the one-sided transform.

The Laplace transform’s lower limit creates a concern: what happens 
when f(t) has a discontinuity at the origin? If f(t) is continuous at the 
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origin, like the function in Fig. 12.1(a), f(0) is not ambiguous. However, if 
f(t) has a finite discontinuity at the origin, like the function in Fig. 12.1(b),  
should the Laplace transform integral include or exclude the disconti-
nuity? That is, should we make the lower limit 0- and include the dis-
continuity, or choose 0+as the lower limit and exclude the discontinuity? 
(We use the notation 0- and 0+ to denote values of t just to the left and 
right of the origin, respectively.) Actually, we may choose either as long 
as we are consistent. For reasons we explain later, we choose 0- as the 
lower limit.

Because we are using 0- as the lower limit, we note that the integral 
from 0- to 0+ is zero, except when the discontinuity at the origin is an im-
pulse function. We discuss this situation in Section 12.3. The two functions 
shown in Fig. 12.1 have the same unilateral Laplace transform because 
there is no impulse function at the origin for the function in Fig. 12.1(b).

The one-sided Laplace transform ignores f(t) for t 6 0-. We use ini-
tial conditions to account for what happens prior to 0-. Thus, the Laplace 
transform predicts the response to a function that begins after initial con-
ditions have been established.

In the discussion that follows, we divide the Laplace transforms into 
two types: functional transforms and operational transforms. A functional 
transform is the Laplace transform of a specific function, such as sin vt, t, 
e-at, and so on. An operational transform defines a general mathematical 
property of the Laplace transform, such as finding the transform of the 
derivative of f(t). Before considering functional and operational trans-
forms, we introduce the step and impulse functions.

12.2 The Step Function
When a circuit contains a switch, a change in the switch position creates 
abrupt changes in currents and voltages, as we have seen in previous chap-
ters. An abrupt change is represented mathematically as a discontinuity, 
which can occur at any instant in time. We represent such discontinuities 
in the functions that describe the currents and voltages using step and im-
pulse functions.

Figure 12.2 illustrates the step function. The symbol for the step func-
tion is Ku(t). The mathematical definition of the step function is

Ku(t) = 0, t 6 0,

 Ku(t) = K, t 7 0. (12.3)

If K is 1, the function in Eq. 12.3 is the unit step, u(t).
The step function is not defined at t = 0. If we need to define the 

transition between 0- and 0+, we assume that it is linear and that

Ku(0) = 0.5K.

As before, 0- and 0+ represent symmetric points arbitrarily close to the 
left and right of the origin. Figure 12.3 illustrates the linear transition from 
0- to 0+.

A discontinuity may occur at some time other than t = 0; for exam-
ple, it may occur in sequential switching. A step that occurs at t = a is 
represented by the function Ku1 t - a2 . Thus

Ku1 t - a2 = 0, t 6 a,

Ku1 t - a2 = K,  t 7 a.

1.0

f (t)

e2at e2at, t . 0

0
(a)

1.0

f (t)

t 

(b)

t
0

0, t , 0

Figure 12.1 ▲ A continuous and discontinuous 
function at the origin. (a) f (t) is continuous at the 
 origin. (b) f (t) is discontinuous at the origin.

f (t)

K

0
t 

Figure 12.2 ▲ The step function.

02 01

0.5 K

K

f (t)

t 

Figure 12.3 ▲ The linear approximation to the step 
function.



476 Introduction to the Laplace Transform

If a 7 0, the step occurs to the right of the origin, and if a 6 0, the step 
occurs to the left of the origin. The step function’s value is 0 when the argu-
ment t - a is negative, and it is K when the argument is positive. Figure 12.4 
illustrates a step that occurs at t = a.

A step function equal to K for t 6 a is written as Ku1a - t2 . Thus

Ku1a - t2 = K, t 6 a,

Ku1a - t2 = 0, t 7 a.

The discontinuity is to the left of the origin when a 6 0. This type of step  
is shown in Fig. 12.5.

We can add two step functions to create a function that describes a 
finite-width pulse. For example, the function K3u1 t - 12 - u1 t - 324  
has the value K for 1 6 t 6 3 and the value 0 everywhere else, so it is a 
finite-width pulse of height K initiated at t = 1 and terminated at t = 3. 
In defining this pulse, think of the step function u1 t - 12  as “turning on” 
the constant value K at t = 1, and the step function -u1 t - 32  as “turn-
ing off” the constant value K at t = 3. We use step functions to turn on 
and turn off linear functions at desired times in Example 12.1.

0

K

f (t)

a
t 

Figure 12.4 ▲ A step function occurring at t = a 
when a 7 0.

f (t)

K

0 a
t 

Figure 12.5 ▲ A step function Ku(a - t) for a 7 0.

EXAMPLE 12.1  Using Step Functions to Represent a Function of Finite 
Duration

Use step functions to write an expression for the 
function illustrated in Fig. 12.6.

0 1 2 3 4
t(s)

f (t)

22

2

Figure 12.6 ▲ The function for Example 12.1.

Solution
The function shown in Fig. 12.6 is made up of linear 
segments, so it is a piecewise linear function. You 
have probably seen such functions defined using a dif-
ferent functional form for each of its time segments. 
For this function, the piecewise-linear definition is

 = 0,  t … 0;

 = 2t,  0 … t … 1 s;

 f(t) = -2t + 4,   1 s … t … 3 s;

 = 2t - 8,  3 s … t … 4 s;

 = 0,  t Ú 4 s.

We can construct a single continuous definition for 
this function using step functions to initiate and 

 terminate each linear segment at the proper times. In oth-
er words, we use the step function to turn on and turn off 
the three nonzero pieces of the function:

+2t, on at t = 0, off at t = 1;

-2t + 4, on at t = 1, off at t = 3;

+2t - 8, on at t = 3, off at t = 4.

These straight line segments and their equations are 
shown in Fig. 12.7. The expression for f(t), valid for all 
 values of t, is

f(t) = 2t3u(t) - u1 t - 124 + 1 -2t + 42 [u1 t - 12
- u1 t - 324  +  12t - 82 3u1 t - 32 - u1 t - 424 .

0 1
2t 2 8

22t 1 4

2t

2 3 4 t (s)

f (t)

22

24

2

4

Figure 12.7 ▲ Definition of the three line segments turned on and 
off with step functions to form the function shown in Fig. 12.6.

SELF-CHECK: Assess your understanding of step functions by trying Chapter Problems 12.1 and 12.2.
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12.3 The Impulse Function
An impulse is a signal of infinite amplitude and zero duration. Such signals 
don’t exist in nature, but some circuit signals come very close to approx-
imating this definition, so a mathematical model of an impulse is useful. 
For example, the impulse function1 enables us to define the derivative at 
a discontinuity, such as the one in the function of Fig. 12.1(b), and thus to 
define the Laplace transform of that derivative. Also, voltage and current 
impulses occur in circuit analysis either because of a switching operation 
or because the circuit is excited by an impulsive source. We will analyze 
these situations in Chapter 13, but here we define the impulse function 
generally.

Describing the Impulse Function
We describe the impulse function by considering how we would define 
the derivative of the function in Fig. 12.1(b) at its discontinuity. First, we 
assume that the function varies linearly across the discontinuity, as shown 
in Fig. 12.8. In this figure, note that as P S 0, an abrupt discontinuity 
occurs at the origin. When we differentiate the function, the derivative 
between -P and +P is constant, with a value of 1>2P. For t 7 P, the de-
rivative is -ae-a1t - P2. Figure 12.9 shows these observations graphically. 
As P approaches zero, the value of f′(t) between {P approaches infinity. 
At the same time, the duration of this large value is approaching zero. 
Furthermore, the area under f′(t) between {P remains constant as P S 0. 
In this example, the area is unity. As P approaches zero, we say that the 
function between {P approaches a unit impulse function, denoted d(t). 
Thus, the derivative of f(t) at the origin approaches a unit impulse func-
tion as P approaches zero, or

f′(0) S d(t) as P S 0.

If the area under the impulse function curve is other than unity, the im-
pulse function is denoted Kd(t), where K is the area. K is often referred to 
as the strength of the impulse function.

To summarize, an impulse function is created from a variable- parameter 
function whose parameter approaches zero. The variable-parameter func-
tion must exhibit the following three characteristics as the parameter ap-
proaches zero:

1. The amplitude of the function approaches infinity.

2. The duration of the function approaches zero.

3. The area under the variable-parameter function is constant as the 
parameter changes.

Many different variable-parameter functions have these three character-
istics. In Fig. 12.8, we used a linear function f(t) = 0.5t>P + 0.5. Another 
example of a variable-parameter function with the three characteristics is 
the exponential function:

f(t) =
K
2P

 e- �t�>P.

As P approaches zero, the function becomes infinite at the origin and at 
the same time decays to zero in an infinitesimal length of time. 

0.5
t 1 0.5

02 

1.0

f (t)

t  

1
2  

e2a (t 2   )

PP

P

P

Figure 12.8 ▲ A magnified view of the discontinuity 
in Fig. 12.1(b), assuming a linear transition between 
-P and +P.

f 9(t )

t 

2a

2ae2a (t 2   )

1
2  

02P P

P

P

Figure 12.9 ▲ The derivative of the function shown 
in Fig. 12.8.

1The impulse function is also known as the Dirac delta function.
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Figure 12.10 illustrates f(t) as P S 0. An impulse function is created as 
P S 0 if the area under the function is independent of P. Thus,

 Area = L
0

-∞

K
2P

 et>Pdt +  L
∞

0

K
2P

 e-t>Pdt

 =
K
2P

# et>P

1>P
`
-∞

0

+
K
2P

# e-t>P

-1>P
`
0

∞

 =
K
2

+
K
2

= K,

so the area under the curve is constant and equal to K units. Therefore, as 
P S 0, f(t) S Kd(t).

Defining the Impulse Function and Its Sifting 
Property
Mathematically, the impulse function is defined as

 L
∞

-∞
Kd(t)dt = K; (12.4)

 d(t) = 0, t ≠ 0. (12.5)

Equation 12.4 states that the area under the impulse function is constant. 
This area represents the strength of the impulse. Equation 12.5 states that 
the impulse is zero everywhere except at t = 0. An impulse that occurs at 
t = a is denoted Kd1 t - a2 . The graphic symbol for the impulse function 
is an arrow. The strength of the impulse is given parenthetically next to the 
head of the arrow. Figure 12.11 shows the impulses Kd(t) and Kd1 t - a2 .

An important property of the impulse function is the sifting property, 
which is expressed as

 L
∞

-∞
f(t)d1 t - a2  dt = f(a), (12.6)

where we assume the function f(t) is continuous at t = a, the location of the 
impulse. Equation 12.6 shows that the impulse function sifts out all values 
of f(t) except the one at t = a. Equation 12.6 follows from Eqs. 12.4 and 
12.5, noting that d1 t - a2  is zero everywhere except at t = a, and hence 
the integral can be written

L
∞

-∞
f(t)d1 t - a2dt = L

a+P

a-P
f(t)d1 t - a2  dt.

But because f(t) is continuous at a, it takes on the value f(a) as t S a, so

L
a+P

a-P
f(a)d1 t - a2dt = f(a)L

a+P

a-P
d1 t - a2  dt

 = f(a).

Laplace Transform and Derivatives of the Impulse 
Function
We use the sifting property of the impulse function to find its Laplace 
transform:

ℒ5d(t)6 = L
∞

0-
d(t)e-st dt = e-s(0) = 1,

Kd(t)

(K)

f (t)

0

Kd(t 2 a)

(K)

a t 

Figure 12.11 ▲ A graphic representation of the 
 impulse Kd(t) and Kd(t - a).

0

f (t)

t 

K>(2  2)

2 ,   1

K>(2  1)

K
2  2

e20 t 0 >P
1

K
2  1

e2 0 t 0 >P
2P P

P

P

P

P

Figure 12.10 ▲ A variable-parameter function used 
to generate an impulse function.
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which is an important Laplace transform. We can also define the 
 derivatives of the impulse function and the Laplace transform of these 
derivatives. We discuss the first derivative, along with its transform, and 
then state the result for the higher-order derivatives.

The function illustrated in Fig. 12.12(a) generates an impulse function 
as P S 0. Figure 12.12(b) shows the derivative of this impulse- generating 
function, which is defined as the derivative of the impulse 3d′(t)4  as 
P S 0. The derivative of the impulse function sometimes is referred to as 
a moment function, or unit doublet.

To find the Laplace transform of d′(t), we apply the defining integral 
to the function shown in Fig. 12.12(b) and, after integrating, let P S 0. 
Then

 ℒ5d′(t)6 = lim
PS0

c L
0-

-P

1
P2e-st dt + L

P

0+
a-

1
P2 be-stdt d

 = lim
PS0

esP + e-sP - 2
sP2   

 = lim
PS0

sesP - se-sP

2Ps
 

 = lim
PS0

s2esP + s2e-sP

2s
 

 = s.

We used l’Hôpital’s rule twice in this derivation, to evaluate the indeter-
minate form 0>0.

Higher-order derivatives can be generated in a similar manner (see 
Problem 12.6), and the defining integral can then be used to find the 
Laplace transforms. The Laplace transform of the nth derivative of the 
impulse function is

ℒ5d(n)(t)6 = sn.

Finally, note that the derivative of a step function is an impulse func-
tion; that is,

d(t) =
du(t)

dt
 .

Figure 12.13 depicts the relationship between the impulse function and 
the step function. The function shown in Fig. 12.13(a) approaches a unit 
step function as P S 0. The function shown in Fig. 12.13(b)—the deriva-
tive of the function in Fig. 12.13(a)—approaches a unit impulse as P S 0.

The impulse function is an extremely useful concept in circuit anal-
ysis, and we say more about it in the following chapters. We introduced 
the concept here so that we can include discontinuities at the origin in our 
definition of the Laplace transform.

SELF-CHECK: Assess your understanding of the impulse function by 
trying Chapter end-of-text Problems 12.8 and 12.10.
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Figure 12.12 ▲ The first derivative of the impulse 
function. (a) The impulse-generating function used 
to define the first derivative of the impulse. (b) The 
first derivative of the impulse-generating function 
that approaches d′(t) as P S 0.
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Figure 12.13 ▲ The impulse function as the deriv-
ative of the step function: (a) f(t) S u(t) as P S 0; 
and (b) f′(t) S d(t) as P S 0.
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12.4 Functional Transforms
The Laplace transform of a specified function of t is called a functional 
transform. Because we are using the unilateral, or one-sided, Laplace 
transform, we define all functions to be zero for t 6 0-.

We derived one functional transform pair in Section 12.3, where we 
showed that the Laplace transform of the unit impulse function equals 1. 
Next, we find the Laplace transform of the unit step function at the origin, 
where

 ℒ5u(t)6 = L
∞

0
f(t)e-st dt = L

∞

0+
1e-stdt

 =
e-st

-s
`
0+

∞
=

1
s
.

Thus, the Laplace transform of the unit step function is 1>s.
The Laplace transform of the decaying exponential function shown in 

Fig. 12.14 is

ℒ5e-at6 = L
∞

0+
e-ate-stdt = L

∞

0+
e-(a + s)tdt =

1
s + a

 .

In deriving the Laplace transforms of the unit step function and the de-
caying exponential function, we used the fact that integration across the 
discontinuity at the origin is zero.

Let’s find the Laplace transform of the sinusoidal function shown in 
Fig. 12.15. The expression for f(t) for t 7 0- is sin vt; hence, the Laplace 
transform is

 ℒ5sin vt6 = L
∞

0-
1sin vt2e-st dt

 = L
∞

0-
a ejvt - e-jvt

2j
be-st dt

 = L
∞

0-

e-1s - jv2t - e-1s + jv2t

2j
 dt

 =
1
2j
a 1

s - jv
-

1
s + jv

b

 =
v

s2 + v2.

Table 12.1 gives an abbreviated list of functional Laplace transform 
pairs. It includes the functions of most interest in an introductory course 
on circuit applications.

0, t , 0

1.0

f (t)

e2at, t . 0

0
t 

Figure 12.14 ▲ A decaying exponential function.

etc.

t 
0

1.0

21.0

f (t)

Figure 12.15 ▲ A sinusoidal function for t 7 0.
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TABLE 12.1 An Abbreviated List of Laplace Transform Pairs

Type f(t) (t 7 0−) F(s)

(impulse) d(t) 1

(step) u(t)
1
s
 

(ramp) t
1

s2 

(exponential) e-at 1
s + a

 

(sine) sin vt
v

s2 + v2 

(cosine) cos vt
s

s2 + v2 

(damped ramp) te-at
1

1s + a22 

(damped sine) e-at sin vt
v

1s + a22 + v2 

(damped cosine) e-at cos vt
s + a

1s + a22 + v2 

Objective 1—Be able to calculate the Laplace transform of a function using the definition of Laplace 
transform

 12.1 Use the defining integral to
a) find the Laplace transform of cosh bt;
b) find the Laplace transform of sinh bt.

Answer: (a) s>(s2 - b2);

(b) b>(s2 - b2).

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 12.20.

12.5 Operational Transforms
Operational Laplace transforms define how mathematical operations per-
formed on f(t) affect its Laplace transform, F(s). Operational transforms 
also define how mathematical operations performed on F(s) affect its cor-
responding time-domain function f(t). The operations we consider include 
(1) multiplication by a constant; (2) addition and subtraction; (3) differen-
tiation; (4) integration; (5) translation in the time domain; (6) translation 
in the frequency domain; and (7) scale changing.

Multiplication by a Constant
From the defining integral, if

ℒ5 f(t)6 = F(s),

then

ℒ5Kf(t)6 = KF(s).

Thus, multiplication of f(t) by a constant corresponds to multiplying F(s) 
by the same constant.
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Addition and Subtraction
Addition and subtraction in the time domain translates into addition and 
subtraction in the frequency domain. Thus if

 ℒ5 f1(t)6 = F1(s),

 ℒ5 f2(t)6 = F2(s),

 ℒ5 f3(t)6 = F3(s),

then

ℒ5 f1(t) + f2(t) - f3(t)6 = F1(s) + F2(s) - F3(s).

Use the defining integral to derive this operation transform by recognizing 
that the integral of a sum of functions equals the sum of each function’s 
integral.

Differentiation
We use the definition of the Laplace transform to find the operational 
transform for differentiation in the time domain:

ℒe df(t)

dt
f = L

∞

0-
c df(t)

dt
d e-st dt.

We integrate by parts to evaluate this integral. Let u = e-st and 
dv = 3df(t)>dt4  dt to give

ℒe df(t)

dt
f = e-stf(t) `

0-

∞
- L

∞

0-
f(t)(-se-stdt).

Because we are assuming that f(t) has a Laplace transform, evaluating 
e-st f(t) at t = ∞  gives zero. We complete the evaluation of the integral 
to get

-f(0-) + sL
∞

0-
f(t)e-stdt = sF(s) - f(0-).

Thus, the Laplace transform of the derivative of f(t) is

ℒe df(t)

dt
f = sF(s) - f(0-).

This important result shows that differentiation in the time domain trans-
forms to an algebraic operation in the s domain.

Use the Laplace transform of the first derivative of f(t) to find the 
Laplace transform of higher-order derivatives. For example, to find the 
Laplace transform of the second derivative of f(t), we first let

g(t) =
df(t)

dt
 .
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Now we find the Laplace transform of g(t):

G(s) = sF(s) - f(0-).

But because

dg(t)

dt
=

d2f(t)

dt2 ,

we know

ℒe dg(t)

dt
f = ℒe d2f(t)

dt2 f = sG(s) - g(0-).

Therefore,

ℒe d2f(t)

dt2 f = s2F(s) - sf(0-) -
df(0-)

dt
 .

We find the Laplace transform of the nth derivative by successively 
applying the preceding process, which leads to the general result

 ℒe dnf(t)

dtn f = snF(s) - sn-1f(0-) - sn-2 
df(0-)

dt
 

   -  sn - 3d2f(0-)

dt2 - g -
dn-1f(0-)

dtn - 1  .

Integration
We find the Laplace transform of the integral of f(t) by again applying the 
defining integral:

ℒe  L
t

0-
f(x) dx f = L

∞

0-
c L

t

0-
f(x) dx d e-st dt.

Integrate by parts to evaluate the integral on the right-hand side of this 
expression. Let

 u = L
t

0-
f(x) dx,

 dv = e-st dt.

Then

 du = f(t) dt,

 v = -  
e-st

s
.
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The integration-by-parts formula yields

ℒe L
t

0-
f(x)dx f = -  

e-st

s
 L

t

0-
f(x)dx `

0-

∞
+ L

∞

0-

e-st

s
 f(t) dt.

The first term on the right-hand side is zero at both the upper and lower 
limits. The value at the lower limit is zero because both limits on the inte-
gral are the same. The value at the upper limit is zero because e-st S 0 as 
t S ∞ . The second term on the right-hand side is F(s)>s; therefore

ℒe L
t

0-
f(x) dx f =

F(s)
s

,

which reveals that integration in the time domain transforms to multipli-
cation by 1>s in the s domain. We have therefore demonstrated that the 
Laplace transform translates a set of integrodifferential equations into a 
set of algebraic equations.

Translation in the Time Domain
If we start with any function f(t)u(t), we can represent the same function, 
translated in time by the constant a, as f1 t - a2u1 t - a2 .2 To find the 
Laplace transform of f1 t - a2u1 t - a2 , start with the defining integral:

 ℒ51 t - a2u1 t - a26 = L
∞

0-
u1 t - a2f1 t - a2e-st dt

 = L
∞

a
f1 t - a2e-st dt.

In writing this equation, we took advantage of u(t - a) = 0 for t 6 a. 
Now change the variable of integration by letting x = t - a. Then x = 0 
when t = a, x = ∞  when t = ∞  and dx = dt. Rewrite the integral as

 ℒ5 f1 t - a2u1 t - a26 = L
∞

0
f(x)e-s1x + a2 dx

 = e-saL
∞

0
f(x)e-sx dx

 = e-asF(s).

Thus

ℒ5 f1 t - a2u1 t - a26 = e-asF(s), a 7 0.

Translation in the time domain corresponds to multiplication by an expo-
nential in the frequency domain.

2Note that throughout we multiply any arbitrary function f(t) by the unit step function u(t) to 
ensure that the resulting function is defined for all positive time.
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For example, knowing that

ℒ5 tu(t)6 =
1
s2,

we can use this operational transform to find the Laplace transform of 
1 t - a2u1 t - a2 :

ℒ51 t - a2u1 t - a26 =
e-as

s2 .

Translation in the Frequency Domain
Translation in the frequency domain corresponds to multiplication by an 
exponential in the time domain:

ℒ5e-at f(t)6 = F1s + a2 ,

which follows from the defining integral. Problem 12.15 asks you to  derive 
this result.

We can use this operational transform to derive new transform pairs. 
Thus, knowing that

ℒ5cos vt6 =
s

s2 + v2,

we use the effect of translation in the frequency domain to deduce that

ℒ5e-at cos vt6 =
s + a

1s + a22 + v2.

Scale Changing
The scale-change property gives the relationship between f(t) and F(s) 
when the time variable is multiplied by a positive constant:

ℒ5 f(at)6 =
1
a

 Fa s
a
b , a 7 0.

The derivation is left to Problem 12.16. The scale-change property is par-
ticularly useful in experimental work, when time-scale changes are made 
to assist in building a model of a system.

We use this operational transform to formulate new transform pairs. 
Thus, knowing that

ℒ5cos t6 =
s

s2 + 1
,

we use the effect of scale changing to show that

ℒ5cos vt6 =
1
v

 
s>v

1s>v2 2 + 1
=

s

s2 + v2.

Table 12.2 lists these operational transforms.
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TABLE 12.2 An Abbreviated List of Operational Transforms

Operation f(t) F(s)

Multiplication by a constant Kf(t) KF(s)

Addition/subtraction f1(t) + f2(t) - f3(t) + g F1(s) + F2(s) - F3(s) + g

First derivative (time)
df(t)

dt
 sF(s) - f(0-)

Second derivative (time)
d2f(t)

dt2  s2F(s) - sf(0-) -
df(0-)

dt
 

nth derivative (time)
dnf(t)

dtn  snF(s) - sn-1f(0-) - sn-2 
df(0-)

dt
 

-  sn-3 
df 2(0-)

dt2 - g -
dn-1f(0-)

dtn-1

Time integral L
t

0
f(x) dx

F(s)

s
 

Translation in time f1 t - a2u1 t - a2 , a 7 0 e-asF(s)

Translation in frequency e-atf(t) F1s + a2

Scale changing f(at), a 7 0
1
a

 Fa s
a
b

First derivative (s) tf(t) -
dF(s)

ds
 

nth derivative (s) tnf(t) 1 -12 n
dnF(s)

dsn  

s integral
f(t)

t
 L

∞

s
F(u) du

Objective 1—Be able to calculate the Laplace transform of a function using the Laplace transform table or 
a table of operational transforms

 12.2 Use the appropriate operational transform 
from Table 12.2 to find the Laplace transform  
of each function:

a) t2e-at;

b) 
d
dt

  (e-at sinh bt);

c) t cos vt.

Answer: (a) 
2

1s + a23;

(b) 
bs

1s + a2 2 - b2;

(c) 
s2 - v2

(s2 + v2)2.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 12.18 and 12.22.

12.6 Applying the Laplace Transform
We now use the Laplace transform to solve the ordinary integrodifferen-
tial equations that describe the behavior of a lumped-parameter circuit, 
such as the one shown in Fig. 12.16. We assume that no initial energy is 
stored in the circuit at the instant the switch is opened. The problem is to 
find the time-domain expression for v(t) when t Ú 0.

Idc
t 5 0

CLR

1

2

v(t)

Figure 12.16 ▲ A parallel RLC circuit.



 12.6 Applying the Laplace Transform 487

We begin by writing the integrodifferential equation that v(t) must 
satisfy, using a single KCL equation to describe the circuit. Summing the 
currents away from the top node in the circuit gives:

v(t)

R
+

1
L

 L
t

0
v(x) dx + C 

dv(t)

dt
= Idcu(t).

Note that we represented the switch opening at t = 0 with the product of 
the source current and the unit step function, Idcu(t).

We transform the KCL equation into the s-domain using four opera-
tional transforms (multiplication by a constant, addition, integration, and 
differentiation) and one functional transform (unit step) to get

V(s)

R
+

1
L

 
V(s)

s
+ C[sV(s) - v(0-)] = Idca 1

s
b .

The result is an algebraic equation with one unknown variable, V(s). We 
are assuming that the circuit parameters R, L, and C, as well as the source 
current Idc, are known; the initial voltage on the capacitor v(0-) is zero be-
cause the initial energy stored in the circuit is zero. Thus, we have reduced 
the problem to solving an algebraic equation.

Solving for V(s) gives

 V(s)a 1
R

+
1

sL
+ sCb =

Idc

s
,

 V(s) =
Idc>C

s2 + 11>RC2s + 11>LC2 .

To find v(t), we must inverse-transform the expression for V(s). We 
denote this inverse operation as

v(t) = ℒ-15V(s)6 .

The inverse transform, which takes the solution from the s-domain to the 
time domain, is the subject of Section 12.7. In that section, we also present 
a final, critical step: checking the validity of the resulting time-domain ex-
pression. This final step is not unique to the Laplace transform; it is always 
a good idea to test any derived solution to be sure it makes sense in terms 
of known system behavior.

Before continuing, we simplify the notation by dropping the paren-
thetical t in time-domain expressions and the parenthetical s in frequency- 
domain expressions. We use lowercase letters for all time-domain variables, 
and we represent the corresponding s-domain variables with uppercase let-
ters. Thus

 ℒ5v6 = V  or  v = ℒ-15V6 ,

 ℒ5 i6 = I   or   i = ℒ-15I6 ,

 ℒ5 f6 = F or  f = ℒ-15F6 ,

and so on.
Example 12.2 supplies component values for the circuit in Fig, 12.16 

and uses Laplace transforms to predict the circuit’s output voltage.
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12.7 Inverse Transforms
The expression for V(s) in Example 12.2 is a rational function of s. 
This means we can write V(s) as a ratio of two polynomials in s where 
only integer powers of s appear in the polynomials. For linear, lumped- 
parameter circuits with constant component values, the s-domain 
 expressions for the unknown voltages and currents are always rational 
functions of s. (For verification, work Problems 12.27–12.31.) If we can 
inverse-transform rational functions of s, we can find the time- domain 
expressions for the voltages and currents. This section presents a 
straightforward and systematic technique for finding the inverse trans-
form of a rational function.

In general, we need to find the inverse transform of a function that 
has the form

 F(s) =
N(s)

D(s)
=

ansn + an-1s
n-1 + g + a1s + a0

bmsm + bm-1s
m-1 + g + b1s + b0

. (12.7)

The coefficients a and b are real constants, and the exponents m and n are 
positive integers. The ratio N(s)>D(s) is called a proper rational function 
if m 7 n, and an improper rational function if m … n. Only a proper ra-
tional function can be expanded as a sum of partial fractions. This restric-
tion poses no problem, as we show at the end of this section.

EXAMPLE 12.2 Using Laplace Transforms to Predict a Circuit’s Response

Suppose for the circuit in Fig. 12.16, Idc = 24 mA,  
R = 400 Ω, L = 25 mH, and C = 25 nF. There 
is no energy stored in the circuit when the switch 
opens at t = 0. Find the Laplace transform of v(t) 
and use it to predict the functional form of v(t).

Solution
Using the expression for V(s) found for the circuit 
in Fig. 12.16,

The expression for V(s) is not a familiar functional 
Laplace transform, so we cannot use Tables 12.1 or 
12.2 to find its inverse transform. But note that we 
can rewrite the denominator of V(s) as the product 
of two factors:

V(s) =
96 * 104

1s + 20,0002 1s + 80,0002 .

Now, recognize that we can write V(s) as the sum of 
two terms, with each factor appearing in the denom-
inator of one term:

V(s) =
K1

1s + 20,0002 +
K2

1s + 80,0002 .

Each of these terms looks like a familiar Laplace 
transform. Using the transform for the exponential 
function (Table 12.1) and the operational trans-
forms for multiplication by a constant and addition 
(Table 12.2) we predict that v(t) is the sum of two 
exponential terms in the form e-20,000t and e-80,000t.

SELF-CHECK: Assess your understanding of this material by trying Chapter Problem 12.26.

 V(s) =
Idc>C

s2 + 11>RC2s + 11>LC2

 =
0.024> 125 * 10-92

s2 + 31>(400)125 * 10-924s + 31> 10.0252 125 * 10-924

 =
96 * 104

s2 + 105s + 16 * 108.
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Partial Fraction Expansion: Proper Rational 
Functions
A proper rational function is expanded into a sum of partial fractions by 
writing a term or a series of terms for each root of D(s). Thus, D(s) must 
be factored before we construct a partial fraction expansion. For each dis-
tinct root of D(s), a single term appears in the sum of partial fractions. For 
each multiple root of D(s) of multiplicity r, the sum of partial fractions 
contains r terms. For example, in the rational function

s + 6
s(s + 3)(s + 1)2,

the denominator has four roots. Two of these roots are distinct—namely, 
at s = 0 and s = -3. A multiple root of multiplicity 2 occurs at s = -1. 
Thus, the partial fraction expansion takes the form

s + 6
s(s + 3)(s + 1)2 K

K1

s
+

K2

s + 3
+

K3

(s + 1)2 +
K4

s + 1
.

To find the inverse transform from the sum of partial fractions, we iden-
tify the f(t) corresponding to each term in the sum using the functional 
and operational transform tables. Use Tables 12.1 and 12.2 to verify that

ℒ-1e K1

s
+

K2

s + 3
+

K3

(s + 1)2 +
K4

s + 1
f

= (K1 + K2e
-3t + K3te

-t + K4e
-t)u(t).

Now we need to find the numerator coefficients (K1, K2, K3, c) that 
appear in each partial fraction term. There are only four different types 
of partial fraction terms because the roots of D(s) can be (1) real and dis-
tinct; (2) complex and distinct; (3) real and repeated; or (4) complex and 
repeated. We develop a technique to determine the numerator coefficient 
for each type of partial fraction term. Before doing so, a few general com-
ments are in order.

We used the identity sign K in the partial fraction expansion to em-
phasize that expanding a rational function into a sum of partial fractions 
establishes an identical equation. This means that both sides of the equa-
tion must be the same for all values of the variable s. Also, the identity 
 relationship must hold when the same mathematical operation is applied to 
both sides. These observations will help us calculate the coefficient values.

Before creating a partial fraction expansion, you should verify that 
the rational function is proper. This check is important because the proce-
dure for finding the partial fraction coefficients will not prevent you from 
generating invalid results if the rational function is improper. We present 
a procedure for checking the coefficients, but you can avoid wasted effort 
by always asking, “Is F(s) a proper rational function?”

Partial Fraction Expansion: Distinct Real Roots of D(s)
Let’s find the partial fraction expansion of a proper rational function 
whose denominator has distinct real roots. For example,

F(s) =
N(s)

1s + p12 1s + p22 1s + p32  K
K1

1s + p12 +
K2

1s + p22 +
K3

1s + p32 .
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To find K1 for the first partial fraction term, we multiply both sides of the 
identity by the denominator beneath K1 to get

N(s)

1s + p22 1s + p32  K K1 +
K21s + p12
1s + p22 +

K31s + p12
1s + p32 .

Then when we evaluate both sides of the identity for s = -p1, which is the 
root of the partial fraction term whose coefficient is K1:

N(s)

1s + p22 1s + p32 `
s = -p1

K K1 +
K21s + p12
1s + p22 `

s = -p1

+
K31s + p12
1s + p32 `

s = -p1

= K1. 

The right-hand side is always the desired K, and the left-hand side is always 
its numerical value. To find K2 and K3, repeat the steps used to find K1.

Example 12.3 illustrates this process.

EXAMPLE 12.3  Finding the Inverse Laplace Transform when F(s) has Distinct 
Real Roots

Use partial fraction expansion to find the inverse 
Laplace transform of

F(s) =
961s + 52 1s + 122

s1s + 82 1s + 62 .

Solution
The partial fraction expansion of F(s) is

F(s) =
961s + 52 1s + 122

s1s + 82 1s + 62 K
K1

s
+

K2

1s + 82 +
K3

1s + 62 .

To find the value of K1, we multiply both sides by s 
and then evaluate both sides at s = 0:

961s + 52 1s + 122
1s + 82 1s + 62 `

s = 0
K K1 +

K2s

s + 8
`
s = 0

+
K3s

s + 6
`
s = 0

,

or

96(5)(12)

8(6)
= K1 = 120.

To find the value of K2, we multiply both sides by 
s + 8 and then evaluate both sides at s = -8:

961s + 52 1s + 122
s1s + 62 `

s = -8

K
K11s + 82

s
`
s = -8

+ K2 +
K31s + 82
1s + 62 `

s = -8
,

or

961 -32(4)

1 -82 1 -22 = K2 = -72.

Then K3 is

961s + 52 1s + 122
s1s + 82 `

s = -6
= K3 = 48.

Therefore,

961s + 52 1s + 122
s1s + 82 1s + 62 K

120
s

-
72

1s + 82 +
48

1s + 62 .

It is a good idea to test this result. While the choice 
of test values is completely open, we choose values that 
are easy to verify. For example, testing at either -5 or 
-12 is convenient because in both cases the left-hand 
side reduces to zero. Choosing -5 yields

120
-5

-
72
3

+
48
1

= -24 - 24 + 48 = 0,

whereas testing -12 gives

120
-12

-
72
-4

+
48
-6

= -10 + 18 - 8 = 0.

Now find the inverse transform of F(s) using 
the tables of functional and operational transforms 
(Tables 12.1 and 12.2):

ℒ-1e 961s + 52 1s + 122
s1s + 82 1s + 62 f = 1120 - 78e-8t + 48e-6t2u(t).
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Partial Fraction Expansion: Distinct Complex Roots 
of D(s)
We begin by noting that if F(s) describes the Laplace transform of a volt-
age or current in a physically realizable circuit, the factors of D(s) that 
have complex roots will always come in conjugate pairs. Let’s assume that

F(s) =
A1s + z12

1s + a - jb2 1s + a + jb2 K
K1

1s + a - jb2 +
K2

1s + a + jb2 .

Here we assume that z1 is a real number.
We find the unknown coefficients, K1 and K2, using the same tech-

nique we employed when the factors of D(s) were real and distinct. As 
you will see, the only difference is that the algebra involves complex num-
bers. To find K1, we multiply both sides of the identity by the denomina-
tor beneath K1 to get

A1s + z12
1s + a + jb2  K K1 +

K21s + a - jb2
1s + a + jb2 .

Then when we evaluate both sides of the identity for s = -a + jb, which 
is the root of the partial fraction term whose coefficient is K1:

A1s + z12
1s + a + jb2 `

s = -a + jb
= K1 +

K21s + a - jb2
1s + a + jb2 `

s = -a + jb
= K1.

We evaluate the left-hand side of the identity to get an expression for K1:

K1 =
A1 -a + z1 + jb2

1 j2b2 =
A
2

+ jaa - z1

2b
b .

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the 
Laplace transform table

 12.3 Find f(t) if

F(s) =
6s2 + 26s + 26

1s + 12 1s + 22 1s + 32 .

Answer: f(t) = 13e-t + 2e-2t + e-3t2u(t).

 12.4 Find f(t) if

F(s) =
7s2 + 63s + 134

1s + 32 1s + 42 1s + 52 .

Answer: f(t) = 14e-3t + 6e-4t - 3e-5t2u(t).

 12.5 Find v(t) for the circuit analyzed in Example 12.2 
and shown in Fig. 12.16.

Answer: v(t) = 116e-20,000t - 16e-80,000t2u(t) V.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 12.40(a) and (b).
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As expected, K1 is a complex number. We repeat the steps used to find K1 
when finding the expression for K2:

  
A1s + z12

1s + a - jb2 =
K11s + a + jb2
1s + a - jb2 + K2;

A1s + z12
1s + a - jb2 `

s = -a - jb
=

K11s + a + jb2
1s + a - jb2 `

s = -a - jb
+ K2;

 K2 =
A1 -a + z1 - jb2

1 - j2b2 =
A
2

- jaa - z1

2b
b .

Compare the expression for K1 with the expression for K2; K1 and K2 
are conjugates. This will always be the case when D(s) has complex roots, 
so we need only calculate one coefficient, since the other is its conjugate. 
We can use the following general polar form for K1 and K2:

K1 = 0K 0 eju and K2 = 0K 0 e-ju.

Using the polar form for the general coefficients K1 and K2, we can find 
the inverse Laplace transform of F(s), with the help of the functional and 
operational transform tables (Tables 12.1 and 12.2) and Euler’s identity:

 ℒ-1e 0K 0 eju

s + a - jb
+

0K 0 e-ju

s + a + jb
f = 0K 0 ejue-1a - jb2t + 0K 0 e-jue-1a + jb2t

 = 0K 0 e-atej1bt + u2 + 0K 0 e-ate-j1bt + u2

 = 0K 0 e-at3cos1bt + u2 + j sin1bt + u24
 + 0K 0 e-at3  cos1bt + u2 - j sin1bt + u24
 = 2 0K 0 e-at cos1bt + u2 .

Because distinct complex roots appear frequently in lumped- parameter 
linear circuit analysis, we summarize these results with a new transform 
pair. Whenever D(s) contains distinct complex roots—that is, factors of the 
form 1s + a - jb2 1s + a + jb2—a pair of terms of the form

K
s + a - jb

+
K*

s + a + jb

appears in the partial fraction expansion, where the partial fraction coeffi-
cient is, in general, a complex number. In polar form,

 K = 0K 0 eju = 0K 0lu, (12.8)

where 0K 0  denotes the magnitude of the complex coefficient. Then

 K* = 0K 0 e-ju = 0K 0l-u. (12.9)

The pair of complex conjugate partial fraction terms always inverse- 
transforms as

ℒ-1e K
s + a - jb

+
K*

s + a + jb
f

 = 2 0K 0 e-at cos1bt + u2 . (12.10)
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In applying Eq. 12.10, it is important to note that K is defined as the coef-
ficient associated with the denominator s + a - jb, and K* is defined as 
the coefficient associated with the denominator s + a + jb.

Example 12.4 finds the inverse Laplace transform of an s-domain 
function with distinct complex roots.

EXAMPLE 12.4  Finding the Inverse Laplace Transform when F(s) has Distinct 
Complex Roots

Use partial fraction expansion to find the inverse 
Laplace transform of

F(s) =
1001s + 32

1s + 62 1s2 + 6s + 252 .

Solution
We begin by noting that F(s) is a proper rational 
function. Next we find the roots of the quadratic 
term s2 + 6s + 25:

s2 + 6s + 25 = 1s + 3 - j42 1s + 3 + j42 .

With the denominator in factored form, we create 
the partial fraction expansion:

1001s + 32
1s + 62 1s2 + 6s + 252 K

K1

s + 6
+

K2

s + 3 - j4
+

K2
*

s + 3 + j4
.

Find K1 and K2 using the same process employed in 
Example 12.3:

 K1 =
1001s + 32
s2 + 6s + 25

`
s = -6

=
1001 -32

25
= -12,

 K2 =
1001s + 32

1s + 62 1s + 3 + j42 `
s = -3 + j4

=
1001 j42

13 + j42 1 j82
 = 6 - j8 = 10e-j53.13°.

Thus

1001s + 32
1s + 62 1s2 + 6s + 252

K
-12

s + 6
+

10 l-53.13°
s + 3 - j4

+
10 l53.13°
s + 3 + j4

.

Before inverse-transforming the terms in the 
partial fraction expansion, we check the expansion 
numerically. We test using s = -3 because the left-
hand side reduces to zero at this value:

 F(s) =
-12

3
+

10 l-53.13°
- j4

+
10 l53.13°

j4
 

 = -4 + 2.5 l36.87° + 2.5 l-36.87°

 = -4 + 2.0 + j1.5 + 2.0 - j1.5 = 0.

Finally, perform the inverse-transform, using 
the functional and operational transform tables  
(Tables 12.1 and 12.2) and the new transform pair 
in Eq. 12.10:

ℒ-1e 1001s + 32
1s + 62 1s2 + 6s + 252 f

= 3 -12e-6t + 20e-3t cos14t - 53.13°24u(t).

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the 
Laplace transform table

 12.6 Find f(t) if

F(s) =
101s2 + 1192

1s + 52 1s2 + 10s + 1692 .

Answer: f(t) = 110e-5t - 8.33e-5t sin 12t2u(t).

ASSESSMENT PROBLEMS
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Partial Fraction Expansion: Repeated Real Roots of D(s)
We describe two methods for finding the partial fraction coefficients for 
terms generated by a multiple root with multiplicity r. Method A requires 
you to solve several simultaneous algebraic equations. Method B is a 
modification of the process we have been using to find the coefficients 
for the partial fraction terms associated with distinct roots. Both methods 
begin with the identity relating the original s-domain function, which must 
be a proper rational function, and its partial fraction expansion:

N(s)

D(s)
 K

K1

1s + p2 r +
K2

1s + p2 r - 1 + g +
Kr

1s + p2  .

Method A

1. Combine all terms in the partial fraction expansion over the common 
denominator, D(s). Call the numerator of this new function N1(s).

2. Collect all of the terms in the numerator N1(s) according to their 
power of s. The coefficient of each power of s will include some of 
the unknown partial fraction coefficients.

3. Equate the coefficient of each power of s in N1(s) with the coeffi-
cient of the corresponding power of s in N(s). The result is a col-
lection of simultaneous equations whose unknowns are the partial 
fraction coefficients.

4. Solve the simultaneous equations to find the partial fraction coef-
ficients.

Method B

1. Multiply both sides of the identity defining the partial fraction ex-
pansion by the multiple root raised to its rth power. Call the result-
ing identity Ir.

2. Find K in the numerator of the factor raised to the rth power by 
evaluating both sides of Ir at the multiple root.

3. To find K in the numerator of the factor raised to the (r - 1) pow-
er, differentiate both sides of Ir with respect to s. Call the resulting 
identity I(r - 1). Evaluate both sides of I(r - 1) at the multiple root. The 
right-hand side is always the desired K, and the left-hand side is 
always its numerical value.

4. Repeat Step 3 to find the remaining partial fraction coefficients by 
differentiating I(r - 1) to get I(r - 2) and so on. In total, you will have 
differentiated Ir (r - 1) times.

Example 12.5 uses Method A to find the inverse Laplace transform 
for an s-domain function with repeated real roots.

 12.7 Suppose for the circuit in Fig. 12.16, 
Idc = 24 mA, R = 625 Ω, L = 25 mH, and 
C = 25 nF. These are the same values used in 
Example 12.2 except for the value of R. There is 
no energy stored in the circuit when the switch 
opens at t = 0.
a) Find V(s), the Laplace transform of v(t).

b) Find v(t) by finding the inverse transform of the 
partial fraction expansion of V(s).

Answer: (a) V(s) =
96 * 104

s2 + 64,000s + 16 * 108;

(b) v(t) = 40e-32,000t cos124,000t - 90°2u(t) V.

SELF-CHECK: Also try Chapter Problems 12.41(c) and (d).
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EXAMPLE 12.5  Finding the Inverse Laplace Transform when F(s) has Repeated 
Real Roots

Use partial fraction expansion to find the inverse 
Laplace transform of

F(s) =
1001s + 252

s1s + 52 3 .

Solution
We begin by noting that F(s) is a proper rational func-
tion. Next we find partial fraction expansion of F(s):

1001s + 252
s1s + 52 3 K

K1

s
+

K2

1s + 52 3 +
K3

1s + 52 2 +
K4

s + 5
.

We will use Method A to find the partial fraction 
coefficients. Begin by multiplying the numerator 
and denominator of each term in the partial fraction 
expansion with an expression that creates a denom-
inator of s(s + 5)3 in each term:

1001s + 252
s1s + 52 3 K

K11s + 52 3

s1s + 52 3 +
K2s

s1s + 52 3

+
K3s1s + 52
s1s + 52 3 +

K4s1s + 52 2

s1s + 52 3 .

Combine the terms on the right-hand side over their 
common denominator, and expand the resulting 
numerator by collectiong the coefficients for each 
power of s. The numerator on the right-hand side is 

1K1 + K42s3 + 115K1 + K3 + 10K42s2

+ 135K1 + K2 + 5K3 + 25K42s
+ 1125K12 .

Equate the coefficients of each power of s in the nu-
merators on the right-hand side and left-hand side 
to create four simultaneous equations:

 K1 + K4 = 0;

 15K1 + K3 + 10K4 = 0;

 35K1 + K2 + 5K3 + 25K4 = 100;

 125K1 = 2500.

Solve the simultaneous equations to find

K1 = 20; K2 = -400; K3 = -100; K4 = -20.

Therefore, the partial fraction expansion is

1001s + 252
s1s + 52 3 K

20
s

-
400

1s + 52 3 -
100

1s + 52 2 -
20

s + 5
.

At this point, we can check our expansion by 
testing both sides at s = -25; for this value of s, 
both sides should equal zero. The result of evaluat-
ing the partial fraction expansion at s = -25 is

20
-25

-
400

1 -202 3 -
100

1 -202 2 -
20

1 -202 = 0.

Use the functional and operational transform 
tables (Tables 12.1 and 12.2) to transform each 
term in the partial fraction expansion. Thus, the in-
verse transform of F(s) is

ℒ-1e 1001s + 252
s1s + 52 3 f = 320 - 200t2e-5t - 100te-5t - 20e-5t4u(t).

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the 
Laplace transform table

 12.8 Find f(t) if

F(s) =
14s2 + 7s + 12

s1s + 12 2 .

Answer: f(t) = 11 + 2te-t + 3e-t 2u(t).

 12.9 Suppose for the circuit in Fig. 12.16, Idc = 24 mA,  
R = 500 Ω, L = 25 mH, and C = 25 nF. These 
are the same values used in Example 12.2 and 

Assessment Problem 12.7 except for the value of 
R. There is no energy stored in the circuit when 
the switch opens at t = 0.
a) Find V(s), the Laplace transform of v(t).
b) Find v(t) by finding the inverse transform of 

the partial fraction expansion of V(s).

Answer: (a) V(s) =
96 * 104

s2 + 80,000s + 16 * 108;

(b) v(t) = 96 * 104te-40,000tu(t) V.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 12.42(b) and (c).
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Partial Fraction Expansion: Repeated Complex 
Roots of D(s)
We can find the coefficients of the partial fraction terms corresponding to 
repeated complex roots using either Method A or Method B. The algebra 
involves complex numbers. Recall that complex roots always appear in 
conjugate pairs and that the coefficients associated with a conjugate pair 
are also conjugates, so that only half the Ks need to be evaluated. We il-
lustrate the process using Method B in Example 12.6.

EXAMPLE 12.6  Finding the Inverse Laplace Transform when F(s) has Repeated 
Complex Roots

Use partial fraction expansion to find the inverse 
Laplace transform of

F(s) =
768

1s2 + 6s + 252 2.

Solution
After factoring the denominator polynomial, we 
write

 F(s) =
768

1s + 3 - j42 21s + 3 + j42 2 

 K
K1

1s + 3 - j42 2 +
K2

s + 3 - j4
 

 +  
K1

*

1s + 3 + j42 2 +
K2

*

s + 3 + j4
.

Now we need to evaluate only K1 and K2, because 
K1

* and K2
* are conjugate values. We use Method B to 

find these two partial fraction coefficients.
The value of K1 is

K1 =
768

1s + 3 + j42 2 `
s = -3 + j4

=
768
1 j82 2 = -12.

To find the value of K2, multiply F(s) by 
1s + 3 - j42 2, find the first derivative of the result 
with respect to s, and evaluate for s = -3 + j4:

 K2 =
d
ds

 c 768
1s + 3 + j42 2 d

s = -3 + j4

 =
-2(768)

1s + 3 + j42 3 `
s = -3 + j4

 =
-2(768)

1 j82 3 = - j3 = 3 l-90°.

From the values for K1 and K2, K1
* = -12, and 

K2
* = j3 = 3 l90°. Group the partial fraction ex-

pansion by conjugate terms to obtain

F(s) = c -12
1s + 3 - j42 2 +

-12
1s + 3 + j42 2 d

+ c 3 l-90°
1s + 3 - j42 +

3 l90°
1s + 3 + j42 d .

Inverse-transform F(s) by applying the functional and 
operational transforms (Tables 12.1 and 12.2) to the 
terms in the partial fraction expansion. The result is 
f(t) = 3 -24te-3t cos 4t + 6e-3t cos14t - 90°24u(t).

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the 
Laplace transform table

 12.10 Find f(t) if

F(s) =
40

1s2 + 4s + 52 2.

Answer: f(t) = 1 -20te-2t cos t + 20e-2t sin t2u(t).

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 12.43(b).
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Note that if F(s) has a real root a of multiplicity r in its denominator, 
the partial fraction expansion has a term of the form

K
1s + a2 r.

The inverse transform of this term is

 ℒ-1e K
1s + a2 r f =

Ktr - 1e-at

1r - 12 !
 u(t). (12.11)

If F(s) has a complex root of a + jb of multiplicity r in its denominator, 
the partial fraction expansion has a conjugate pair of terms in the form

K
1s + a - jb2 r +

K*

1s + a + jb2 r.

The inverse transform of this pair is

ℒ-1e 0K 0lu

1s + a - jb2 r +
0K 0l-u

1s + a + jb2 r f

 = c 2 0K 0 tr - 1

1r - 12 !
  e-at cos1bt + u2 d  u(t). (12.12)

Equations 12.11 and 12.12 are the key to finding the inverse transform 
for any partial fraction expansion with repeated roots. One further note 
regarding these two equations: In circuit analysis problems, r is seldom 
greater than 2. Therefore, the inverse transform of a rational function can 
be handled with four transform pairs. Table 12.3 lists these pairs.

Partial Fraction Expansion: Improper Rational 
Functions
An improper rational function can always be written as the sum of a poly-
nomial and a proper rational function. The polynomial is then inverse- 
transformed into impulse functions and derivatives of impulse functions, 
while the proper rational function is inverse-transformed by the tech-
niques outlined in this section.

We illustrate the procedure in Example 12.7.

TABLE 12.3 Four Useful Transform Pairs

Pair Number Nature of Roots F(s) f(t)

1 Distinct real
K

s + a
 Ke-atu(t)

2 Repeated real
K

1s + a2 2 Kte-atu(t)

3 Distinct complex
K

s + a - jb
+

K*

s + a + jb
 2 0K 0 e-at cos1bt + u2u(t)

4 Repeated complex
K

1s + a - jb2 2 +
K*

1s + a + jb2 2 2t 0K 0 e-at cos1bt + u2u(t)

Note: In pairs 1 and 2, K is a real quantity, whereas in pairs 3 and 4, K is the complex quantity 0K 0  lu.
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EXAMPLE 12.7  Finding the Inverse Laplace Transform of an Improper Rational 
Function

Use partial fraction expansion to find the inverse 
Laplace transform of

F(s) =
s4 + 13s3 + 66s2 + 200s + 300

s2 + 9s + 20
.

Solution
The order of the numerator is 4, while the order of 
the denominator is 2, so F(s) is an improper ratio-
nal function. To write it as the sum of a polynomial 
and a proper rational function, divide the denom-
inator into the numerator until the remainder is a 
proper rational function. The result is

 
F(s) = 1s2 + 9s + 202

s2 + 4s + 10

)s4 + 13s3 + 66s2 + 200s + 300

 = s2 + 4s + 10 +
30s + 10

s2 + 9s + 20
.

Next, expand the proper rational function into a 
sum of partial fractions:

 
30s + 100

s2 + 9s + 20
=

30s + 100
1s + 42 1s + 52 K

-20
s + 4

+
50

s + 5
.

Replace the proper rational function in F(s) with the 
partial fraction expansion to get

F(s) = s2 + 4s + 10 -
20

s + 4
+

50
s + 5

.

Using the tables of functional and operational transforms 
(Tables 12.1 and 12.2) we can now inverse-transform 
F(s). Hence

f(t) =
d2d(t)

dt2 + 4 
dd(t)

dt
+ 10d(t) - 120e-4t - 50e-5t2u(t).

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the 
Laplace transform table

 12.11 Find f(t) if

F(s) =
15s2 + 29s + 322
1s + 22 1s + 42 .

Answer: 5d(t) - 13e-2t - 2e-4t2u(t).

 12.12 Find f(t) if

F(s) =
12s3 + 8s2 + 2s - 42

1s2 + 5s + 42 .

Answer: 2
dd(t)

dt
- 2d(t) + 4e-4t u(t).

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problem 12.43(d).

12.8 Poles and Zeros of F(s)
The rational function of Eq. 12.7 can also be expressed as the ratio of two 
factored polynomials. In other words, we can write F(s) as

 F(s) =
K1s + z12 1s + z22 g 1s + zn2
1s + p12 1s + p22 g 1s + pm2 , (12.13)

where K is the constant an>bm.
The roots of the denominator polynomial, that is, -p1, -p2, -p3, …, 

-pm, are called the poles of F(s); they are the values of s at which F(s) be-
comes infinitely large. The roots of the numerator polynomial, that is, -z1,  
-z2, -z3, …, -zn are called the zeros of F(s); they are the values of s at 
which F(s) becomes zero. We can visualize the poles and zeros of F(s) as 
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points on a complex s plane. In the complex s plane, we use the horizontal 
axis to plot the real values of s and the vertical axis to plot the imaginary 
values of s. Example 12.8 finds the poles and zeros for two different func-
tions of s and plots the locations of the poles and zeros on the complex 
plane.

EXAMPLE 12.8  Finding and Plotting the Poles and Zeros of an s-Domain 
Function

a) Suppose F1(s) is given by

F1(s) =
40s3 + 440s2 + 2200s + 5000

4s4 + 88s3 + 880s2 + 4000s
.

Find the poles and zeros of F1(s) and plot them 
on the complex s-plane.

b) Suppose F2(s) is given by

F2(s) =
8s2 + 120s + 400

2s4 + 20s3 + 70s2 + 100s + 48
.

Find the poles and zeros of F2(s) and plot them 
on the complex s-plane.

Solution

a) Begin by factoring out a constant in the numer-
ator and denominator of F1(s). Then factor the 
numerator and denominator polynomials. The 
result is

 F1(s) =
401s3 + 11s2 + 55s + 1252

41s4 + 22s3 + 220s2 + 1000s2  

 =
101s + 52 1s + 3 - j42 1s + 3 + j42
s1s + 102 1s + 6 - j82 1s + 6 + j82 .

The poles of F1(s) are at 0, -10, -6 + j8, and 
-6 - j8. The zeros are at -5, -3 + j4, and 
-3 - j4. Figure 12.17 shows the poles and zeros 
plotted on the s plane, where X’s represent poles 
and O’s represent zeros.

5

25

210 25

23 1 j 4

23 2 j 4

26 2 j 8

26 1 j 8
s plane

�{s}

�{s}

Figure 12.17 ▲ Plotting poles and zeros on the s plane for 
F1(s) in Example 12.8.

b) Factor out a constant in the numerator and de-
nominator of F2(s). Then factor the numerator 
and denominator polynomials to give

 F2(s) =
81s2 + 15s + 502

21s4 + 10s3 + 35s2 + 50s + 242  

 =
41s + 52 1s + 102

1s + 12 1s + 22 1s + 32 1s + 42 .

The zeros of F2(s) are -5 and -10. The poles of 
F2(s) are -1, -2, -3, and -4. They are plotted in 
the complex s-plane in Fig. 12.18. Note that F2(s) 
also has a second-order zero at infinity because for 
large values of s the function reduces to 4>s2, and 
F2(s) = 0 when s = ∞ . In general, F(s) can have 
either an rth-order pole or an rth-order zero at in-
finity. In this text, we are interested in the poles and 
zeros located in the finite s plane. Therefore, when 
we refer to the poles and zeros of a rational function 
of s, we are referring to the finite poles and zeros.

 2 2 2 2 2 2

s-plane

10 8 6 4 2

�{s}

�{s}

Figure 12.18 ▲ Plotting poles and zeros on the s plane for F2(s) in Example 10.8.
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Objective 3—Be able to find and plot the poles and zeros for a rational function in the s-domain

 12.13 Find the poles and zeros for the following ratio-
nal functions of s.

a) F(s) =
20s2 + 80s + 100
s3 + 10s2 + 21s

; 

b) F(s) =
10s2 + 20s + 10

2s3 + 28s2 + 258s + 712
; 

c) F(s) =
125s

5s4 + 90s3 + 670s2 + 2360s + 3400
. 

Answer: (a) Zeros at -2 + j and -2 - j, poles at 0, 
-3, and -7;

(b) Two zeros at -1, poles at -4, -5 + j8, 
and -5 - j8;

(c) Zero at 0, poles at -5 + j3, -5 - j3, 
-4 + j2, and -4 - j2.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 12.46.

12.9 Initial- and Final-Value Theorems
The initial- and final-value theorems enable us to determine the behavior 
of f(t) at 0 and ∞  from F(s). Hence, we can check the initial and final 
values of f(t) to see if they conform to known circuit behavior, before ac-
tually finding the inverse transform of F(s).

The initial-value theorem states that

INITIAL-VALUE THEOREM

 lim
tS0+ f(t) = lim

sS ∞
 sF(s), (12.14)

FINAL-VALUE THEOREM

 lim
tS ∞

 f(t) = lim
sS0

 sF(s). (12.15)

and the final-value theorem states that

The initial-value theorem assumes that f(t) does not have an impulse func-
tion at the origin. The final-value theorem is valid only if the poles of F(s), 
except for a first-order pole at the origin, lie in the left half of the s plane.

To prove Eq. 12.14, we start with the operational transform of the 
first derivative:

ℒe df

dt
f = sF(s) - f(0-) = L

∞

0-

df

dt
 e-st dt.

Now we take the limit as s S ∞ :

 lim
sS ∞

 [sF(s) - f(0-)] = lim
sS ∞ L

∞

0-

df

dt
 e-st dt. (12.16)
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Observe that the right-hand side of Eq. 12.16 can be written as

lim
sS ∞

 a L
0+

0-

df

dt
 e0dt + L

∞

0+

df

dt
 e-stdtb .

As s S ∞ , 1df>dt2e-st S 0; hence, the second integral vanishes in the 
limit. The first integral reduces to f(0+) - f(0-), which is independent of s.  
Thus, the right-hand side of Eq. 12.16 becomes

lim
sS ∞ L

∞

0-

df

dt
 e-st dt = f(0+) - f(0-).

Because f(0-) is independent of s, the left-hand side of Eq. 12.16 can be 
written as

lim
sS ∞

[sF(s) - f(0-)] = lim
sS0

 [sF(s)] - f(0-).

Therefore,

lim
sS ∞

sF(s) = f(0+) = lim
tS0+

f(t),

which completes the proof of the initial-value theorem.
The proof of the final-value theorem also starts with the operational 

transform of the first derivative. Here we take the limit as s S 0:

 lim
sS0

[sF(s) - f(0-)] = lim
sS0

a L
∞

0-

df

dt
 e-stdtb . (12.17)

The integration is with respect to t and the limit operation is with respect 
to s, so the right-hand side of Eq. 12.17 reduces to

lim
sS0

a L
∞

0-

df

dt
 e-stdtb = L

∞

0-

df

dt
 dt.

Because the upper limit on the integral is infinite, this integral may also be 
written as a limit process:

L
∞

0-

df

dt
  dt = lim

tS ∞ L
t

0-

df

dy
 dy,

where we use y as the symbol of integration to avoid confusion with the 
upper limit on the integral. Carrying out the integration on the right-hand 
side gives

lim
tS ∞

[f(t) - f(0-)] = lim
tS ∞

 [f(t)] - f(0-).

Substituting this expression into the right-hand side of Eq. 12.17 gives

lim
sS0

 [sF(s)] - f(0-) = lim
tS ∞

[f(t)] - f(0-).

Since f(0-) cancels, we get

lim
sS0 

sF(s) = lim
tS ∞  f(t),

which completes the proof of the final value theorem.
The final-value theorem is useful only if f(∞) exists. This condition is 

true only if all the poles of F(s), except for a single pole at the origin, lie in 
the left half of the s plane.

Example 12.9 applies the initial- and final-value theorems to the s-domain 
function from Example 12.2.
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EXAMPLE 12.9 Applying the Initial- and Final-Value Theorems

Suppose for the circuit in Fig. 12.16, Idc = 24 mA, 
R = 400 Ω, L = 25 mH, and C = 25 nF. There is 
no energy stored in the circuit when the switch opens 
at t = 0. In Example 12.2, we found the Laplace 
transform of v(t) is

V(s) =
96 * 104

s2 + 105s + 16 * 108.

Use the initial- and final-value theorems to predict 
the initial and final values of v(t) and verify that 
V(s) correctly predicts the values of v(0+) and v(∞) 
from the circuit.

Solution
From the initial-value theorem,

lim
sS ∞

sV(s) = lim
sS ∞

96 * 104s

s2 + 105s + 16 * 108.

To evaluate the limit on the right-hand side, divide 
numerator and denominator by the highest power 
of s in the denominator, in this case s2, and find the 
limit as 1>s S 0:

lim
sS ∞

96 * 104s

s2 + 105s + 16 * 108

= lim
1>sS0

96 * 10411>s2
1 + 10511>s2 + 16 * 10811>s2 2 

=
0

1 + 0 + 0
= 0 = lim

tS0 
v(t) = v10+ 2 .   

Since the problem states that there is no energy 
stored in the circuit prior to the switch opening at 
t = 0, we have confirmed that the initial voltage is 
zero.

Before applying the final-value theorem, find 
the poles of V(s). They are -20,000 and -80,000, so 
both lie in the left-half complex plane, and we can 
use the final-value theorem to get

lim
sS0 

sV(s) = lim
sS0

96 * 104s

s2 + 105s + 16 * 108 = 0.

As we expected from the circuit, as t S ∞ , the 
 final-value theorem gives v(∞) = 0. Thus, V(s) cor-
rectly predicts the initial and final values of v(t).

Objective 4—Understand and know how to use the initial-value theorem and the final-value theorem

 12.14 Use the initial- and final-value theorems to find 
the initial and final values of f(t) in Assessment 
Problems 12.4, 12.8, and 12.10.

Answer: 7, 0; 4, 1; and 0, 0.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 12.50.

Practical Perspective
Transient Effects
The circuit introduced in the Practical Perspective at the beginning of 
the chapter is repeated in Fig. 12.19 with the switch closed and the 
chosen sinusoidal source.

We use Laplace methods to determine the complete response of 
the inductor current, iL. To begin, use KVL to sum the voltage drops 
around the circuit, in the clockwise direction:

15iL + 0.01
diL

dt
+

1

100 * 10-6 L
t

0
iL(x)dx = cos 120pt.

1

2

10 mH 100 mF

cos 120pt V

iL

15 V

Figure 12.19 ▲ A series RLC circuit with a 60 Hz 
sinusoidal source.
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Using Tables 12.1 and 12.2, we find the Laplace transform of the KVL 
equation:

15IL + 0.01sIL + 104IL

s
=

s

s2 + 1120p2 2. 

Solve this equation for IL:

IL =
100s2

3s2 + 1500s + 1064 3s2 + 1120p224 .

Note that the expression for IL has two complex conjugate pairs of 
poles, so the partial fraction expansion of IL will have four terms:

IL =
K1

1s + 750 - j661.442 +
K1

*

1s + 750 + j661.442

+
K2

1s - j120p2 +
K2

*

1s + j120p2 .

Determine the values of K1 and K2:

 K1 =
100s2

3s + 750s + j661.444 3s2 + 1120p2 24 `
s = -750 + j661.44

 = 0.07357l-97.89°,

 K2 =
100s2

[s2 + 1500s + 106][s + j120p]
`
s = j120p

= 0.018345l56.61°.

Therefore, the s-domain expression for the inductor current is

IL =
0.07357l-97.89°

1s + 750 - j661.442 +
0.07357l97.89°

1s + 750 + j661.442

+
0.018345l56.61°
1s - j120p2 +

0.018345l-56.61°
1s + j120p2 .

Finally, we use Table 12.3 to calculate the inverse Laplace transform and 
find iL:

iL = 147.14e-750t cos1661.44t - 97.89°2
+ 36.69 cos1120pt + 56.61°2  mA.

The first term in the inductor current is the transient response, which will 
decay to zero in about 7 ms. The second term in the inductor current is 
the steady-state response, which has the same frequency as the 60 Hz 
 sinusoidal source and will persist as long as this source is connected in the 
circuit. Note that the amplitude of the steady-state response is 36.69 mA, 
which is less than the 40 mA current rating of the inductor. But the transient 
response has an initial amplitude of 147.14 mA, far greater than the 40 mA 
current rating. Calculate the value of the inductor current at t = 0:

iL(0) = 147.14(1) cos1 -97.89°2 + 36.69 cos156.61°2 = -6.21mA.

Clearly, the transient part of the response does not cause the inductor 
current to exceed its rating initially. But we need a plot of the complete 
response to determine whether or not the current rating is ever exceed-
ed, as shown in Fig. 12.20.
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The plot suggests we check the value of the inductor current at 1 ms:

iL10.0012 = 147.14e-0.75 cos1 -59.99°2 + 36.69 cos178.21°2 = 42.4 mA.

Thus, the current rating is exceeded in the inductor, at least momentar-
ily. If we determine that we never want to exceed the current rating, we 
should reduce the magnitude of the sinusoidal source. This example 
illustrates the importance of considering the complete response of a 
circuit to a sinusoidal input, even if we are satisfied with the steady-state 
response.

SELF-CHECK: Access your understanding of the Practical Perspective 
by trying Chapter Problems 12.57 and 12.58.

Summary
• The Laplace transform is a tool for converting time- 

domain equations into frequency-domain equations, ac-
cording to the following general definition:

ℒ5 f(t)6 = L
∞

0
 f(t)e-st dt = F(s),

where f(t) is the time-domain expression and F(s) is the 
frequency-domain expression. (See page 474.)

• The step function Ku(t) describes a function that experi-
ences a discontinuity from one constant level to another 
at some point in time. K is the magnitude of the jump; 
if K = 1, Ku(t) is the unit step function. (See page 475.)

• The impulse function Kd(t) is defined as

 L
∞

-∞
Kd(t)dt = K,

 d(t) = 0, t ≠ 0.

K is the strength of the impulse; if K = 1, Kd(t) is the 
unit impulse function. (See page 477.)

• A functional transform is the Laplace transform of a 
specific function. Important functional transform pairs 
are summarized in Table 12.1. (See page 481.)

• Operational transforms define the general mathemati-
cal properties of the Laplace transform. Important op-
erational transform pairs are summarized in Table 12.2. 
(See page 486.)

• In linear lumped-parameter circuits, F(s) is a rational 
function of s. (See page 488.)

• If F(s) is a proper rational function, the inverse transform 
is found by a partial fraction expansion. (See page 489.)

• If F(s) is an improper rational function, it can be 
 inverse-transformed by first expanding it into a sum 
of a polynomial and a proper rational function. (See 
page 497.)

• F(s) can be expressed as the ratio of two factored poly-
nomials. The roots of the denominator are called poles 
and are plotted as Xs on the complex s plane. The roots 
of the numerator are called zeros and are plotted as 0s 
on the complex s plane. (See page 498.)
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Figure 12.20 ▲ Plot of the inductor current for the circuit in Fig. 12.19.
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• The initial-value theorem states that

lim
tS0+ f(t) = lim

sS ∞
 sF(s).

The theorem assumes that f(t) contains no impulse 
functions. (See page 500.)

• The final-value theorem states that

lim
tS ∞

 f(t) = lim
sS0+ sF(s).

The theorem is valid only if the poles of F(s), except for 
a first-order pole at the origin, lie in the left half of the s 
plane. (See page 500.)

• The initial- and final-value theorems allow us to predict 
the initial and final values of f(t) from an s-domain ex-
pression. (See page 502.)

Problems

Section 12.2

 12.1 Step functions can be used to define a window func-
tion. Thus u(t + 2) - u(t - 3) defines a window 
1 unit high and 5 units wide located on the time axis 
between -2 and 3.

 A function f(t) is defined as follows:

 f(t) = 0,      t … 0

 = 5t,      0 … t … 10 s

 = -5t + 100,  10 s …  t … 30 s

 = -50,     30 s …  t … 40 s;

 = 2.5t - 150   40 s … t … 60 s 

 = 0,      60 s … t 6 ∞ . 

a) Sketch f(t) over the interval 0 s … t … 60 s.

b) Use the concept of the window function to write 
an expression for f(t).

 12.2 Make a sketch of f(t) for -3 s … t … 18 s when f(t) 
is given by the following expression:

f(t) = (-10t - 30)u(t + 3) + 10tu(t)
   + (10t - 30)u(t - 3)
   + (90 - 10t)u(t - 9) + (150 - 10t)u(t - 15)
   + (10t - 180)u(t - 18)

 12.3 Use step functions to write the expression for each 
of the functions shown in Fig. P12.3.

Figure P12.3
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 12.4 Use step functions to write the expression for each 
function shown in Fig. P12.4.

Figure P12.4
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 12.12 a) Show that

ℒ5eatf(t)6 = F(s - a)

     (Hint: Use the sifting property)

b) Use the formula in (a) to show that

ℒ5e-2t(2 cos 5t - sin 5t)6 =
2s - 1

s2 + 4s + 29

Sections 12.4–12.5

 12.13 Find the Laplace transform of each of the following 
function:

a) f(t) = 40e-500(t - 20)u(t - 20).

b) f(t) = (5t + 40)3u(t + 8) - u(t + 4)4
-  5t3u(t + 4) - u(t - 4)4
+  (5t - 40)3u(t - 4) - u(t - 8)4 .

 12.14 a) Find the Laplace transform of the function  
illustrated in Fig. P12.14.

b) Find the Laplace transform of the first derivative 
of the function illustrated in Fig. P12.14.

c) Find the Laplace transform of the sec-
ond derivative of the function illustrated in  
Fig. P12.14.

Section 12.3

 12.5 Explain why the following function generates an 
impulse function as P S 0:

f(t) =
P2>p

P3 + t3, - ∞ … t … ∞ .

 12.6 a) Find the area under the function shown in  
Fig. 12.12(a).

b) What is the duration of the function when P = 0?

c) What is the magnitude of f(0) when P = 0?

 12.7 The triangular pulses show in Fig. P12.7 are equiv-
alent to the rectangular pulses in Fig. 12.12(b), 
 because they both enclose the same area (1>P) and 
they both approach infinity proportional to 1>P2 
as P S 0. Use this triangular-pulse representation 
for d′(t) to find the Laplace transform of d″(t).

Figure P12.7

1>  2

21>  2

0
t

d9(t)

P

P   2P

22P 2P

P

 12.8 Evaluate the following integrals:

a) I = L
∞

0
t3e-t sin t dt.

b) I = L
∞

0

e-at - e-bt

t
 dt.

 12.9 In Section 12.3, we used the sifting property of the 
impulse function to show that ℒ5d(t)6 = 1. Show 
that we can obtain the same result by finding the 
Laplace transform of the rectangular pulse that 
 exists between {P in Fig. 12.9 and then finding the 
limit of this transform as P S 0.

 12.10 Find f(t) if

f(t) =
1

2pL
+ ∞

-∞
 F(v)ejtv dv

and

F(v) =
(7 + 5jv)

(2 + jv)(7 + jv)
 pd(v)

 12.11 Show that

ℒ5 tn6 =
n!

Sn + 1

Figure P12.14

f (t)

40

25210

5 10

240

t (s)

 12.15 Show that

ℒ5e-atf(t)6 = F(s + a).

 12.16 Show that

ℒ5 f(at)6 =
1
a

 Fa s
a
b .

 12.17 a) Find the Laplace transform of te-at.

b) Use the first derivative (time) operational trans-
form given in Table 12.2 to find the Laplace 

transform of 
d
dt

 (te-at).

c) Check your result in part (b) by first differentiating 
and then transforming the resulting expression.

 12.18 a) Find ℒe L
t

0-
e-axdx f .

b) Check the results of (a) by first integrating and 
then transforming.
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(Hint: Use the defining integral to write

L
∞

s
F(u)du = L

∞

s
a L

∞

0-
f(t)e-utdtb  du

and then reverse the order of integration.)

b) Starting with the Laplace transform of t sin bt, from 
Problem 12.21(c), use the operational transform 
given in (a) of this problem to find ℒ5sin bt6 .

Section 12.6

 12.26 In the circuit shown in Fig. 12.16, the dc current 
source is replaced with a similar dc source that de-
livers a current of 2 mA. The circuit components 
are R = 4 kΩ, C = 25 nF, and L = 2.5 H. Find the 
 numerical expression for V(s).

 12.27 There is no energy stored in the circuit shown in  
Fig. P12.27 at the time the switch is opened. In 
Section 12.6, we derived the integrodifferential equa-
tion that governs the behavior of the voltage vo. We 
also showed that the Laplace transform of vo is

Vo(s) =
Idc>C

s2 + (1>RC)s + (1>LC)
.

Use Vo(s) to show that the Laplace transform of io is

Io(s) =
sIdc

s2 + (1>RC)s + (1>LC)
.

Figure P12.27

Idc

t 5 0

vo R CL
io

1

2

 12.28 The switch in the circuit in Fig. P12.28 has been 
in position a for a long time. At t = 0, the switch 
moves instantaneously to position b.

a) Derive the integrodifferential equation that gov-
erns the behavior of the current io for t Ú 0+.

b) Show that

Io(s) =
Idc[s + (1>RC)]

[s2 + (1>RC)s + (1>LC)]
.

 12.19 a) Find the Laplace transform of

L
t

0-
 x dx

  by first integrating and then transforming.

b) Check the result obtained in (a) by using the 
 operational transform given by Eq. 12.33.

 12.20 Find the Laplace transform of each of the following 
functions:

a) f(t) = e-t sinh 4t.

b) f(t) = sin2 (t + 1).

c) f(t) = e-t cos2 2t.

d) f(t) = (1 + 2te2t)2 .

e) f(t) = (1>t) sin2 t.

(Hint: See Assessment Problem 12.1.)

 12.21 a) Given that F(s) = ℒ5 f(t)6 , show that

-  
dF(s)

ds
= ℒ5 t f(t)6 .

b) Show that

(-1)ndnF(s)

dsn = ℒ5 tnf(t)6 .

c) Use the result of (b) to find ℒ5 t56 , ℒ5 t sin bt6 , 
and ℒ5 te-1 cosh t6 .

 12.22 a) Find ℒe d
dt

e-at f

b) Find ℒe d
dt

te-at f

c) Find ℒe d2

dt2e-at f
d) Check the results of parts (a), (b), and (c) by first 

differentiating and then transforming.

 12.23 Find the Laplace transform (when P S 0) of the 
derivative of the exponential function illustrated in 
Fig. 12.8, using each of the following two methods:

a) First differentiate the function and then find the 
transform of the resulting function.

b) Use the first derivative (time) operational trans-
form given in Table 12.2.

 12.24 Find the Laplace transform for (a) and (b).

a) f(t) =
d
dt

 (e-at cos vt).

b) f(t) = L
t

0-
e-ax sin vx dx.

c) Verify the results obtained in (a) and (b) by first 
carrying out the indicated mathematical opera-
tion and then finding the Laplace transform.

 12.25 a) Show that if F(s) = ℒ5 f(t)6 , and 5 f(t)>t6  is 
Laplace-transformable, then

L
∞

s
F(u)du = ℒe f(t)

t
f .

Figure P12.28

t 5 0 R

a

b
CIdc L

io

 12.29 The switch in the circuit in Fig. P12.29 has been 
in position a for a long time. At t = 0, the switch 
moves instantaneously to position b.
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b) Laplace-transform the equations derived in (a). 
Assume that the initial energy stored in the cir-
cuit is zero.

c) Solve the equations in (b) for I1(s) and I2(s).

Figure P12.32

150 V

100 V

62.5H

25 H
12.5H

i2i1
625 u(t) V

1

2

Section 12.7

 12.33 Find v(t) in Problem 12.26.

 12.34 The circuit parameters in the circuit seen in 
Fig. P12.27 have the following values: R = 20 Ω, 
L = 50 mH, C = 20 mF, and Idc = 75 mA.

a) Find vo(t) for t Ú 0.

b) Find io(t) for t Ú 0.

c) Does your solution for io(t) make sense when 
t = 0? Explain.

 12.35 The circuit parameters in the circuit seen in Fig. P12.28 
have the following values R = 5 Ω, L = 5 mH, and 
C = 4 mF. If Idc = 50 mA, find io(t) for t Ú 0.

 12.36 The circuit parameters in the circuit in Fig. P12.29 
are R = 3 Ω, L = 2 H, and C = 1 F. If Vdc = 10 V, 
find vo(t) for t Ú 0.

 12.37 The circuit parameters in the circuit in Fig. P12.30 
are R = 2 kΩ; L = 1.6 H; and C = 5 mF. If Vdc is 
56 V, find

a) vo(t) for t Ú 0

b) io(t) for t Ú 0

 12.38 The circuit parameters in the circuit in Fig. P12.31 
are R = 4000 Ω; L = 40 mH; and C = 15.625 nF. 
If ig(t) = 150 mA, find v2(t).

 12.39 Use the results from Problem 12.32 and the circuit 
shown in Fig P12.32 to

a) Find i1(t) and i2(t).

b) Find i1(∞) and i2(∞).

c) Do the solutions for i1 and i2 make sense? Explain.

 12.40 Find f(t) for each of the following functions:

a) F(s) =
8s2 + 37s + 32

(s + 1)(s + 2)(s + 4)
.

b) F(s) =
8s3 + 89s2 + 311s + 300
s(s + 2)(s2 + 8s + 15)

.

c) F(s) =
22s2 + 60s + 58

(s + 1)(s2 + 4s + 5)
.

d) F(s) =
250(s + 7)(s + 14)

s(s2 + 14s + 50)
.

PSPICE

MULTISIM

PSPICE

MULTISIM

PSPICE

MULTISIM

PSPICE

MULTISIM

a) Derive the integrodifferential equation that gov-
erns the behavior of the voltage vo for t Ú 0+.

b) Show that

Vo(s) =
Vdc[s + (R>L)]

[s2 + (R>L)s + (1>LC)]
.

 12.30 The switch in the circuit in Fig. P12.30 has been 
open for a long time. At t = 0, the switch closes.

a) Derive the integrodifferential equation that gov-
erns the behavior of the voltage vo for t Ú 0.

b) Show that

Vo(s) =
Vdc>RC

s2 + (1>RC)s + (1>LC)
.

c) Show that

Io(s) =
Vdc>RLC

s[s2 + (1>RC)s + (1>LC)]
.

Figure P12.29
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R L

Vdc

t 5 0
vob
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Figure P12.30
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 12.31 There is no energy stored in the circuit shown in  
Fig. P12.31 at the time the switch is opened.

a) Derive the integrodifferential equations that gov-
ern the behavior of the node voltages v1 and v2.

b) Show that

V2(s) =
sIg(s)

C[s2 + (R>L)s + (1>LC)]
.

Figure P12.31

R

L
t 5 0

Cv1ig

1 1

2

v2

2

 12.32 a) Write the two simultaneous differential equations 
that describe the circuit shown in Fig. P12.32 in 
terms of the mesh currents i1 and i2.

PSPICE

MULTISIM
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 12.47 Use the initial- and final-value theorems to check 
the initial and final values of the current and voltage 
in Problem 12.27.

 12.48 Use the initial- and final-value theorems to 
check the initial and final values of the current in 
Problem 12.28.

 12.49 Use the initial- and final-value theorems to check 
the initial and final values of the current and voltage 
in Problem 12.30.

 12.50 Apply the initial- and final-value theorems to each 
transform pair in Problem 12.40.

 12.51 Apply the initial- and final-value theorems to each 
transform pair in Problem 12.41.

 12.52 Apply the initial- and final value-theorems to each 
transform pair in Problem 12.42.

 12.53 Apply the initial- and final-value theorems to each 
transform pair in Problem 12.43.

 12.54 Find the poles and zeros for the s-domain functions 
in Problems 12.42(b) and 12.42(c).

 12.55 Find the poles and zeros for the s-domain functions 
in Problems 12.43(a) and 12.43(b).

Sections 12.1–12.9

 12.56 a) Use phasor circuit analysis techniques from 
Chapter 9 to determine the steady-state expres-
sion for the inductor current in Fig. 12.19.

b) How does your result in part (a) compare to the 
complete response for inductor current calculat-
ed in the Practical Perspective?

 12.57 Find the maximum magnitude of the sinusoidal 
source in Fig. 12.18 such that the complete response 
of the inductor current does not exceed the 35 mA 
current rating at t = 1 ms.

 12.58 Suppose the input to the circuit in Fig 12.19 is a 
damped ramp of the form Kte-100t V. Find the larg-
est value of K such that the inductor current does 
not exceed the 40 mA current rating.

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

 12.41 Find f(t) for each of the following functions:

a) F(s) =
cosh 2s

e6ss2  .

b) F(s) =
5
s2 +

3e-s

s3  -
3e-2s

s
.

c) F(s) =
(4 - e-s)(2 - e-2s)

s3 .

d) F(s) =
(se-s/2) + (pe-s)

s2 + p2 .

 12.42 Find f(t) for each of the following functions.

a) F(s) =
320

s2(s + 8)
.

b) F(s) =
80(s + 3)

s(s + 2)2 .

c) F(s) =
60(s + 5)

(s + 1)2(s2 + 6s + 25)
.

d) F(s) =
25(s + 4)2

s2(s + 5)2 .

 12.43 Find f(t) for each of the following functions.

a) F(s) =
135

s(s + 3)3.

b) F(s) =
10(s + 2)2

(s2 + 2s + 2)2.

c) F(s) =
25s2 + 395s + 1494

s2 + 15s + 54
. 

d) F(s) =
5s3 + 20s2 - 49s - 108

s2 + 7s + 10
. 

 12.44 Derive the transform pair given by Eq. 12.10.

 12.45 a) Derive the transform pair given by Eq. 12.11.

b) Derive the transform pair given by Eq. 12.12.

Sections 12.8–12.9

 12.46 a) Use the initial-value theorem to find the initial 
value of v in Problem 12.26.

b) Can the final-value theorem be used to find the 
steady-state value of v? Why?
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CHAPTER CONTENTS

13
CHAPTER 

The Laplace Transform  
in Circuit Analysis
The Laplace transform has two characteristics that make it an at-
tractive tool for circuit analysis.

• It transforms a set of linear constant-coefficient differential 
equations into a set of linear polynomial equations, which 
are easier to manipulate and solve.

• It automatically introduces into the polynomial equations 
the initial values of the current and voltage variables. Thus, 
initial conditions are an inherent part of the transform pro-
cess. (This contrasts with the classical approach to the solu-
tion of differential equations, in which initial conditions are 
considered when the unknown coefficients are evaluated.)

We begin this chapter by showing how to avoid writing 
time-domain integrodifferential equations and transforming them 
into the s domain. In Section 13.1, we’ll develop the s- domain cir-
cuit models for resistors, inductors, and capacitors. Then we can 
transform entire circuits into the s domain and write the s-domain 
equations directly. Section 13.2 reviews Ohm’s and Kirchhoff’s 
laws for s-domain circuits. After establishing these fundamentals, 
we apply the Laplace transform method to a variety of circuit 
problems in Section 13.3, using the circuit analysis and simplifica-
tion tools first introduced for resistive circuits.

After solving for the circuit response in the s domain, we 
 inverse-transform back to the time domain, using partial fraction 
expansion (as demonstrated in Chapter 12). As before, checking 
the final time-domain equations in terms of the initial conditions 
and final values is an important step in the solution process.

We introduce a new concept, the transfer function, in 
Section 13.4. The transfer function for a circuit is the ratio of the 
Laplace transform of its output to the Laplace transform of its 
input. In Chapters 14 and 15, we’ll use the transfer function in cir-
cuit design, but here we focus on using it for circuit analysis. We 
continue this chapter with a look at the role of partial fraction ex-
pansion (Section 13.5) and the convolution integral (Section 13.6) 
when using the transfer function in circuit analysis. We conclude 
with a discussion of the impulse function in circuit analysis.

13.1 Circuit Elements in the s Domain p. 512

13.2 Circuit Analysis in the s Domain p. 514

13.3 Applications p. 516

13.4 The Transfer Function p. 528

13.5  The Transfer Function in Partial  
Fraction Expansions p. 530

13.6  The Transfer Function and the  
Convolution Integral p. 533

13.7  The Transfer Function and the  
Steady-State Sinusoidal  
Response p. 539

13.8  The Impulse Function in Circuit  
Analysis p. 542

1 Be able to transform a circuit into the s 
domain using Laplace transforms; be sure 
you understand how to represent the initial 
conditions on energy-storage elements in 
the s domain.

2 Know how to analyze a circuit in the s  
domain and be able to transform an  
s-domain solution back to the time  
domain.

3 Understand the definition and significance 
of the transfer function and be able to 
calculate the transfer function for a circuit 
using s-domain techniques.

4 Know how to use a circuit’s transfer  
function to calculate the circuit’s unit  
impulse response, its unit step  
response, and its steady-state  
response to a sinusoidal input.

CHAPTER OBJECTIVES



Practical Perspective
Surge Suppressors
When using personal computers and other sensitive 
 electronic equipment, we need to provide protection from 
voltage surges. These surges can occur during a lightning 
storm or just by switching an electrical device on or off. A 
commercially available surge suppressor is shown in the 
accompanying figure.

How can flipping a switch to turn on a light or turn 
off a hair dryer cause a voltage surge? At the end of this 
chapter, we will answer that question using Laplace trans-
form techniques to analyze a circuit. We will illustrate how 
a voltage surge can be created by switching off a resistive 
load in a circuit operating in the sinusoidal steady state.

Virote Chuenwiset/Shutterstock.

Jhaz Photography/Shutterstock
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13.1 Circuit Elements in the s Domain
A three-step procedure transforms each circuit element into an s-domain 
equivalent circuit.

1. Write the time-domain equation relating the terminal voltage to 
the terminal current.

2. Laplace transform the time-domain equation to generate an algebraic 
relationship between the s-domain current and voltage.

3. Construct a circuit model that satisfies the relationship between the 
s-domain current and voltage.

Note the s-domain dimensions: the s-domain voltage dimension is 
volt-seconds [V-s], the s-domain current dimension is ampere-seconds  
[A-s], and thus the s-domain voltage-to-current ratio dimension is volts 
per ampere, or ohms. An impedance in the s domain is measured in ohms, 
and an  admittance is measured in siemens. We use the passive sign con-
vention in all the derivations.

A Resistor in the s Domain
We begin with the resistor. From Ohm’s law,

v = Ri.

Because R is a constant, the Laplace transform of Ohm’s law is

 V = RI, (13.1)

where

V = ℒ5v6 and I = ℒ5 i6 .

From Eq. 13.1 we see that the s-domain equivalent circuit of a resistor is a 
resistance of R ohms that carries a current of I ampere-seconds and has a 
terminal voltage of V volt-seconds.

Figure 13.1 shows the time- and frequency-domain circuits of the re-
sistor. Note that going from the time domain to the frequency domain 
does not change the resistance element.

An Inductor in the s Domain
Figure 13.2 shows an inductor carrying an initial current of I0 amperes. 
The time-domain equation relating the terminal voltage to the terminal 
current is

v = L 
di
dt

.

The Laplace transform of the inductor equation gives

 V = L[sI - i(0-)] = sLI - LI0. (13.2)

One circuit configuration that satisfies Eq. 13.2 is an impedance of sL 
ohms in series with an independent voltage source of LI0 volt-seconds, as 
shown in Fig. 13.3. Note that the polarity marks on the voltage source LI0 
agree with the minus sign in Eq. 13.2. Note also that LI0 carries its own 

R i

a

b
(a)

V R I 

a

b
(b)

1

2

v

1

2

Figure 13.1 ▲ The resistor. (a) Time domain.  
(b) Frequency domain.

I0L i

a

b

1

2

v

Figure 13.2 ▲ An inductor of L henrys carrying an 
initial current of I0 amperes.
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b

V

I sL

LI0
2
1

1
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Figure 13.3 ▲ The series equivalent circuit for an 
inductor of L henrys carrying an initial current of I0 
amperes.
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I

sL I0
s

Figure 13.4 ▲ The parallel equivalent circuit for an 
inductor of L henrys carrying an initial current of I0 
amperes.

1

2

V

a

b

sL I

Figure 13.5 ▲ The s-domain circuit for an inductor 
when the initial current is zero.
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algebraic sign; that is, if the initial value of i is opposite to the reference 
direction for i, then I0 has a negative value.

We can also solve Eq. 13.2 for the current I and then construct the 
circuit to satisfy the resulting equation. The current I is given by

I =
V + LI0

sL
=

V
sL

+
I0

s
.

The s-domain equivalent circuit that satisfies this equation is an im-
pedance of sL ohms in parallel with an independent current source of I0>s 
ampere-seconds,

There are two other ways to construct the s domain circuit in Fig. 13.4: 
(1) find the Norton equivalent of the circuit shown in Fig. 13.3 or (2) start 
with the inductor current as a function of the inductor voltage in the time 
domain and then Laplace transform the resulting integral equation. We 
leave these two approaches to Problems 13.1 and 13.2.

If the initial energy stored in the inductor is zero, that is, if I0 = 0, the 
s-domain equivalent circuit is an inductor with an impedance of sL ohms. 
Figure 13.5 shows this circuit.

A Capacitor in the s Domain
A capacitor with initial stored energy also has two s-domain equivalent 
circuits. Figure 13.6 shows a capacitor initially charged to V0 volts. The 
capacitor current is

i = C 
dv

dt
.

Transforming the capacitor equation yields

 I = C[sV - v(0-)] = sCV - CV0, (13.3)

so the s-domain current I is the sum of two branch currents. One branch 
contains an admittance of sC siemens, and the second branch contains 
an independent current source of CV0 ampere-seconds. Figure 13.7 shows 
this parallel equivalent circuit.

To derive the other equivalent circuit for the charged capacitor, solve 
Eq. 13.3 for V:

V = a 1
sC

bI +
V0

s
.

Figure 13.8 shows the circuit that satisfies the equation for capacitor volt-
age, which is a series combination of an impedance and an independent 
voltage source.

In the equivalent circuits shown in Figs. 13.7 and 13.8, V0 carries its 
own algebraic sign. In other words, if the polarity of V0 is opposite to the 
reference polarity for v, V0 is a negative quantity. If the initial voltage on 
the capacitor is zero, both equivalent circuits reduce to an impedance of 
1>sC ohms, as shown in Fig. 13.9.

In Chapter 9 we used the phasor transform to turn a time-domain cir-
cuit into a frequency-domain circuit. In this chapter, we use the s-domain 
equivalent circuits, summarized in Table 13.1, to transform a time-domain 
circuit into the s domain. When the time-domain circuit contains induc-
tors and capacitors with initial stored energy, you need to decide whether 
to use the parallel or series s-domain equivalent circuit. With a little fore-
thought and some experience, the best choice is often evident.

i
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b

1

2

v

1

2

V0C

Figure 13.6 ▲ A capacitor of C farads initially 
charged to V0 volts.
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V CV0
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Figure 13.7 ▲ The parallel equivalent circuit for a 
capacitor initially charged to V0 volts.
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Figure 13.8 ▲ The series equivalent circuit for a 
capacitor initially charged to V0 volts.
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Figure 13.9 ▲ The s-domain circuit for a capacitor 
when the initial voltage is zero.
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13.2 Circuit Analysis in the s Domain
Before presenting a method for using the s-domain equivalent circuits in 
analysis, we make some important observations.

• If no energy is stored in the inductor or capacitor, the relationship be-
tween the s-domain voltage and current for each passive element is:

TABLE 13.1 Summary of the s-Domain Equivalent Circuits

TIME DOMAIN FREQUENCY DOMAIN

Ri

1

2

v

b

a

v 5 Ri

i

1

2

v

b

a

L I0

v 5 L di>dt,
1
L

i  5 vdx 1 I0•0–     

t

i  5 C dv>dt,

1

2

v

1

2

V0

b

a

i C

RI

I

1

2

V

b

a

V 5 RI

b

V

2

1 a

V 5 sLI 2 LI0

sL

2

1
LI0

a

b

1

2

VI

1

2
V0>s

1>sC

I
sC

V0
sV 5 1

V
sL

I0
sI 5 1

b

1

2

V

I

sL I0>s

a

b

a

1>sC

1

2

V CV0

I

I 5 sCV 2 CV0
1
C

v 5 idx 1 V0•0–     

t

OHM’S LAW IN THE S-DOMAIN

 V = ZI, (13.4)

where Z is the s-domain impedance of the element. Thus, a resistor 
has an impedance of R ohms, an inductor has an impedance of sL 
ohms, and a capacitor has an impedance of 1>sC ohms. The relation-
ship contained in Eq. 13.4 also appears in Figs. 13.1(b), 13.5, and 13.9. 
Equation 13.4 is known as Ohm’s law in the s domain. The reciprocal 
of the impedance is admittance. Therefore, the s-domain  admittance 
of a resistor is 1>R siemens, an inductor has an admittance of 1>sL 
siemens, and a capacitor has an admittance of sC siemens.



• The rules for combining impedances and admittances in the s domain 
are the same as those for frequency-domain circuits. Thus, series- 
parallel simplifications and ∆-to-Y conversions also are applicable to 
s-domain analysis.

• Kirchhoff’s laws apply to s-domain currents and voltages because an 
operational Laplace transform states that the Laplace transform of a 
sum of time-domain functions equals the sum of the Laplace trans-
forms of the individual functions (see Table 12.2). The algebraic sum 
of the currents at a node is zero in the time domain, so the algebraic 
sum of the Laplace-transformed currents is also zero. A similar state-
ment holds for the algebraic sum of the Laplace-transformed voltag-
es around a closed path. The s-domain version of Kirchhoff’s laws is

                    at every node in a circuit, alg a I = 0, (13.5)

 around every closed path in a circuit, alg aV = 0. (13.6)

Therefore, because Ohm’s law, KVL, and KCL hold in the s domain, 
all of the circuit analysis techniques developed in Chapters 2–4 for resistive 
circuits can be used to analyze circuits in the s-domain. These  techniques 
include combining impedances in series and parallel to find equivalent 
 impedances, voltage division and current division, the node-voltage method 
and the mesh-current method, source transformation, and Thévenin and 
Norton equivalent circuits. This leads us to the following step-by-step pro-
cedure for using Laplace transform techniques to analyze circuits.

Step 1 determines the initial current in each inductor and the initial volt-
age across each capacitor by analyzing the time-domain circuit for t 6 0.

Step 2 transforms each independent voltage or current source defined by 
time-domain functions into the s domain using the functional and opera-
tional transforms in Tables 12.1 and 12.2.

Step 3 transforms voltages and currents represented by time-domain sym-
bols such as v(t) and i(t) into corresponding s-domain symbols such as V 
and I.

Step 4 transforms any remaining components in the time-domain circuit 
into the s domain using the circuits in Table 13.1. When inductors and ca-
pacitors have nonzero initial values, calculated in Step 1, these initial con-
ditions are represented by independent sources in series or parallel with 
the component impedances.

Step 5 analyzes the resulting s-domain circuit using the techniques devel-
oped for resistive circuits in Chapters 2–4. The analysis produces s-domain 
voltages and currents that should each be represented as a ratio of two 
polynomials in s.

Step 6 applies the initial- and final-value theorems to the s-domain functions 
from Step 5 to check the values of the corresponding time-domain functions 
at t = 0 and t = ∞ . Note that it might not be possible to apply one or both 
of these theorems, depending on the form of the s-domain function.

Step 7 represents each s-domain voltage and current of interest as a  partial 
fraction expansion and then uses Table 12.3 to inverse-Laplace-transform 
the s-domain voltages and currents back to the time domain.

This analysis method yields the complete response to any circuit 
whose voltage and current sources have Laplace transforms. This method 
represents the most comprehensive circuit analysis technique presented 
in this text and is summarized in Analysis Method 13.1. Example 13.1 ap-
plies the first five steps in Analysis Method 13.1 to a time-domain circuit.

LAPLACE TRANSFORM 
METHOD

1. Determine the initial conditions for 
inductors and capacitors.
2. Laplace-transform independent  
voltage and current functions using 
Tables 12.1 and 12.2.
3. Transform symbolic time-domain 
voltages and currents into s-domain 
symbols.
4. Transform remaining circuit compo-
nents into the s domain using Table 13.1.
5. Analyze the s-domain circuit  using 
resistive circuit analysis techniques; 
 represent the resulting s-domain voltages 
and currents as ratios of polynomials in s.
6. Use the initial- and final-value 
 theorems to check the s-domain voltages 
and currents.
7. Inverse-Laplace-transform the  
s-domain voltages and currents using 
partial fraction expansion and Table 12.3.

Analysis Method 13.1 Laplace-transform 
circuit analysis method.

 13.2 Circuit Analysis in the s Domain 515
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EXAMPLE 13.1 Transforming a Circuit into the s Domain

A 500 Ω resistor, a 16 mH inductor, and a 25 nF 
 capacitor are connected in parallel.

a) Express the admittance of this parallel combina-
tion of elements as a rational function of s.

b) Compute the numerical values of the zeros and 
poles.

Solution

a) We use Analysis Method 13.1 to transform the 
three parallel-connected components from the 
time domain to the s domain.

Step 1: There are no initial conditions for the in-
ductor and capacitor.

Step 2: There are no voltage or current sources.

Step 3: There are no symbolic voltages or currents.

Step 4: Because there are no initial conditions, 
each component is represented by its s-domain 
impedance:

 ZR = 500 Ω;

 ZL = 0.016s Ω;

 ZC =
1

25 * 10 - 9 s
=

40 * 106

s
 Ω.

The s-domain circuit is shown in Fig. 13.10.

500 V Yeq40 3 106

V 0.016s V
s

Figure 13.10 ▲ The s domain circuit for Example 13.1.

Step 5: Find the equivalent admittance by add-
ing the inverse of the three impedances:

 Yeq =
1

500
+

1
0.016s

+
s

40 * 106

 =
s2 + 80,000s + 25 * 108

40 * 106 s
 S.

b) The numerator factors are (s + 40,000 + j30,000) 
and (s + 40,000 - j30,000). Therefore the zeros 
are -40,000 + j30,000 and -40,000 - j30,000. 
There is a pole at 0.

Objective 1—Be able to transform a circuit into the s domain using Laplace transforms

 13.1 The parallel circuit in Example 13.1 is placed in 
series with a 2000 Ω resistor.
a) Express the impedance of this series combi-

nation as a rational function of s.
b) Compute the numerical values of the zeros 

and poles.

Answer: (a) 2000(s + 50,000)2>(s2 + 80,000s + 25 * 108);

(b) -z1 = -z2 = -50,000;

-p1 = -40,000 - j30,000,

-p2 = -40,000 + j30,000.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 13.4 and 13.5.

13.3 Applications
We now use Analysis Method 13.1 to find the complete response of  several 
example circuits. We start with two familiar circuits from Chapters 7 and 8 
to show that the Laplace transform approach yields the same results found 
using the first- and second-order circuit analysis techniques. Example 13.2 
solves an RC circuit, and Example 13.3 solves an RLC circuit.
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EXAMPLE 13.2 The Natural Response of an RC Circuit

The circuit in Fig. 13.11 was analyzed in Example 
7.3 using first-order circuit analysis techniques. 
Use the Laplace transform method to find vo(t) for 
t Ú 0+.

100 V
1
2

x y10 kV  32 kV

0.5mF
240 kV 60 kVvo

vC

1

1

22

t 5 0

Figure 13.11 ▲ The RC circuit for Example 13.2.

Solution
Apply the Laplace transform method using Analysis 
Method 13.1.

Step 1: Determine the initial voltage across the 
capacitor by analyzing the circuit in Fig. 13.11 for 
t 6 0. Because the switch has been in position x for 
a long time, the capacitor behaves like an open cir-
cuit. The voltage across the open circuit V0 = 100 V.

Step 2: For t Ú 0, there are no voltage or current 
sources in the circuit, so we can skip this step.

Step 3: The voltage across the 240 kΩ resistor 
is represented in the s domain as V, as shown in  
Fig. 13.12.

Step 4: The impedance of the three resistors is 
their resistance. The impedance of the capacitor is

ZC =
1

sC
=

1

0.5 * 10-6s
=

2 * 106

s
 Ω.

Because the capacitor has an initial condition, 
we must decide whether to represent it using a 
 series-connected voltage source or a parallel- 
connected current source, as shown in Table 13.1. 
Here we use the series-connected voltage source, 
whose value is V0>s = 100>s V@s. The s-domain 
circuit that results from Steps 1–4 is shown in 
Fig. 13.12.

32 kV

60 kV240 kV
1

2
100

s V-s

2 3 106

V 1

2

V

s

o

Figure 13.12 ▲ The circuit in Fig. 13.11 for t Ú 0,  
transformed into the s domain.

Step 5: Begin by combining the parallel-connected 
240 kΩ and 60 kΩ resistors into a single equivalent 
48 kΩ resistor whose voltage is Vo. Now use voltage 
division to find Vo:

 Vo =
48,000

(2 * 106>s) + 32,000 + 48,000
 a 100

s
b

 =
60

s + 25
.

Step 6: Use the initial- and final-value theorems to 
show that the initial value of vo is 60 V and final value 
of vo is zero, as we expect from the circuit in Fig. 13.11.

 lim
sS ∞ 

sVo = lim
sS ∞

 
60s

s + 25
= lim11>s2S0

60
1 + 125>s2

 =
60

1 + 0
= 60 = lim

tS0 
vo(t);

 lim
sS0 

sVo = lim
sS0

 
60s

s + 25
=

60(0)

0 + 25
= 0 = lim

tS ∞ 
vo(t).

Step 7: Since Vo is already a partial fraction, we can 
use the transforms in Table 12.3 to find vo:

vo(t) = ℒ-1e 60
s + 25

 f = 60e-25tu(t) V.

This matches the voltage found in Example 7.3 using 
first-order circuit analysis methods.

EXAMPLE 13.3 The Step Response of an RLC Circuit

Consider the circuit in Fig. 13.13, where the initial 
current in the inductor is 29 mA and the initial volt-
age across the capacitor is 50 V. This circuit was 
analyzed in Example 8.10 using second-order cir-
cuit analysis techniques. Use the Laplace transform 
method to find v(t) for t Ú 0.

25 mH 500 V25 nF24 mA

iL
t 5 0

1

2

v

Figure 13.13 ▲ The parallel RLC circuit for Example 13.3.
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Solution
Apply the Laplace transform method using 
Analysis Method 13.1.

Step 1: Both initial conditions are given in the 
problem statement, so we can skip this step.

Step 2: We can describe the parallel combination 
of the current source and the switch in Fig. 13.13 as 
24u(t) mA. The Laplace transform of this function  
is 24>s mA-s, which is the current source value in the 
s-domain circuit in Fig. 13.14.

Step 3: The voltage across the 240 kΩ resistor 
is represented in the s domain as V, as shown in  
Fig. 13.12.

Step 4: The impedance of the resistor is its resis-
tance. The impedance of the inductor is

ZL = sL = 0.025s =
s

40
 Ω

and the impedance of the capacitor is

ZC =
1

sC
=

1
25 * 10-9s

=
40 * 106

s
 Ω.

Both the inductor and capacitor have nonzero ini-
tial conditions. We must decide whether to repre-
sent them as series-connected voltage sources or 
as parallel-connected current sources, as shown in 
Table 13.1. Here we use parallel-connected cur-
rent sources because the resulting circuit has only 
parallel- connected components. The value of the 
current source in parallel with the inductor is I0>s =  
0.029>s A@s, with the current arrow directed down. 
The value of the current source in parallel with the 
capacitor is CV0 = (50)(25 * 10-9) = 1.25 m  V@s, 
with the current arrow directed up. The s-domain cir-
cuit that results from Steps 1–4 is shown in Fig. 13.14.

500 V

1.25 mV-s mA-s 1

2

V

29
s

mA-s24
s 40 

s

403106

s V

V

Figure 13.14 ▲ The circuit in Fig. 13.13 for t Ú 0, trans-
formed into the s domain.

Step 5: Begin by combining the three parallel- 
connected impedances into a single equivalent 
impedance:

 Zeq = a s

40 * 106 +
40
s

+
1

500
b

-1

 =
40 * 106s

s2 + 80,000s + 16 * 108 Ω.

To find the voltage across this equivalent imped-
ance, multiply by the sum of the three parallel- 
connected currents:

 V = Zeqa 0.024
s

+ 1.25 * 10-6 -
0.029

s
b

 =
50s - 20 * 104

s2 + 80,000s + 16 * 108 V@s.

Step 6: Use the initial and final value theorems to 
predict the initial and final values of v:

 lim
sS ∞ 

sV = lim
sS ∞

 
50s2 - 20 * 104 s

s2 + 80,000s + 16 * 108

 = lim11>s2S0
 

50 - 20 * 10411>s2
1 + 80,00011>s2 + 16 * 10811>s2 2

 =
50
1

= 50 = lim
tS0 

v(t);

 lim
sS0 

sV = lim
sS0

 
50s2 - 20 * 104s

s2 + 80,000s + 16 * 108

 =
(0)

16 * 108 = 0 = lim
tS ∞ 

v(t).

The initial-value theorem predicts the correct initial 
voltage from the problem statement, V0 = 50 V. 
To confirm the final value of the voltage, envision 
the circuit in Fig. 13.13 as t S ∞ . The inductor is 
behaving like a short circuit, and the capacitor 
is behaving like an open circuit in parallel with the 
short  circuit. Therefore, the final value of capacitor 
voltage in the circuit is zero, as predicted by the 
 final-value theorem.

Step 7: The partial fraction expansion of V is

 V =
50s - 20 * 104

1s + 40,0002 2

 =
-2.2 * 106

1s + 40,0002 2 +
50

1s + 40,0002 .

Now use the transforms in Table 12.3 to find v:

 v(t) = ℒ-1e -2.2 * 106

1s + 40,0002 2 +
50

1s + 40,0002 f

 = 1 -2.2 * 106 te-40,000t + 50e-40,000t2u(t) V.

This matches the voltage found in Example 8.10 using 
second-order circuit analysis methods.
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Next, we analyze a circuit with a sinusoidal source using Laplace 
methods. Phasor methods, presented in Chapter 9, were used to analyze 
circuits with sinusoidal sources but have an important limitation—they 
only produce the steady-state response of the circuit, not the complete 
response. Recall that the complete response consists of both the steady-
state and the transient response. Laplace methods do not have this limita-
tion, so they produce a circuit’s complete response to a sinusoidal source, 
as seen in Example 13.4.

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s domain solution 
to the time domain

 13.2 The switch in the circuit shown has been in 
position a for a long time. At t = 0, the switch 
is thrown to position b.
a) Find I, V1, and V2 as rational functions of s.
b) Find the time-domain expressions for i, v1, 

and v2.

Answer: (a) I = 0.02> 1s + 12502 ,

V1 = 80> 1s + 12502 ,

V2 = 20> 1s + 12502 ;

(b) i = 20e-1250tu(t) mA,

v1 = 80e-1250tu(t) V,

v2 = 20e-1250tu(t) V.

5 kVi

t 5 0
1

2
100 V

10 kV a b

0.2 mF
1

2
v1

0.8 mF
1

2
v2

 13.3 The energy stored in the circuit shown is zero at 
the time when the switch is closed.
a) Find the s-domain expression for I.
b) Find the time-domain expression for i when 

t 7 0.
c) Find the s-domain expression for V.
d) Find the time-domain expression for v when 

t 7 0.

Answer: (a) I = 40>(s2 + 1.2s + 1);

(b) i = (50e-0.6t sin 0.8t)u(t) A;

(c) V = 160s>(s2 + 1.2s + 1);

(d) v = [200e-0.6t cos (0.8t + 36.87°)]u(t) V.

4 H

0.25 F

4.8 V

160 V
1

2

t 5 0
v1

2

i

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 13.9, 13.15, and 13.16.

EXAMPLE 13.4 Analyzing a Circuit with a Sinusoidal Source

The circuit in Fig. 13.15 has no initial stored energy. 
At t = 0, the switch closes and the circuit is driven 
by a sinusoidal source v(t) = 15 cos 40,000t V. Use 
Laplace methods to find i(t) for t Ú 0.

1

2
v(t) i(t) 4 kV

62.5 mH

10 nF

t 5 0

Figure 13.15 ▲ The circuit for Example 13.4.

Solution
Apply the Laplace transform method using Analysis 
Method 13.1.

Step 1: There is no initial stored energy, so both ini-
tial conditions are zero.

Step 2: Using the functional and operational trans-
form tables (Tables 12.1 and 12.2), we see that the 
Laplace transform of v(t) is

V = ℒ515 cos 40,000t6 =
15s

s2 + 40,0002 V@s.
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This is the value of the voltage source for the  
s-domain circuit in Fig. 13.16.

Step 3: The current is represented in the s domain 
as I, as shown in Fig. 13.16.

Step 4: The impedance of the resistor is its resis-
tance. The impedance of the inductor is

ZL = sL = 0.0625s =
s

16
 Ω

and the impedance of the capacitor is

ZC =
1

sC
=

1
10 * 10-9 s

=
108

s
 Ω.

The s-domain circuit that results from Steps 1–4 is 
shown in Fig. 13.16.

1

2
I 4 kV

108

s V

16
s

V

s2  1 40,0002
s15 V-s

Figure 13.16 ▲ The circuit in Fig 13.16 for t Ú 0, trans-
formed into the s domain.

Step 5: To find the current I, divide the source volt-
age by the sum of the impedances:

 I =

15s

s2 + 40,0002

4000 +
108

s
+

s
16

=
240s2

1s2 + 40,00022 1s2 + 64,000s + 16 * 1082  A@s.

Step 6: Use the initial value theorem to predict the 
initial value of i:

 lim
sS ∞

sI = lim
sS ∞

240s3

1s2 + 40,00022 1s2 + 64,000s + 16 * 1082

 = lim11>s2S0

240a 1
s
b

c1+ a 40,000
s

b
2

d c 1+ a 60,000
s

b + a16 * 108

s2 bd

 =
0

(1)(1)
= 0 = lim

tS0 
i(t).

The initial-value theorem predicts correctly that the initial 
current is zero. We cannot use the final-value theorem to 
predict the final current because I has two poles on the 
imaginary axis at { j40,000 rad>s.

Step 7: The partial fraction expansion of I is

 I =
240s2

1s2 + 40,00022 1s2 + 64,000s + 16 * 1082

 =
K1

s - j40,000
+

K1
*

s + j40,000

+
K2

s + 32,000 - j24,000
+

K2
*

s + 32,000 + j24,000
.

Finding K1 and K2,

 K1 =
240s2

1s + j40,0002 1s2 + 64,000s + 16 * 1082 `
s = j40,000

      = 1.875 * 10-3;

 K2 =
240s2

1s2 + 40,00022 1s + 32,000 + j240002 `
s = -32,000 + j40,000

      = 3.125 * 10-3l-126.87°.

Now use the transforms in Table 12.3 to find v:

i(t) = ℒ-1e 1.875 * 10-3

s - j40,000
+

1.875 * 10-3

s + j40,000

+
3.125 * 10-3l-126.87°
s + 32,000 - j24,000

+
3.125 * 10-3l126.87°
s + 32,000 + j24,000

f

= 33.75 cos 40,000t

+ 6.25e-32,000t cos 124,000t - 126.87°24u(t) mA.

The first term in the expression for i(t) is the steady-state 
response. Its frequency matches the frequency of the 
source, and this term persists for all time. You should use 
the phasor methods from Chapter 9 to verify this result. 
The second term in the expression for i(t) is the transient 
response, or the natural response. Note that it decays to 
zero as t S ∞ . This part of the response is independent of 
the voltage source and is based only on the passive compo-
nent values and their interconnections.
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Until now, we avoided analyzing circuits with inductors and capaci-
tors that have two or more meshes, or three or more essential nodes. Such 
circuits are described by two or more simultaneous differential equations, 
and the techniques for solving these systems of equations are beyond the 
scope of this text. However, using Laplace techniques, we can transform 
a circuit into the s domain and write a set of simultaneous algebraic equa-
tions, whose solution is much more manageable. Example 13.5 illustrates 
this by solving a circuit with two meshes.

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s domain solution 
to the time domain

 13.4 The energy stored in the circuit shown is zero at 
the time when the switch is opened. The current 
source is 24 cos 40,000t mA. Find the voltage v(t) 
for t Ú 0.

Answer: (15 sin 40,000t - 25e-32,000t sin 24,000t)u(t) mA.

25 nF 625 V 25 mHi(t) t 5 0

i

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 13.23.

EXAMPLE 13.5 Analyzing a Circuit with Multiple Meshes

The circuit in Fig. 13.17 has no initial stored energy. 
At t = 0, the switch closes. Use Laplace methods to 
find i1(t) and i2(t) for t Ú 0.

10 H8.4 H

336 V
1

2
48 V42 V

t 5 0 i1 i2

Figure 13.17 ▲ A multiple-mesh RL circuit.

Solution
Apply the Laplace transform method using Analysis 
Method 13.1.

Step 1: There is no initial stored energy, so both 
 initial conditions are zero.

Step 2: The series connection of the 336 V dc volt-
age source and the switch can be described in the 
time domain as 336u(t) V. Using the functional and 
operational transform tables (Tables 12.1 and 12.2), 
the Laplace transform of this voltage is

ℒ5336u(t)6 =
336

s
 V@s.

This is the value of the voltage source for the s-domain 
circuit in Fig. 13.18.

Step 3: The currents are represented in the s do-
main as I1 and I2, as shown in Fig. 13.18.

Step 4: The impedance of the resistors is their re-
sistance. The impedance of the inductors is

ZL1 = sL1 = 8.4s Ω; ZL2 = sL2 = 10s Ω.

The s-domain circuit that results from Steps 1–4 is 
shown in Fig. 13.18.

8.4s V 10s V

48 V42 V
1

2
336

s I1 I2V

Figure 13.18 ▲ The s-domain equivalent circuit for the 
 circuit shown in Fig. 13.17.

Step 5: The two KVL equations are

 
336

s
= (42 + 8.4s)I1 - 42I2,

 0 = -42I1 + (90 + 10s)I2.
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Using Cramer’s method, we get

 ∆ = ` 42 + 8.4s -42
-42 90 + 10s

`

 = 84(s2 + 14s + 24)

 = 84(s + 2)(s + 12),

 N1 = ` 336>s -42
0 90 + 10s

`

 =
3360(s + 9)

s
,

 N2 = ` 42 + 8.4s 336>s
-42 0

`

=
14,112

s
.

Therefore,

 I1 =
N1

∆
=

40(s + 9)

s(s + 2)(s + 12)
,

 I2 =
N2

∆
=

168
s(s + 2)(s + 12)

.

Step 6: Use the initial-value theorem to predict the 
initial values of i1 and i2:

 lim
sS ∞ 

sI1 = lim
sS ∞

 
401s + 92

1s + 22 1s + 122

 = lim
11>s2S0

 
40311>s2 + 911>s2 24

11 + 12>s22 11 + 112>s22

 =
0

(1)(1)
= 0 = lim

tS0 
i1(t);

 lim
sS ∞ 

sI2 = lim
sS ∞

168
1s + 22 1s + 122

 = lim11>s2S0
 

16811>s2 2

11 + 12>s22 11 + 112>s22

 =
0

(1)(1)
= 0 = lim

tS0 
i2(t).

The initial-value theorem predicts correctly that the 
initial currents are zero. Now use the final-value the-
orem to predict the values of i1 and i2 as t S ∞ :

 lim
sS0

sI1 = lim
sS0

401s + 92
1s + 22 1s + 122 =

40(9)

(2)(12)

 = 15 A = lim
tS ∞

i1(t);

 lim
sS0 

sI2 = lim
sS0

 
168

1s + 22 1s + 122

 =
168

(2)(12)
= 7 A = lim

tS ∞ 
i2(t).

To verify these values, consider the circuit in  
Fig. 13.16 as t S ∞ . The inductors now behave like 
short circuits, as shown in Fig. 13.19.

1

2
336 V 42 V 48 V

i2fi1f

Figure 13.19 ▲ The circuit in Fig 13.17 as t S ∞ .

The two KVL equations that describe this circuit are

 42i1f - 42i2f = 336;

 -42i1f + 90i2f = 0.

Solving, we find the final value of i1 is 15 A and the 
final value of i2 is 7 A, as predicted by the final value 
theorem.

Step 7: Expanding I1 and I2 into a sum of partial 
fractions gives

 I1 =
15
s

-
14

s + 2
-

1
s + 12

,

 I2 =
7
s

-
8.4

s + 2
+

1.4
s + 12

.

We obtain the expressions for i1 and i2 by  inverse- 
transforming I1 and I2, using Table 12.3:

 i1 = (15 - 14e-2t - e-12t)u(t) A,

 i2 = (7 - 8.4e-2t + 1.4e-12t)u(t) A.

One final test involves calculating the voltage drop 
across the 42 Ω resistor using three different meth-
ods. From the circuit, the voltage across the 42 Ω 
resistor (positive at the top) is

v = 42(i1 - i2) = 336 - 8.4 
di1

dt
= 48i2 + 10 

di2

dt
.

You should verify that regardless of which expres-
sion is used, the voltage is

v = (336 - 235.2e-2t - 100.80e-12t)u(t) V.

We are thus confident that the solutions for i1 and 
i2 are correct.
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We can use Thévenin and Norton equivalents to simplify circuits 
in the s domain. When one part of the circuit changes frequently while 
another part remains constant, we can find a simpler equivalent for the 
constant part of the circuit that makes analysis of the entire circuit eas-
ier. Example 13.6 creates a Thévenin equivalent to simplify part of an  
s-domain circuit.

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s-domain solution 
to the time domain

 13.5 The dc current and dc voltage sources are 
 applied simultaneously to the circuit shown.  
No energy is stored in the circuit at the instant 
of application.

a) Derive the s-domain expressions for V1 
and V2.

b) For t 7 0, derive the time-domain expres-
sions for v1 and v2.

c) Calculate v1(0+) and v2(0+).
d) Compute the steady-state values of v1  

and v2.

Answer: (a) V1 = [51s + 32 ]>[s(s + 0.52 1s + 22],

V2 = [2.5(s2 + 6)]>[s1s + 0.52 1s + 22];

(b) v1 = a15 -
50
3

 e-0.5t +
5
3

 e-2tbu(t) V,

v2 = a15 -
125
6

 e-0.5t +
25
3

 e-2tbu(t) V;

(c) v1(0+) = 0, v2(0+) = 2.5 V;

(d) v1 = v2 = 15 V.

1 H

5 A 15 V
1

2

t 5 0 t 5 0
1 F

1

2

v1 3 V

1

2

v2

15 V

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 13.19 and 13.20.

EXAMPLE 13.6 Creating a Thévenin Equivalent in the s Domain

We want to find the capacitor current, iC, for the 
circuit in Fig. 13.20. The circuit has no initial stored 
energy, and at t = 0, the switch closes. Find the 
Thévenin equivalent for the circuit to the left of the 
terminals a and b in the s domain, using Laplace 
methods. Then analyze the simplified circuit to find 
iC(t) for t Ú 0.

1

2

vC

60 V20 V

5 mF
t 5 0

480 V
1

2
2 mH iC

a

b

Figure 13.20 ▲ The circuit for Example 13.6.

Solution
Apply the Laplace transform method using 
Analysis Method 13.1.

Step 1: There is no initial stored energy, so both ini-
tial conditions are zero.

Step 2: The series connection of the 480 V dc volt-
age source and the switch can be described in the 
time domain as 480u(t) V. Using the functional and 
operational transform tables (Tables 12.1 and 12.2), 
the Laplace transform of this voltage is

ℒ5480u(t)6 =
480

s
 V@s.

This is the value of the voltage source for the  
s-domain circuit in Fig. 13.21.
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Step 3: The capacitor current and voltage are rep-
resented in the s domain as IC and VC, as shown in 
Fig. 13.21.

Step 4: The impedance of the resistors is their 
 resistance. The impedances of the inductor and 
 capacitor are

 ZL = sL = 0.002s =
s

500
 Ω;

 ZC =
1

sC
=

1

5 * 10-6s
=

2 * 105

s
 Ω.

The s-domain circuit that results from Steps 1–4 is 
shown in Fig. 13.21.

60 V20 V

0.002 s IC

a

b

1

2

VC
1

2
480

s
2 3 105

s
V-s V V

Figure 13.21 ▲ The Laplace transform of the circuit shown 
in Fig. 13.20.

Step 5: The Thévenin voltage is the open-circuit 
voltage across terminals a and b. Under open- circuit 
conditions, there is no voltage across the 60 Ω 
 resistor. Using voltage division,

VTh =
(480>s)(0.002s)

20 + 0.002s
=

480

s + 104.

The Thévenin impedance seen from terminals a and 
b equals the 60 Ω resistor in series with the parallel 
combination of the 20 Ω resistor and the inductive 
impedance. Thus

ZTh = 60 +
0.002s(20)

20 + 0.002s
=

80(s + 7500)

s + 104 .

Using the Thévenin equivalent, we reduce the cir-
cuit shown in Fig. 13.21 to the one shown in Fig. 13.22.

IC

a

b

1

2

VC 2 3 105

s

80 (s 1 7500)

s 1 104

1

2

480
s 1 104

V-s

V

V

Figure 13.22 ▲ A simplified version of the circuit shown in 
Fig. 13.21, using a Thévenin equivalent.

In this circuit, the capacitor current IC equals the 
Thévenin voltage divided by the total series imped-
ance. Thus,

IC =

480

s + 104

801s + 75002
s + 104 +

2 * 105

s

=
6s

1s + 50002 2.

Step 6: Use the initial- and final-value theorems to 
predict the initial and final values of iC:

 lim
sS ∞

sIC = lim
sS ∞

6s2

1s + 50002 2 = lim11>s2S0

6
11 + 15000>s22 2

 =
6

(1)2 = 6 A = lim
tS0 

iC(t);

 lim
sS0 

sIC = lim
sS0

6s2

1s + 50002 2 =
0

150002 2 = 0 = lim
tS ∞

iC(t).

Let’s calculate the initial capacitor current from the cir-
cuit in Fig. 13.20. The initial inductor current is zero and 
the initial capacitor voltage is zero, so the initial capac-
itor current is 480>(20 + 60) or 6 A, which agrees with 
the prediction of the initial-value theorem. The final 
value of the capacitor current is zero because as t S ∞  
in the circuit shown in Fig. 13.20, the capacitor behaves 
like an open circuit. This final capacitor current also 
agrees with the prediction of the final- value theorem.

Step 7: The partial fraction expansion of IC is

IC =
-30,000

(s + 5000)2 +
6

s + 5000
,

and its inverse transform is

iC = (-30,000te-5000t + 6e-5000t)u(t) A.

Suppose we also want to find the voltage drop 
across the capacitor, vC. Once we know iC, we could 
find vC by integration in the time domain:

vC = 2 * 105L
t

0-
(6 - 30,000x)e-5000x dx.

Although the integration is not difficult, we can avoid 
it altogether by first finding the s-domain expression 
for VC and then using the inverse transform to find vC.  
Thus

 VC =
1

sC
 IC =

2 * 105

s
 

6s

(s + 5000)2

 =
12 * 105

(s + 5000)2,

and

vC = 12 * 105te-5000tu(t) V.

You can explore this circuit’s behavior further in 
 Problem 13.33.
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We can also use Laplace transform methods to analyze circuits with 
mutually coupled coils. Example 13.7 illustrates this process.

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s-domain solution 
to the time domain

 13.6 The initial charge on the capacitor in the circuit 
shown is zero.
a) Find the s-domain Thévenin equivalent circuit 

with respect to terminals a and b.
b) Find the s-domain expression for the current 

that the circuit delivers to a load consisting of a 
1 H inductor in series with a 2 Ω resistor.

Answer: (a) VTh = Vab = [20(s + 2.4)]>[s(s + 2)],

ZTh = 51s + 2.82 > 1s + 22 ;

(b) Iab = [201s + 2.42]>[s1s + 32 1s + 62].

5 V 1 V 2 V

0.2 vx

2 1

0.5 F

20 u(t)
1

2

a

b

1

2

vx 1 H

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 13.37.

EXAMPLE 13.7 Analyzing a Circuit with Mutual Inductance

Consider the circuit in Fig. 13.23. The make-before-
break switch has been in position a for a long time. 
At t = 0, the switch moves instantaneously to posi-
tion b. Use Laplace methods to find i2(t) for t Ú 0.

Solution
Apply the Laplace transform method using 
Analysis Method 13.1.

Step 1: Because the switch has been in posi-
tion a for a long time, both inductors behave 
like short circuits. The current in the 2  H induc-
tor is 60>(9 + 3) = 5 A, and the current in the 
8  H  inductor is zero. Therefore, i1(0-) = 5 A and 
i2(0-) = 0.

Step 2: For t Ú 0, there is no independent source 
in the circuit, so we can skip this step.

Step 3: The currents in the two coils are represent-
ed in the s domain as I1 and I2.

Step 4: Before calculating the impedance of the 
resistors and inductors, we replace the magnet-
ically coupled coils with a T-equivalent circuit.1  
Figure 13.24 shows the new circuit.

b

3 V 2 V

10 V
i1 i2

(L1 2 M)
0 H

(L2 2 M)
6 H

(M) 2 H

Figure 13.24 ▲ The circuit shown in Fig. 13.23, with the 
magnetically coupled coils replaced by a T-equivalent 
circuit.

The impedance of the resistors is their resis-
tance, and the impedance of the inductors is sL. 
Because we plan to use the mesh-current method 
in the s domain, we use the series-equivalent cir-
cuit for inductors carrying initial current. We place 
a voltage source in the vertical leg of the tee, to 
represent the initial value of the current in that 2 H

b

a 2 H

t 5 0

60 V
1

2

3 V 2 V9 V

10 V

i1

8 H

i2

Figure 13.23 ▲ The circuit for Example 13.7, containing magnetically 
coupled coils. 1 See Appendix C.



526 The Laplace Transform in Circuit Analysis 

vertical leg, which is i1(0-) + i2(0-), or 5 A. The 
s-domain circuit resulting from Steps 1–4 is shown 
in Fig. 13.25.

b

3 V 2 V

10 V
I1 I2

6s V

2s V

2

1
10 V-s

Figure 13.25 ▲ The s-domain equivalent circuit for the 
 circuit shown in Fig. 13.24.

Step 5: Write the two s-domain mesh equations for 
the circuit in Fig. 13.25:

 (3 + 2s)I1 + 2sI2 = 10;

 2sI1 + (12 + 8s)I2 = 10.

Solving for I2 yields

I2 =
2.5

(s + 1)(s + 3)
.

Step 6: Use the initial- and final-value theorems to 
predict the initial and final values of i2:

 lim
sS ∞

sI2 = lim
sS ∞

2.5s
1s + 12 1s + 32

 = lim
11>s2S0

2.511>s2
11 + 11>s22 11 + 13>s22

 =
0

(1)(1)
= 0 = lim

tS0 
i2(t);

 lim
sS0 

sI2 = lim
sS0

2.5s
1s + 12 1s + 32 =

0
(1)(3)

 = 0 = lim
tS ∞

i2(t).

The initial- and final-value theorems correctly pre-
dict the initial and final values of the current i2 for 
the circuit in Fig. 13.23.

Step 7: The partial fraction expansion of I2 is

I2 =
1.25

s + 1
-

1.25
s + 3

.

Using Table 12.3, the inverse Laplace transform of 
I2 is

i2 = (1.25e-t - 1.25e-3t)u(t) A.

Figure 13.26 shows a plot of i2 versus t. This response 
makes sense in terms of the known physical behav-
ior of the magnetically coupled coils. A current 
can exist in the L2 inductor only if there is a time- 
varying current in the L1 inductor. As i1 decreases 
from its initial value of 5 A, i2 increases from zero 
and then approaches zero as i1 approaches zero.

t (ms)
0

481.13

i2 (mA)

549.31

Figure 13.26 ▲ The plot of i2 versus t for the circuit shown 
in Fig. 13.23.

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s-domain solution 
to the time domain

 13.7 a) Using the results from Example 13.7 for the 
circuit in Fig. 13.23, verify that i2 reaches a 
peak value of 481.13 mA at t = 549.31 ms.

b) Find i1, for t 7 0, for the circuit shown in  
Fig. 13.23.

c) Compute di1>dt when i2 is at its peak value.
d) Express i2 as a function of di1>dt when i2 is 

at its peak value.
e) Use the results obtained in (c) and (d) to 

calculate the peak value of i2.

Answer: (a) di2>dt = 0 when t = 0.5 ln 3 = 549.31 ms;

(b) i1 = 2.5(e-t + e-3t)u(t) A;

(c) -2.89 A>s;

(d) i2 = - aM
12

b  
di1

dt
;

(e) 481.13 mA.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 13.38 and 13.39.
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Because we are analyzing linear lumped-parameter circuits, we can 
use superposition to divide the response into components that can be 
identified with particular sources and initial conditions. We need to iden-
tify these components in order to use the transfer function, which we in-
troduce in the next section. Example 13.8 illustrates superposition in the 
s domain by revisiting the circuit from Example 13.3 and separating its 
output voltage, v, into three components, two associated with the circuit’s 
initial conditions and one associated with the circuit’s independent source.

EXAMPLE 13.8 Applying Superposition in the s Domain

Repeat the analysis of the s-domain circuit for 
Example 13.3, shown in Fig. 13.14. Use superpo-
sition to separate the time-domain voltage v into 
three components, each one being the response to 
one of the three sources in Fig. 13.14.

Solution
Since each source in Fig. 13.14 is a current source, 
we will use Ohm’s law to find each component of 
V, using the equivalent impedance of the three 
 parallel-connected impedances. This equivalent im-
pedance, calculated in Example 13.3, is

Zeq =
40 * 106s

s2 + 80,000s + 16 * 108 Ω.

Define V¿ as the component of V in Fig. 13.14 
due to the initial capacitor energy. Find V¿ using 
the circuit in Fig. 13.27, where the only source is 
the one that represents the initial condition for the 
capacitor.

500 V40 3 106

s V

1

2

V ´40 
s V

1.25 mV-s

Figure 13.27 ▲ The response of the circuit in Fig. 13.14 due 
to the initial capacitor voltage.

V′ = Zeq11.25 * 10-62 =
50s

s2 + 80,000s + 16 * 108.

The partial fraction expansion of V¿ is

V′ =
-2 * 106

1s + 40,0002 2 +
50

1s + 40,0002 .

Use Table 12.3 to find the inverse Laplace transform 
of V¿:

v′ = ℒ-15V′6 = 150e-40,000t - 2 * 106te-40,000t2u(t) V.

Therefore, v¿ is the component of v that is due only 
to the initial energy of the capacitor in the circuit of 
Fig. 13.13.

Next, define V″ as the component of V in 
Fig. 13.14 due to the initial inductor energy. Find 
V″ using the circuit in Fig. 13.28, where the only 
source is the one that represents the initial condi-
tion for the inductor.

500 VV

1

2

V´´40 
s V

mA-s29
s

40 3 106

s

Figure 13.28 ▲ The response of the circuit in Fig. 13.14 due 
to the initial inductor current.

V″ = Zeqa -0.029
s

b =
-1.16 * 106

s2 + 80,000s + 16 * 108.

The partial fraction expansion of V″ is

V″ =
-1.16 * 106

1s + 40,0002 2.

Use Table 12.3 to find the inverse Laplace transform 
of V″:

v″ = ℒ-15V″6 = 1 -1.16 * 106te-40,000t2u(t) V.

Therefore, v″ is the component of v that is due only 
to the initial energy of the inductor in the circuit of 
Fig. 13.13.

Finally, define V″′ as the component of V in  
Fig. 13.14 due to the 24 mA dc current source. Find 
V″′ using the circuit in Fig. 13.29, where the only 
source is the one that represents the 24 mA dc current 
source.

500 V

1

2

V ˝´mA-s24
s

40 3 106
V

40 
s V

s

Figure 13.29 ▲ The response of the circuit in Fig. 13.14 due 
to the independent dc current source.
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V‴ = Zeqa 0.024
s

b =
0.96 * 106

s2 + 80,000s + 16 * 108.

The partial fraction expansion of V‴ is

V‴ =
0.96 * 106

1s + 40,0002 2.

Use Table 12.3 to find the inverse Laplace transform 
of V‴:

v‴ = ℒ-15V″′6 = 10.96 * 106te-40,000t2u(t) V.

Therefore, v‴ is the component of v that is due 
only to the 24 mA current source in the circuit of  
Fig. 13.13.

The voltage v in the circuit of Fig. 13.13 is 
the sum of the three component voltages we just 
found:

 v = v′ + v″ + v″′  
 = 150e-40,000t - 2.2 * 106te-40,000t2u(t) V.

This is the result found in Example 13.3.

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s-domain solution 
to the time domain

 13.8 The energy stored in the circuit shown is zero at 
the instant the two sources are turned on.
a) Find the component of v for t 7 0 owing to 

the voltage source.
b) Find the component of v for t 7 0 owing to 

the current source.
c) Find the expression for v when t 7 0.

Answer: (a) [(100>3)e-2t - (100>3)e-8t]u(t) V;

(b) [(50>3)e-2t - (50>3)e-8t]u(t) V;

(c) [50e-2t - 50e-8t]u(t) V.

1.25 H 50 mF 5u(t) A20u(t) V

1

2

v

2 V

1

2

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 13.44.

13.4 The Transfer Function
The transfer function is defined as the s-domain ratio of the Laplace 
transform of the output (response) to the Laplace transform of the input 
(source). As we will see, the transfer function characterizes a circuit’s be-
havior in a single s-domain expression, without revealing what compo-
nents make up the circuit or how those components are interconnected. In 
computing the transfer function, we only consider circuits where all initial 
conditions are zero. If a circuit has multiple independent sources, we can 
find the transfer function for each source and use superposition to find the 
response to all sources.

The transfer function is

DEFINITION OF A TRANSFER FUNCTION

 H(s) =
Y(s)
X(s)

, (13.7)
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where Y(s) is the Laplace transform of the output signal, and X(s) is the 
Laplace transform of the input signal. Note that the transfer function de-
pends on what is defined as the output signal. Consider, for example, the 
series circuit shown in Fig. 13.30. If the current is defined as the output 
signal of the circuit,

H(s) =
I

Vg
=

1
R + sL + 1>sC

=
sC

s2LC + RCs + 1
.

In deriving H(s), we recognized that I corresponds to the output Y(s) and 
Vg corresponds to the input X(s).

If, instead, the capacitor voltage is defined as the output signal of the 
circuit shown in Fig. 13.30, then the transfer function is

H(s) =
V
Vg

=
1>sC

R + sL + 1>sC
=

1
s2 LC + RCs + 1

.

Thus, because circuits may have multiple sources and because the defini-
tion of the output signal of interest can vary, a single circuit can generate 
many transfer functions. Remember that when multiple sources are in-
volved, no single transfer function can represent the total output; transfer 
functions associated with each source must be combined using superposi-
tion to yield the total response. Example 13.9 illustrates the computation 
of a transfer function for known numerical values of R, L, and C.

R sL

2

1

VVg 1>sC
1

2

I

Figure 13.30 ▲ A series RLC circuit.

EXAMPLE 13.9 Deriving the Transfer Function of a Circuit

The voltage source vg drives the circuit shown in 
Fig. 13.31. The output signal is the voltage across 
the capacitor, vo.

1 mFvg

1

2

vo

1000 V

50 mH

1

2

250 V

Figure 13.31 ▲ The circuit for Example 13.9.

a) Find the transfer function for this circuit.

b) Calculate the numerical values for the poles and 
zeros of the transfer function.

Solution

a) Use Analysis Method 13.1 to construct and ana-
lyze the s-domain circuit.

Step 1: The circuit in Fig. 13.31 has no initial 
stored energy, an assumption we always make 
when calculating a circuit’s transfer function. 
Therefore, we can skip this step.

Step 2: There are no independent sources de-
scribed by a time-domain function in this circuit, 
so we can skip this step.

Step 3: Represent the source and output voltages 
using Vg and Vo, respectively, as shown in  Fig. 13.32.

Step 4: The impedance of the resistors is their 
resistance. The impedances of the inductor and 
capacitor are

 ZL = sL = 0.05s Ω;

 ZC =
1

sC
=

1

s110-62 =
106

s
 Ω.

The s-domain circuit resulting from Steps 
1–4 is shown in Fig. 13.32.

Vg

1

2

Vo

1000 V

0.05s V

1

2

250 V
106

s
V

Figure 13.32 ▲ The s-domain equivalent circuit for the cir-
cuit shown in Fig. 13.31.
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Step 5: From the problem statement, the trans-
fer function is the ratio of Vo>Vg. Writing a 
node-voltage equation at the upper node and 
summing the currents leaving the node gives

Vo - Vg

1000
+

Vo

250 + 0.05s
+

Vos

106 = 0.

Solving for Vo yields

Vo =
10001s + 50002Vg

s2 + 6000s + 25 * 106.

Hence, the transfer function is

H(s) =
Vo

Vg
=

10001s + 50002
s2 + 6000s + 25 * 106.

b) The poles of H(s) are the roots of the denominator 
polynomial. Therefore

 -p1 = -3000 - j4000,

 -p2 = -3000 + j4000.

The zeros of H(s) are the roots of the numerator 
polynomial; thus, H(s) has a zero at

-z1 = -5000.

Objective 3—Understand the definition and significance of the transfer function; be able to derive a 
 transfer function

 13.9 a) Derive the numerical expression for the 
transfer function Vo>Ig for the circuit shown.

b) Give the numerical value of each pole and 
zero of H(s).

Answer: (a) H(s) = 101s + 22 >(s2 + 2s + 10);
(b) -p1 = -1 + j3, -p2 = -1 - j3,

-z = -2.

ig

1

2

vo0.1 F
1 H

2 V

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 13.50.

The Location of Poles and Zeros of H(s)
For linear lumped-parameter circuits, H(s) is always a rational function of s. 
Complex poles and zeros always occur in conjugate pairs. The poles of H(s) 
must lie in the left half of the s plane if the response to a bounded source 
(one whose values lie within some finite bounds) is to be bounded. The 
zeros of H(s) may lie in either the right half or the left half of the s plane.

With these general characteristics in mind, we next discuss the role 
that H(s) plays in determining the circuit’s output.

13.5  The Transfer Function in Partial 
Fraction Expansions

Using the definition of a circuit’s transfer function (Eq. 13.7), we can find 
the circuit’s output by multiplying the transfer function and the circuit’s 
input:

 Y(s) = H(s)X(s). (13.8)
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We have already noted that H(s) is a rational function of s; X(s) also is 
a rational function of s for the time-domain functions of most interest in 
circuit analysis (see Table 12.1).

Expanding the right-hand side of Eq. 13.8 into a sum of partial fractions 
produces a term for each pole of H(s) and X(s). The terms generated by the 
poles of H(s) correspond to the transient components of the total response. 
The terms generated by the poles of X(s) correspond to the steady-state 
components of the response, which exist after the transient components have 
become negligible. Example 13.10 illustrates these general observations.

EXAMPLE 13.10 Analyzing the Transfer Function of a Circuit

The circuit in Example 13.9 (Fig. 13.31) is driven 
by a voltage source whose voltage increases linearly 
with time, namely, vg = 50tu(t) V.

a) Use the transfer function to find vo.

b) Identify the transient component of the response.

c) Identify the steady-state component of the 
 response.

d) Sketch vo versus t for 0 … t … 1.5 ms.

Solution

a) From Example 13.9,

H(s) =
10001s + 50002

s2 + 6000s + 25 * 106.

The Laplace transform of the source voltage is 
50>s2; therefore, the s-domain expression for the 
output voltage is

Vo =
10001s + 50002

(s2 + 6000s + 25 * 106)
 
50
s2 .

The partial fraction expansion of Vo is

Vo =
K1

s + 3000 - j4000

+  
K1

*

s + 3000 + j4000
+

K2

s2 +
K3

s
.

We evaluate the coefficients K1, K2, and K3 by 
using the techniques described in Section 12.7:

 K1 = 515 * 10-4 l79.70°;

 K1
* = 515 * 10-4 l-79.70°;

 K2 = 10;

 K3 = -4 * 10-4.

Using Table 12.3, the time-domain expression 
for vo is

vo = 31015 * 10-4e-3000t cos 14000t + 79.70°2
+ 10t - 4 * 10-44u(t) V.

b) The transient component of vo is

1015 * 10-4e-3000t cos 14000t + 79.70°2  V.

Note that this term is generated by the poles 
1 -3000 + j40002  and 1 -3000 - j40002  of the 
transfer function.

c) The steady-state component of the response is

(10t - 4 * 10-4)u(t) V.

These two terms are generated by the second- 
order pole (K>s2) of the input voltage.

d) Figure 13.33 shows a sketch of vo versus t. Note 
that the deviation from the steady-state solution 
10,000t - 0.4 mV is imperceptible after approx-
imately 1 ms.

2

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t (ms)

4

6

8

10

12

14

16

vo (mV)

(10,000t 2 0.4) mV

vo

Figure 13.33 ▲ The graph of vo versus t for Example 13.10.
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Observations on the Use of H(s) in Circuit Analysis
Example 13.10 related the components that make up a circuit’s response 
to the poles of the transfer function, H(s), and the poles of the circuit’s 
input in the s domain, using a partial fraction expansion. However, the 
example raises questions about driving a circuit with an increasing ramp 
voltage that generates an increasing ramp response. Eventually, exces-
sive voltage will cause the circuit components to fail, and then our linear 
model is invalid. But some practical applications have input ramp func-
tions that increase to some maximum value over a finite time interval, so 
the response to a ramp input is important. If the time it takes for the ramp 
to reach its maximum value is long compared with the time constants of 
the circuit, the solution assuming an unbounded ramp is valid for this fi-
nite time interval.

Here are some additional observations about a circuit’s transfer func-
tion, defined in Eq. 13.7.

• If the circuit’s input is delayed by a seconds,

ℒ5x1 t - a2u1 t - a26 = e-asX(s),

then from Eq. 13.8, the circuit’s output is

Y(s) = H(s)X(s)e-as.

If y(t) = ℒ-15H(s)X(s)6 , then,

y1 t - a2u1 t - a2 = ℒ-15H(s)X(s)e-as6 .

Therefore, delaying the input by a seconds delays the output by a 
seconds. A circuit that exhibits this characteristic is time invariant.

• If the circuit’s input is a unit impulse, the circuit’s output equals the 
inverse transform of the transfer function. Thus, if

x(t) = d(t), then X(s) = 1

and

Y(s) = H(s).

Hence,

y(t) = h(t),

so the inverse transform of the transfer function equals the unit impulse 
response of the circuit.

• A circuit’s unit impulse response is also its natural response be-
cause applying an impulsive source is equivalent to instantaneous-
ly storing energy in the circuit (see Section 13.8). The subsequent 
release of this stored energy is the circuit’s natural response (see 
Problem 13.84).

• A circuit’s unit impulse response, h(t), contains enough information 
to compute the response to any source that drives the circuit. We can 
extract a circuit’s response to an arbitrary source from the circuit’s 
unit impulse response, using the convolution integral. This technique 
is demonstrated in the next section.
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13.6  The Transfer Function and the 
Convolution Integral

The convolution integral relates the output y(t) of a linear time-invariant 
circuit to the input x(t) of the circuit and the circuit’s impulse response 
h(t). The integral relationship can be expressed in two ways:

Objective 4—Know how to use a circuit’s transfer function to calculate the circuit’s impulse response, unit 
step response, and steady-state response to sinusoidal input

 13.10 Find (a) the unit step and (b) the unit impulse 
response of the circuit shown in Assessment 
Problem 13.9.

Answer: (a) [2 + (10>3)e-t cos (3t - 126.87°)]u(t) V;

(b) 10.54e-t cos 13t - 18.43°2u(t) V.

 13.11 The unit impulse response of a circuit is

vo(t) = 10,000e-70t cos 1240t + u2  V,

where tan u =
7
24

.

a) Find the transfer function of the circuit.

b) Find the unit step response of the circuit.

Answer: (a) 9600s>(s2 + 140s + 62,500);

(b) [40e-70t sin 240t]u(t) V.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 13.55 and 13.56.

CONVOLUTION INTEGRAL

    y(t) = L
∞

-∞
h(l)x(t - l) dl = L

∞

-∞
h(t - l)x(l) dl. (13.9)

We are interested in the convolution integral for several reasons.

• We can find a circuit’s output for any input by working entirely in 
the time domain. This is beneficial when x(t) and h(t) are known only 
through experimental data. In such cases, using Laplace transform 
methods may be awkward or even impossible, as we would need to 
compute the Laplace transform of experimental data.

• The convolution integral introduces the concepts of memory and the 
weighting function into analysis. The concept of memory enables us 
to predict, to some degree, how closely the output waveform repli-
cates the input waveform, using the impulse response (or the weight-
ing function) h(t).

• The convolution integral provides a formal procedure for finding the 
inverse transform of products of Laplace transforms.

To derive Eq. 13.9, we assume that the circuit is linear and time in-
variant. Because the circuit is linear, the principle of superposition is valid, 
and because it is time invariant, the response delay and the input delay 
are the same. Consider Fig. 13.34, in which the block containing h(t) rep-
resents any linear time-invariant circuit whose impulse response is known, 

x(t) y(t)h(t)

Figure 13.34 ▲ A block diagram of a general circuit.
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x(t) represents the input signal and y(t) represents the output signal. We 
also assume the following:

• x(t) is the general signal shown in Fig. 13.35(a).
• x(t) = 0 for t 6 0-. Once we derive the convolution integral assum-

ing x(t) = 0 for t 6 0-, extending the integral to include excitation 
functions that exist for all time is straightforward.

• A discontinuity in x(t) at the origin (between 0- and 0+) is permitted.

Begin by approximating x(t) with a series of rectangular pulses of uni-
form width ∆l, as shown in Fig. 13.35(b). Thus

x(t) = x0(t) + x1(t) + g + xi(t) + g,

where xi(t) is a rectangular pulse that equals x1li2  between li and li + 1 
and is zero elsewhere. Note that the ith pulse can be expressed using step 
functions; that is,

xi(t) = x1li2 5u1 t - li2 - u[t - (li + ∆l)]6 .

Continue to approximate x(t) by making the pulse width ∆l so small 
that we can approximate the ith component using an impulse function 
of strength x1li2∆l. Figure 13.35(c) shows this impulse representation, 
where the brackets beside each arrow represent the impulse strength. The 
impulse representation of x(t) is

 x(t) = x(l0)∆ld(t - l0) + x(l1)∆ld(t - l1) + g

+ x(li)∆ld(t - li) + g .

When we represent x(t) with a series of impulse functions (which 
occur at equally spaced intervals of time, that is, at l0, l1, l2, c), the out-
put function y(t) is the sum of uniformly delayed impulse responses. The 
strength of each response depends on the strength of the impulse driving 
the circuit. For example, let’s assume that the unit impulse response of the 
circuit represented by the box in Fig. 13.34 is the exponential decay func-
tion shown in Fig. 13.36(a). Then the approximation of y(t) is the sum of 
the impulse responses shown in Fig. 13.36(b).

Analytically, the expression for y(t) is

y(t) = x(l0)∆lh(t - l0) + x(l1)∆lh(t - l1)

+ x(l2)∆lh(t - l2) + g

+ x(li)∆lh(t - li) + g .

As ∆l S 0, the sum approaches a continuous integral, or

a
∞

i = ∞
x(li)h(t - li)∆l S L

∞

0
x(l)h(t - l) dl.

Therefore,

y(t) = L
∞

0
x(l)h(t - l) dl.

x(l1)x(t)

x(l0)

l0 l1 l2 l3 . . . . . . .li

l1 l2 l3 . . . li

x(li)
x(l2)

x(l3)

t

x(t)

x(l0) Dl

[x
(l

1)
 D

l
]

[x
(l

2)
 D

l
]

[x
(l

3)
 D

l
]

[x
(l

i)
 D

l
]

l0
t

x(t)

0
t

(a)

(b)

(c)

Figure 13.35 ▲ The excitation signal of x(t).  
(a) A general excitation signal. (b) Approximating 
x(t) with a series of pulses. (c) Approximating x(t) 
with a series of impulses.

h(t)

0

y(t)

l0 l1 l2 l3

Approximation of y(t)

t

t

(a)

(b)

Figure 13.36 ▲ The approximation of y(t). (a) The 
impulse response of the box shown in Fig. 13.34. 
(b) Summing the impulse responses.
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If x(t) exists over all time, then the lower limit on the integral is - ∞ . Thus, 
in general,

y(t) = L
∞

-∞
x(l)h(t - l) dl,

which is the second form of the convolution integral given in Eq. 13.9.
To derive the first form of the integral in Eq. 13.9, we change the 

variable of integration in the second form of the integral. Let u = t - l, 
and then du = -dl, u = - ∞  when l = ∞ , and u = + ∞  when l = - ∞ . 
Now we can write

y(t) = L
-∞

∞
x1 t - u2h(u)1 -du2 ,

or

y(t) = L
∞

-∞
x1 t - u2h(u)(du).

Since u is a symbol of integration, this integral is equivalent to the first 
form of the convolution integral, Eq. 13.9.

The convolution integral relating y(t), h(t), and x(t), (Eq. 13.9), is 
often written using a shorthand notation:

 y(t) = h(t) * x(t) = x(t) * h(t), (13.10)

where the asterisk represents the integral relationship between h(t) and 
x(t). Thus, h(t) * x(t) is read as “h(t) is convolved with x(t)” and implies 
that

h(t) * x(t) = L
∞

-∞
h1l2x1 t - l2  dl,

whereas x(t) * h(t) is read as “x(t) is convolved with h(t)” and implies that

x(t) * h(t) = L
∞

-∞
x1l2h1 t - l2  dl.

The integrals in Eq. 13.9 give the most general relationship for the 
convolution of two functions. However, when we apply the convolution 
integral, we can change the lower limit to zero and the upper limit to t. 
Then we can write Eq. 13.9 as

y(t) = L
t

0
h(l)x(t - l) dl = L

t

0
x(l)h(t - l) dl.

We change the limits for two reasons. First, for physically realizable cir-
cuits, h(t) is zero for t 6 0 because there is no impulse response before 
you apply an impulse. Second, we start measuring time at the instant we 
turn on the input x(t); therefore x(t) = 0 for t 6 0-.

A graphic interpretation of the convolution integrals (Eq. 13.9) 
helps us use convolution as a computational tool. We begin with the 
first integral and assume that the circuit’s impulse response is the ex-
ponential decay function shown in Fig. 13.37(a) and its input function 
has the waveform shown in Fig. 13.37(b). In each of the plots, we re-
place t with l, the symbol of integration. Replacing l with -l folds 
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the excitation function over the vertical axis, as shown in Fig 13.37(d). 
The  folding operation explains why Eq. 13.9 is called the convolution 
integral. Replacing -l with t - l slides the folded function to the right, 
as shown in Fig. 13.37(d).

At any specified value of t, the output function y(t) is the area under 
the product function h1l2x1 t - l2 , as shown in Fig. 13.37(e). This plot ex-
plains why we can set the lower limit on the convolution integral to zero 
and the upper limit to t. For l 6 0, the product h1l2x1 t - l2  is zero be-
cause h1l2  is zero. For l 7 t, the product h1l2x1 t - l2  is zero because 
x1 t - l2  is zero.

Figure 13.38 shows the second form of the convolution integral. Once 
again, the product function in Fig. 13.38(e) explains why we use zero for 
the lower limit and t for the upper limit.

Example 13.11 illustrates how to use the convolution integral and the 
unit impulse response to find a circuit’s output in response to a given input.

(a)

(b)

(c)

(d)

(e)

0

0

0

0

0

A

A

A

MA

M

h(l)

x(l)

h(2l)

h(t 2 l)

h(t 2 l)x(l)

l

l

l

l

l

t1 t2

t1

t

t

y(t) 5 Area

Figure 13.38 ▲ A graphic interpretation of the 
convolution integral 1 t

0 h(t - l)x(l) dl. (a) The im-
pulse response. (b) The excitation function.  
(c) The folded impulse response. (d) The folded 
impulse response displaced t units. (e) The product 
h(t - l)x(l).
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0
l
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M
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l
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02t12t2
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(e)

(d)

(c)
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(a)

Figure 13.37 ▲ A graphic interpretation of the 
convolution integral 1 t

0 h(l)x(t - l) dl. (a) The 
impulse response. (b) The excitation function.  
(c) The folded excitation function. (d) The folded 
excitation function displaced t units. (e) The  
product h(l)x(t - l).
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EXAMPLE 13.11 Using the Convolution Integral to Find an Output Signal

The input voltage vi for the circuit shown in  
Fig. 13.39(a) is shown in Fig. 13.39(b).

a) Use the convolution integral to find vo.

b) Plot vo over the range of 0 … t … 15 s.

1

2

1 H

1 V

1

2

vovi

(a)

20 V

0 5

vi

10
t (s)

(b)

Figure 13.39 ▲ The circuit and excitation voltage for 
Example 13.11. (a) The circuit. (b) The input voltage.

Solution

a) Begin by finding the unit impulse response of the circuit. 
The s-domain equivalent of the circuit in Fig. 13.39(a) re-
places the inductor with an impedance of s Ω and the two 
voltages with Vo and Vi. Using voltage division,

Vo =
1

s + 1
 Vi.

When vi is a unit impulse function d(t), Vi = 1 and 
H(s) = Vo>Vi = 1>(s + 1). Then,

vo = h(t) = e-tu(t),

from which

h1l2 = e-lu1l2 .

Using the first form of the convolution integral in  
Eq. 13.9, we construct the impulse response and folded 
input function shown in Fig. 13.40, which helps us se-
lect the convolution integral limits. As we slide the 
folded input function to the right, we break the inte-
gration into three intervals: 0 … t … 5; 5 … t … 10; 
and 10 … t … ∞ . The integration intervals correspond 
to points where the input function’s definition changes. 
Figure 13.41 depicts the position of the folded input 
function for each interval.

The expression for vi in the time interval 0 … t … 5 is

vi = 4t, 0 … t … 5 s.

h(l)

1.0

0

e2l

Impulse response

Folded excitation

l

l

20 V

vi(2l)

25 0210

Figure 13.40 ▲ The impulse response and the 
folded input function for Example 13.11.

0

0

1.0

h (l)
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l

l

20

(t 2 10) (t 2 5) t 105

0(t 2 10) (t 2 5) t 105

0 (t 2 10) (t 2 5) t105

0 < t < 5

5 < t < 10

10 < t < `

l

l

20

20

Figure 13.41 ▲ The displacement vi(t - l) of for 
three different time intervals.
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Hence, the expression for the folded input func-
tion in the interval t - 5 … l …  t is

vi1 t - l2 = 41 t - l2 , t - 5 … l … t.

In the other two time intervals, vi is a constant.
We can now set up the three convolution in-

tegrals to find vo. For 0 … t … 5 s:

 vo = L
t

0
41 t - l2e-l dl

 = 4(e-t + t - 1) V.

For 5 … t … 10 s,

 vo = L
t - 5

0
20e-l dl + L

t

t - 5
41 t - l2e-l dl

 = 4(5 + e-t - e-1t - 52) V.

For 10 … t … ∞  s,

 vo = L
t - 5

t - 10
20e-l dl + L

t

t - 5
41 t - l2e-l dl

 = 4(e-t - e-1t - 52 + 5e-1t - 102) V.

b) Values for vo are shown graphically in Fig. 13.42.

20 4 6 8 10 12 14
t (s)

2
4
6
8

10
12
14
16
18
20

vo (V)

Figure 13.42 ▲ The voltage response versus time for 
Example 13.11.

SELF-CHECK: Assess your understanding of convolution by trying Chapter Problems 13.61 and 13.62.

The Concepts of Memory and the Weighting 
Function
We mentioned at the beginning of this section that the convolution inte-
gral introduces the concepts of memory and the weighting function into 
circuit analysis. The graphical interpretation of the convolution integral 
is the easiest way to understand these concepts. We can view the folding 
and sliding of a circuit’s input function on a time scale divided into past, 
present, and future time intervals. The vertical axis represents the present 
value of x(t), with past values to the right of the vertical axis and future 
values to the left. Figure 13.43 shows this description of x(t), using the 
input function from Example 13.11.

When we combine the past, present, and future views of x1 t - t2  
with the impulse response of the circuit, we see that the impulse response 
weights x(t) according to present and past values. For example, Fig. 13.41 
shows that the impulse response in Example 13.11 gives less weight to past 
values of x(t) than to the present value of x(t). In other words, the circuit 
“remembers” less and less about past input values. Therefore, in Fig. 13.42, 
vo quickly approaches zero when the present value of the input is zero (that 
is, when t 7 10 s). Since the present value of the input receives more weight  
than the past values, the output quickly approaches the present value of 
the input.

Because the convolution integral uses the product of x1 t - l2  and 
h1l2 , the impulse response is considered the circuit’s weighting function. 
The weighting function, in turn, determines how much memory the circuit 
has. Memory represents how accurately the circuit’s response matches 
its input. For example, if the impulse response, or weighting function, is 
flat, as shown in Fig. 13.44(a), it gives equal weight to all values of x(t), 
past and present. Such a circuit has a perfect memory. However, if the 
impulse response is an impulse function, as shown in Fig. 13.44(b), it gives 
no weight to past values of x(t) and the circuit has no memory.

(t 2 5)

vi (t 2 l)

(t 2 10) 0 t

Past (has happened)

Future (will happen)

P
re

se
nt

l

Figure 13.43 ▲ The past, present, and future values 
of the input function.

0
(a)

0

t

1.0

h(t)

(b)

t

1.0

h(t)

Figure 13.44 ▲ Weighting functions. (a) Perfect 
memory. (b) No memory.
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The more memory a circuit has, the more distortion exists between 
the circuit’s input waveform and its output. We can demonstrate this by 
assuming that the circuit has no memory, that is, h(t) = Ad(t), and then 
noting from the convolution integral that

 y(t) = L
t

0
h(l)x(t - l) dl

 = L
t

0
Ad(l)x(t - l) dl

 = Ax(t).

The expression for y(t) shows that, if the circuit has no memory, the out-
put is a scaled replica of the input.

The circuit shown in Example 13.11 illustrates the distortion between 
input and output for a circuit that has some memory. This distortion is 
clear when we plot the input and output waveforms on the same graph, as 
in Fig. 13.45.

13.7  The Transfer Function and 
the Steady-State Sinusoidal 
Response

Once we have computed a circuit’s transfer function, we can use it to find 
the steady-state response to a sinusoidal input. To show this, we assume that

x(t) = A cos (vt + f),

and then we use Eq. 13.8 to find the steady-state solution of y(t). To find 
the Laplace transform of x(t), we first write x(t) as

x(t) = A cos vt cos f - A sin vt sin f,

from which

 X(s) =
(A cos f)s

s2 + v2 -
(A sin f)v

s2 + v2

 =
A(s cos f - v sin f)

s2 + v2 .

Substituting the expression for X(s) into Eq. 13.8 gives the s-domain ex-
pression for the response:

Y(s) = H(s)
A(s cos f - v sin f)

s2 + v2 .

Think about the partial fraction expansion of Y(s). The number of terms 
in the expansion depends on the number of poles of H(s). Because H(s) is 
not specified, we write the expansion of Y(s) as

Y(s) =
K1

s - jv
+

K1
*

s + jv
+ a  terms generated by the poles of H(s).

2
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t (s)
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vo, vi (V)

Response

Excitation

Figure 13.45 ▲ The input and output waveforms for 
Example 13.11.
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The first two terms in the partial fraction expansion corre-
spond to the complex conjugate poles of the sinusoidal input because 
s2 + v2 = 1s - jv2 1s + jv2 . But the terms corresponding to the poles 
of H(s) do not contribute to the steady-state response of y(t), because 
all these poles lie in the left half of the s plane. Consequently, the corre-
sponding time-domain terms approach zero as t increases. Thus, only the 
first two partial fraction terms determine the steady-state response, so we 
only have to calculate a single partial fraction coefficient, K1:

 K1 =
H(s)A(s cos f - v sin f)

s + jv
`
s = jv

 =
H(jv)A(jv cos f - v sin f)

2jv

 =
H(jv)A( cos f + j sin f)

2
=

1
2

 H(jv)Aejf.

In general, H1 jv2  is a complex number, which we can write in polar form as

H(jv) = 0H(jv) 0 eju(v).

We see that the transfer function’s magnitude, 0H1 jv2 0 , and its phase 
angle, u1v2 , vary with the frequency v. Substituting the polar form for 
H(jv) into the equation for K1 and simplifying, we see that the expression 
for K1 becomes

K1 =
A
2

 0H(jv) 0 ej[u(v) + f].

We find the steady-state component for y(t) by inverse-transforming 
the first two terms in the partial fraction expansion of Y(s), ignoring the 
terms generated by the poles of H(s). Thus

SINUSOIDAL STEADY-STATE RESPONSE COMPUTED 
USING A TRANSFER FUNCTION

 yss(t) = A 0H(jv) 0  cos [vt + f + u(v)], (13.11)

which tells us how to find a circuit’s steady-state response to a sinusoidal 
input using the circuit’s transfer function:

• Determine the input sinusoid’s magnitude, A, frequency, v, and phase 
angle, f

• Evaluate the circuit’s transfer function, H(s), for s = jv.
• Transform H(jv) into polar form, with a magnitude 0H(jv) 0  and a 

phase angle u.
• Write the steady-state output as a cosine with the amplitude A 0H(jv) 0 ,  

a phase angle of f + u, and a frequency of v.

Example 13.12 uses a circuit’s transfer function to find its sinusoidal 
steady-state response.
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EXAMPLE 13.12  Using the Transfer Function to Find the Steady-State 
Sinusoidal Response

The circuit from Example 13.9 is shown in Fig. 13.46. 
The sinusoidal source voltage is

vg = 120 cos (5000t + 30°)V.
Find the steady-state expression for vo.

1

2
vg

1

2

vo1 mF
50 mH

250 V

1000 V

Figure 13.46 ▲ The circuit for Example 13.12.

Solution
From Example 13.9,

H(s) =
10001s + 50002

s2 + 6000s + 25 * 106.

The frequency of the voltage source is 5000 rad>s, 
so we evaluate H1 j50002 :

 H1 j50002 =
100015000 + j50002

-25 * 106 + j5000(6000) + 25 * 106

 =
1 + j1

j6
=

1 - j1
6

=
12
6

 l-45°.

Then, from Eq. 13.11,

 voss
=

(120)12

6
 cos15000t + 30° - 45°2

 = 2012 cos15000t - 15°2  V.

Objective 4—Know how to use a circuit’s transfer function to calculate the circuit’s impulse response, unit 
step response, and steady-state response to sinusoidal input

 13.12 The current source in the circuit shown is deliv-
ering 10 cos 4t A. Use the transfer function to 
compute the steady-state expression for vo.

ig

1

2

vo

1 H

2 V

0.1 F

Answer: 44.7cos14t - 63.43°2  V.

 13.13 a) For the circuit shown, find the 
steady-state expression for vo when 
vg = 10 cos 50,000t V.

b) Replace the 50 kΩ resistor with a variable 
resistor and compute the value of resistance 
necessary to cause vo to lead vg by 120°.

2

1

1

2

400 pF

10 kV 10 kV

vg
50 kV

115 V

215 V
1

2

vo

Answer: (a) 10 cos150,000t + 90°2  V;
(b) 28,867.51 Ω.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 13.79 and 13.82.

The relationship between H(s) and H1 jv2  provides a link between 
the time domain and the frequency domain. Using Eq. 13.11, we can find 
the sinusoidal steady-state response of a circuit by evaluating H1 jv2 .  
Theoretically, we can reverse the process; instead of using H(s) to find 
H1 jv2 , we can use H1 jv2  to find H(s). To do so, we determine H1 jv2  
experimentally and then construct H(s) from the data. Once we know H(s), 
we can find the circuit’s response to other inputs. While this experimental 
approach is not always possible, in some cases it does provide a way to find 
H(s) for a circuit whose components and their values are unknown.

The transfer function is also used to find a circuit’s frequency response, 
a concept we introduce in the next chapter.
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13.8  The Impulse Function in Circuit 
Analysis

Circuit analysis uses impulse functions to represent a switching operation 
or because a circuit’s input is an impulsive source. We can use Laplace 
transform methods to determine the impulsive currents and voltages 
created during switching, and to find a circuit’s response to an impul-
sive source. To begin, we create an impulse function with a switching 
operation.

Switching Operations
We use two different circuits to create an impulse function with a switch-
ing operation: a capacitor circuit, and a series inductor circuit.

Capacitor Circuit 
In the circuit shown in Fig. 13.47, the capacitor C1 is charged to an ini-
tial voltage of V0 at the time the switch is closed. The initial charge on 
C2 is zero. We want to find the expression for i(t) as R S 0. Figure 13.48 
shows the s-domain equivalent circuit, and we use Ohm’s law to find the 
s- domain current I:

 I =
V0>s

R + (1>sC1) + (1>sC2)

 =
V0>R

s + (1>RCe)
,

where the equivalent capacitance C1C2> 1C1 + C22  is replaced by Ce.
We inverse-transform the expression for I using Table 12.3 to get

i = aV0

R
 e-t>RCeb  u(t),

which indicates that as R decreases, the initial current 1V0>R2  increases 
and the time constant 1RCe2  decreases. Thus, as R gets smaller, the cur-
rent starts from a larger initial value and then drops off more rapidly. 
Figure 13.49 shows these characteristics of i.

As R approaches zero, the initial value of i approaches infinity and 
the duration of i approaches zero. If the area under the current function is 
independent of R, i approaches an impulse function. Physically, the total 
area under the i versus t curve represents the total charge transferred to C2 
after the switch is closed. Thus

Area = q = L
∞

0-

V0

R
 e-t>RCedt = V0Ce,

so the total charge transferred to C2 equals V0Ce coulombs and is indepen-
dent of R. Thus, as R approaches zero, the current approaches an impulse 
with strength V0Ce; that is,

i S V0Ced(t).

The physical interpretation of this expression says that when R = 0, 
a finite amount of charge is transferred to C2 instantaneously. Set R = 0 
in the circuit of Fig. 13.47 to see why we get an instantaneous transfer of 
charge. With R = 0, closing the switch creates a contradiction: we apply a 

C2C1

i(t)t 5 0

R

1

2

V0

Figure 13.47 ▲ A circuit showing the creation of an 
impulsive current.

1

2

I

R

V0
s

1
sC2

1
sC1

Figure 13.48 ▲ The s-domain equivalent circuit for 
the circuit shown in Fig. 13.47.

R1

R2

R2 , R1V0
R1

V0

R2

0
t

i

Figure 13.49 ▲ The plot of i(t) versus t for two 
 different values of R.
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voltage across a capacitor whose initial voltage is zero. The capacitor volt-
age can change instantaneously only if there is an instantaneous transfer of 
charge. When the switch is closed, the voltage across C2 does not jump to V0 
but to its final value of

v2 =
C1V0

C1 + C2
.

We leave the derivation of v2 to you (see Problem 13.83).
If we set R = 0 at the outset, Laplace transform analysis predicts the 

impulsive current response. Thus,

I =
V0>s

(1>sC1) + (1>sC2)
=

C1C2V0

C1 + C2
= CeV0.

In writing this equation for I, we use the capacitor voltages at t = 0-. The 
inverse transform of I, which is constant, is the constant times the impulse 
function; therefore,

i = CeV0d(t).

Example 13.13 uses Laplace methods to analyze an inductor circuit 
whose output contains an impulse.

EXAMPLE 13.13 A Series Inductor Circuit with an Impulsive Response

The switch in the circuit shown in Fig. 13.50 has 
been closed for a long time. At t = 0 it opens. Use 
Laplace methods to find the output voltage, vo, and 
the current in the 3 H inductor, i1.

1

2

10 V

t 5 0

3 H

100 V

1

2

vo

L1i1
i2

2 H L2

15 V

Figure 13.50 ▲ The circuit for Example 13.13.

Solution
Use Analysis Method 13.1 to construct and analyze 
the s-domain circuit.

Step 1: For t 6 0, the switch is closed, and the in-
ductors behave like short circuits. The current in the 
2 H inductor is zero, since there is no source in that 
part of the circuit. The current in the 3 H inductor is 
100>10 = 10 A.

Step 2: The combination of the dc voltage source 
and the switch is defined by the time-domain func-
tion 100u(t). The Laplace transform of this function 
is 100>s V-s, which labels the voltage source in the 
s-domain circuit in Fig. 13.51.

Step 3: Represent the output voltage and current 
using Vo and I1, respectively, as shown in Fig. 13.51. 
Note that in the s-domain circuit, the current in both 
inductors is the same.

Step 4: The impedance of the resistors is their resis-
tance. The impedance of the inductors is sL. We also 
need to represent the nonzero initial current in the 
3 H inductor using either a series-connected volt-
age source or a parallel-connected current source. 
Here, we choose the voltage source, so the resulting  
s-domain circuit has a single mesh. The voltage source 
has the value LI0 = 3(10) = 30 V-s. The s-domain 
circuit resulting from Steps 1–4 is shown in Fig. 13.51.

1

2

10 V 3s
2 1

30 V-s

100
s

1

2

Vo

I1

2 s

15 V

V

V

V-s

Figure 13.51 ▲ The s-domain equivalent circuit for the cir-
cuit shown in Fig. 13.50.

Step 5: From the circuit in Fig. 13.51, we find Vo  
using voltage division:

Vo =
2s + 15
5s + 25

 a 100
s

+ 30b =
12s2 + 130s + 300

s2 + 5s
.
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Now use Ohm’s law to find I1:

I1 =
1100>s2 + 30

5s + 25
=

6s + 20
s1s + 52 .

Step 6: We will discuss initial and final values in 
this circuit after we find the output voltage and cur-
rent, so for now we skip this step.

Step 7: The expression for Vo is an improper rational 
function, so before we find its partial fraction expan-
sion we must divide numerator by denominator to get

Vo =
12s2 + 130s + 300

s2 + 5s
= 12 +

70s + 300
s1s + 52 .

The second term is a proper rational function of s, 
so we can find the partial fraction expansion:

Vo = 12 +
60
s

+
10

1s + 52 .

2

0

4
6
8

10i1

i2 t

i1, i2 (A)

i1 5 i2 

Figure 13.52 ▲ The inductor currents versus t for 
the circuit shown in Fig. 13.50.

Using Tables 12.1–12.3, we can inverse- Laplace-
transform Vo to get

vo = 12d(t) + 160 + 10e-5t2u(t) V.

The partial fraction expansion for I1 is

I1 =
6s + 20

s1s + 52 =
4
s

+
2

1s + 52 .

Using Table 12.3, we can inverse-Laplace-trans-
form I1 to get

i1 = 14 + 2e-5t2u(t) A.

Do the solutions for the output voltage and current in the circuit of 
Fig. 13.50 make sense? Before the switch is opened, the current in the 3 H  
inductor is 10 A, and the current in the 2 H inductor is 0 A. From the 
 equation for i1 derived in Example 13.13, we know that at t = 0+, the cur-
rent in both inductors is 6 A. This means the current in the 3 H inductor 
changes instantaneously from 10 to 6 A, while the current in the 2 H in-
ductor changes instantaneously from 0 to 6 A. Then, the current decreases 
exponentially from 6 A to a final value of 4 A. This final value is easily ver-
ified from the circuit; that is, it should equal 100>25, or 4 A. Figure 13.52 
shows these characteristics of i1 and i2.

Do these instantaneous jumps in the inductor current make sense in 
terms of the physical behavior of the circuit? First, note that when the 
switch opens in Fig. 13.50, the two inductors are in series. Any impulsive  
voltage appearing across the 3 H inductor must be exactly balanced by 
an impulsive voltage across the 2 H inductor because the sum of the  
impulsive voltages around a closed path must equal zero. Faraday’s law 
states that the induced voltage is proportional to the change in flux link-
age (v = dl>dt). Therefore, the change in flux linkage must sum to zero. 
In other words, the total flux linkage immediately after switching is the 
same as that before switching. For the circuit here, the flux linkage be-
fore switching is

l = L1i1 + L2i2 = 3(10) + 2(0) = 30 Wb@turns.

Immediately after switching, it is

l = (L1 + L2)i(0+) = 5i(0+).

Therefore,

i1(0+) = 30>5 = 6 A.
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Thus, the solution for i1 in Example 13.13 agrees with the principle of the 
conservation of flux linkage.

We now test the validity of vo from Example 13.13. First, we check 
the impulsive term 12d(t). The instantaneous jump of i2 from 0 to  
6 A at t = 0 means the derivative of i2 contains the impulse 6d(t). This 
current impulse results in a 12d(t) impulse in the voltage across the  
2 H inductor. For t 7 0, di2>dt = di1>dt = -10e-5tA>s. The voltage vo 
is the sum of the voltage across the 15 Ω  resistor and the voltage 
across the 2 H inductor:

 vo = 15(4 + 2e-5t) + 2(-10e-5t)

 = (60 + 10e-5t)u(t) V.

This expression agrees with the last two terms of vo from Example 13.13. 
Thus, the expression for vo does make sense in terms of known circuit 
behavior.

We can also check the instantaneous drop from 10 to 6 A in the cur-
rent i1. This drop means the derivative of i1 contains the impulse -4d(t).  
Therefore, the voltage across L1 includes the impulse -12d(t). This 
impulse exactly balances the impulse included in the voltage across 
L2; that is, the sum of the impulsive voltages around a closed path 
equals zero.

Impulsive Sources
Impulse functions can appear in circuit sources as well as circuit outputs. 
These sources are called impulsive sources. An impulsive source creates a 
finite amount of energy in the circuit instantaneously. A mechanical anal-
ogy is striking a bell with an impulsive clapper blow. After the energy has 
been transferred to the bell, the natural response of the bell determines 
the tone emitted (that is, the frequency of the resulting sound waves) and 
the tone’s duration.

In the circuit shown in Fig. 13.53, an impulsive voltage source with a 
strength of V0 volt-seconds is applied to a series connection of a resistor 
and an inductor. When the voltage source is applied, the initial energy in 
the inductor is zero, so the initial current is zero. There is no voltage drop 
across R, so the impulsive voltage source appears directly across L. The 
impulsive voltage across the inductor creates an instantaneous current. 
The current is

i =
1
L

 L
t

0-
V0d(x) dx.

The integral of d(t) over any interval that includes zero is 1, so

i(0+) =
V0

L
 A.

Thus, in an infinitesimal moment, the impulsive voltage source has stored 
energy in the inductor, given by

w =
1
2

 LaV0

L
b

2

=
1
2

V0
2

L
 J.

LV0d(t)

R

1

2

Figure 13.53 ▲ An RL circuit excited by an impul-
sive voltage source.
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The initial current V0>L now decays to zero due to the natural re-
sponse of the circuit; that is,

i =
V0

L
 e-t>tu(t),

where t = L>R. Remember from Chapter 7 that the natural response oc-
curs as passive elements release or store energy. When a circuit is driven 
by an impulsive source, the total response is completely defined by the 
natural response; the duration of the impulsive source is so infinitesimal 
that it does not create a forced response.

We can also derive the inductor current using the Laplace trans-
form method. Figure 13.54 shows the s-domain equivalent of the circuit 
in Fig. 13.53. From this circuit,

I =
V0

R + sL
=

V0>L

s + (R>L)
.

The inverse Laplace transform is

i =
V0

L
 e-(R>L)t =

V0

L
 e-t>tu(t).

Thus, the Laplace transform method gives the correct solution for i Ú 0+.
Finally, we consider the case in which internally generated impulses 

and externally applied impulses occur simultaneously. As we see in 
Example 13.14, the Laplace transform method automatically ensures the 
correct solution for t 7 0+ if inductor currents and capacitor voltages at 
t = 0- are used in constructing the s-domain equivalent circuit and if ex-
ternally applied impulses are represented by their transforms.

sLV0

R

I
1

2

Figure 13.54 ▲ The s-domain equivalent circuit for 
the circuit shown in Fig. 13.53.

EXAMPLE 13.14  A Circuit with Both Internally Generated and Externally 
Applied Impulses

The switch in the circuit shown in Fig. 13.55 has 
been closed for a long time. At t = 0 it opens. Use 
Laplace methods to find the output voltage, vo, and 
the current in the 3 H inductor, i1.

10 V 3 H

100 V

50d(t) V 15 V

2 H

t 5 0

1

2

vo

i1

i2

1

2

1

2

Figure 13.55 ▲ The circuit shown in Fig. 13.50 with an 
impulsive voltage source added in series with the 100 V 
source.

Solution
Note that the circuit in Fig. 13.55 was created from 
the circuit for Example 13.13 (Fig. 13.50) by add-
ing an impulsive voltage source of 50d(t) in se-
ries with the 100 V source. In Example 13.13, we 
found the s-domain circuit that corresponds to the 
time-domain circuit in Fig. 13.50. The s-domain 

circuit is in Fig. 13.51. To find the s-domain circuit 
corresponding to the circuit in Fig. 13.55, we add 
another voltage source in series, whose value is 
ℒ550d(t)6 = 50 V-s. The s-domain equivalent cir-
cuit is shown in Fig. 13.56.

10 V 3s

50

30 V-s

15 V

2s

1

2

Vo

I11

2

1

2

12

100
s

V

 V

V-s

V-s

Figure 13.56 ▲ The s-domain equivalent circuit for the 
 circuit shown in Fig. 13.55.

From this circuit, the expression for I1 is

I1 =
1100>s2 + 50 + 30

5s + 25
=

16s + 20
s1s + 52 .

The partial fraction expansion of I1 is

I1 =
4
s

+
12

s + 5
,
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and the inverse Laplace transform of I1 is

i1 = 14 + 12e-5t2u(t) A.

The expression for Vo is

Vo = 12s + 152I1 =
32s2 + 280s + 300

s1s + 52 ,

which is an improper rational function. Before  
we can find the partial fraction expansion, we  

divide the numerator of Vo by its denominator  
to get

Vo = 32 +
120s + 300
s1s + 52 .

The partial fraction expansion of Vo is then

Vo = 32 +
60
s

+
60

s + 5

and the inverse Laplace transform of Vo is

vo = 32d(t) + 160 + 60e-5t2u(t) V.

As before, we test the results of Example 13.14 to see whether they 
make sense. From the expression for i1, we see that the current in L1 and 
L2 is 16 A at t = 0+. In Example 13.13, at the instant the switch opens, i1 
decreases from 10 to 6 A and i2 increases from 0 to 6 A. Superimposed on 
these changes is a 10 A current in L1 and L2, due to the impulsive voltage 
source; that is,

i1 =
1

3 + 2
 L

t

0-
50d(x)dx = 10 A.

Therefore, i1 increases suddenly from 10 to 16 A, while i2 increases sud-
denly from 0 to 16 A. The final value of both currents is 4 A. Figure 13.57 
shows i1 and i2 graphically.

We can also find the abrupt changes in i1 and i2 without using super-
position. The sum of the impulsive voltages across the 3 H and 2 H induc-
tors equals 50d(t). Thus, the change in flux linkage must sum to 50; that is,

∆l1 + ∆l2 = 50.

Because l = Li, we get

3∆i1 + 2∆i2 = 50.

But because i1 and i2 must be equal after the switch opens,

i1(0-) + ∆i1 = i2(0-) + ∆i2.

Thus,

10 + ∆i1 = 0 + ∆i2.

Solving for ∆i1 and ∆i2 yields

 ∆i1 = 6 A,

 ∆i2 = 16 A.

These expressions agree with the previous check.
Figure 13.57 also indicates that the derivatives of i1 and i2 will contain 

an impulse at t = 0. Specifically, the derivative of i1 will have an impulse 
of 6d(t), and the derivative of i2 will have an impulse of 16d(t). Figure 13.58 
illustrates the derivatives of i1 and i2.

Now let’s turn to the expression for the output voltage, vo, found in 
Example 13.14. The impulsive component 32d(t) agrees with the impulse 

2

0

4
6
8

12
14
16

10i1

i2 t

i1, i2 (A)

i15 i2

Figure 13.57 ▲ The inductor currents versus t for 
the circuit shown in Fig. 13.55.
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Figure 13.58 ▲ The derivatives of i1 and i2.
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Practical Perspective
Surge Suppressors
As mentioned at the beginning of this chapter, voltage surges can 
occur in a circuit that is operating in the sinusoidal steady state. We 
use Laplace transform methods to see how a voltage surge is created 
between the line and neutral conductors of a household circuit when a 
load is switched off during sinusoidal steady-state operation.

Consider the circuit shown in Fig. 13.59, which models a household 
circuit with three loads, one of which is switched off at t = 0. To simplify the 
analysis, we assume that the line-to-neutral voltage, Vo, is 120l0° V1 rms2 ,  
a standard household voltage, and that when the load is switched off at 
t = 0, the value of Vg does not change. After the switch is opened, we can 
construct the s-domain circuit, as shown in Fig. 13.60. Note that because 
the phase angle of the voltage across the inductive load is 0°, the initial 
current through the inductive load is 0. Therefore, only the line inductance 
has a nonzero initial condition, which is modeled in the s-domain circuit as 
a voltage source with the value L/I0, as seen in Fig. 13.60.

Just before the switch is opened at t = 0, each of the loads has a steady-
state sinusoidal voltage with a peak magnitude of 12012 = 169.7 V.  
All of the current in the line from the voltage source divides among the 
three loads. When the switch is opened at t = 0, all of the current in the 
line appears in the remaining resistive load because the inductive load cur-
rent is 0 at t = 0 and the inductor current cannot change instantaneously. 
Therefore, the voltage drop across the remaining loads can experience a 
surge as the line current is directed through the resistive load.

For example, if the initial current in the line is 25 A1 rms2  and the 
impedance of the resistive load is 12 Ω, the voltage drop across the 
resistor surges from 169.7 V to (25)(12)(12) = 424.3 V  when the switch 
is opened. If the resistive load cannot handle this amount of voltage, it 
needs to be protected with a surge suppressor such as the one shown 
at the beginning of the chapter.

SELF-CHECK: Assess your understanding of this Practical Perspective 
by trying Chapter Problems 13.94 and 13.95.

1

2
RaVg I1

I0

I2 RbI3Vo

1

2

t 5 0

jvLa

jvL

Figure 13.59 ▲ Circuit used to introduce a 
 switching surge voltage.

RaVg sLa

L I0

Vo

1

2

2 1

1

2

sL

Figure 13.60 ▲ The circuit in Fig. 13.59, 
 transformed to the s-domain.

16d(t) that characterizes di2>dt at the origin. The term (60e-5t + 60) 
agrees with the fact that for t 7 0+,

vo = 15i2 + 2
di2

dt
= 15i1 + 2

di1

dt
.

We test the impulsive component of di1>dt by noting that it produces 
an impulsive voltage of (3)6d(t), or 18d(t), across L1. This voltage, added to 
32d(t) across L2, gives us 50d(t). Thus, the algebraic sum of the impulsive 
voltages around the mesh is zero.

To summarize, the Laplace transform will correctly predict the impul-
sive currents and voltages created by switching. However, the s-domain 
equivalent circuits must be based on initial conditions at t = 0-, that is, on 
the initial conditions that exist prior to the switching. The Laplace trans-
form will correctly predict the response to impulsive input sources by rep-
resenting these sources in the s domain by their Laplace transforms.

SELF-CHECK: Assess your understanding of the impulse function in 
circuit analysis by trying Chapter Problems 13.90 and 13.91.



 Summary 549

Summary
• We can represent each of the circuit elements as an 

s-domain equivalent circuit by Laplace-transforming 
the voltage-current equation for each element:

• Resistor: V = RI

• Inductor: V = sLI - LI0

• Capacitor: V = 11>sC2I + Vo>s

In these equations, V = ℒ5v6 , I = ℒ5 i6 , I0 is the ini-
tial current through the inductor, and V0 is the initial 
voltage across the capacitor. (See pages 512–513.)

• Using Steps 1–4 in Analysis Method 13.1, we can trans-
form the time-domain circuit into the s domain. Table 
13.1 summarizes the equivalent circuits for resistors, in-
ductors, and capacitors in the s domain. (See page 514.)

• Solve the s-domain equivalent circuit in Analysis 
 Method 13.1, Step 5, by writing algebraic equations us-
ing the circuit analysis techniques from resistive circuits. 
Step 6 checks the resulting s-domain voltages and cur-
rents using the initial- and final-value theorems, where 
possible. Step 7 finds the partial fraction expansion for 
the s-domain voltages and currents, and uses Table 12.3 
to find the inverse Laplace transforms. (See page 515.)

• Circuit analysis in the s domain is particularly advanta-
geous for solving transient response problems in linear 
lumped parameter circuits when initial conditions are 
known. It is also useful for problems involving multiple 
simultaneous mesh-current or node-voltage equations 
because it reduces problems to algebraic rather than 
differential equations. (See page 517.)

• The transfer function is the s-domain ratio of a circuit’s 
output to its input. It is defined as

H(s) =
Y(s)

X(s)
,

where Y(s) is the Laplace transform of the output 
 signal, and X(s) is the Laplace transform of the input 
signal. (See page 528.)

• The partial fraction expansion of the product H(s)X(s) 
yields a term for each pole of H(s) and X(s). The H(s) 

terms correspond to the transient component of the 
total response, while the X(s) terms correspond to the 
steady-state component. (See page 531.)

• If a circuit is driven by a unit impulse, x(t) = d(t), then 
the response of the circuit equals the inverse Laplace trans-
form of the transfer function, y(t) = ℒ-15H(s)6  =  h(t).  
( See pages 532–533.)

• When a circuit is time-invariant, delaying the input by a 
seconds delays the output by a seconds. (See page 532.)

• The output of a circuit, y(t), can be computed by con-
volving the input, x(t), with the impulse response of the 
circuit, h(t):

y(t) = h(t) *x(t) = L
t

0
h1l2x1 t - l2  dl

       = x(t) *h(t) = L
t

0
x1l2h1 t - l2  dl.

A graphical interpretation of the convolution integral usu-
ally helps you to compute y(t). (See pages 533 and 536.)

• We can use the transfer function of a circuit to compute 
its steady-state response to a sinusoidal source. To do 
so, make the substitution s = jv in H(s) and represent 
the resulting complex number as a magnitude and phase 
angle. If

 x(t) = A cos1vt + f2 ,

 H1 jv2 = 0H1 jv2 0 eju1v2,

then

yss(t) = A 0H1 jv2 0  cos[vt + f + u1v2 ].

(See page 540.)

• Laplace transform analysis correctly predicts impulsive 
currents and voltages arising from switching and impul-
sive sources. You must ensure that the s-domain equiv-
alent circuits are based on initial conditions prior to the 
switching, that is, at t = 0-. (See page 548.)
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Section 13.1

 13.1  Derive the s-domain equivalent circuit shown in 
Fig. 13.4 by expressing the inductor current i as a 
function of the terminal voltage v and then finding 
the Laplace transform of this time-domain integral 
equation.

 13.2  Find the Norton equivalent of the circuit shown in 
Fig. 13.3.

 13.3  Find the Thévenin equivalent of the circuit shown in 
Fig. 13.7.

Section 13.2

 13.4  A 500 Ω resistor, a 10.5 mH inductor and a 0.1 mF 
capacitor are in series.

a) Express the s-domain impedance of this series 
combination as a rational function.

b) Give the numerical values of the poles and 
 zeroes of the impedance.

 13.5  An 8 kΩ resistor, a 20 mH inductor and a 50.5 pF 
capacitor are in parallel.

a) Express the s-domain impedance of this parallel 
combination as a rational function.

b) Give the numerical values of the poles and 
 zeroes of the impedance.

 13.6  A 300 Ω resistor is in series with a 15.5 mF capacitor. 
This series combination is in parallel with a 500 mH 
inductor.

a) Express the equivalent s-domain impedance of 
these parallel branches as a rational function.

b) Determine the numerical values of the poles and 
zeroes.

 13.7  Find the poles and zeroes of the impedance seen 
looking into the terminals a,b of the circuit shown 
in Fig. P13.7.

Figure P13.7

Zab

2 F
a

b

2 H2 V 2 V

 13.8  Find the poles and zeroes of the impedance seen 
looking into the terminals a,b of the circuit shown 
in Fig. P13.8.

Figure P13.8

2 H

a

b

2 H 2 F

2 V

2 V

Section 13.3

 13.9  The switch in the circuit shown in Fig. P13.9 has 
been in position x for a long time. At t = 0, the 
switch moves instantaneously to position y.

a) Construct an s-domain circuit for t 7 0.

b) Find I o.

c) Find io.

Figure P13.9

75 V
1
2

x y500 V 150 V

io

300.5mF
300 mH

t 5 0

 13.10  The switch in the circuit in Fig. P13.10 has been 
in position x for a long time. At t = 0, the switch 
moves instantaneously to position y.

a) Find io for t Ú 0.

b) Find vo for t Ú 0.

Figure P13.10
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 13.11  Find Vo and vo in the circuit shown in Fig. P13.11 if 
the initial energy is zero and the switched is closed 
at t = 0.

Figure P13.11
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 13.16  There is no energy stored in the circuit in Fig. P13.16 
at t = 0-.

a) Use the mesh-current method to find io.

b) Find the time-domain expression for vo.

c) Do your answers in (a) and (b) make sense in 
terms of known circuit behavior? Explain.

Figure P13.16
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vo
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 13.17  There is no energy stored in the circuit in Fig. P13.17 
at t = 0-.

a) Find Vo.

b) Find vo.

c) Does your solution for vo make sense in terms of 
known circuit behavior? Explain.

Figure P13.17
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 13.18  There is no energy stored in the circuit in 
Fig. P13.18 at the time the voltage source is turned 
on, and  vg = 400u(t) V.

a) Find Vo and Io.

b) Find vo and io.

c) Do your answers in (a) and (b) make sense in 
terms of known circuit behavior? Explain.

Figure P13.18
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 13.19  There is no initial energy in the circuit in Fig. P13.19 
before the switch closes at t = 0. Find io(t) for t Ú 0.
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 13.12  Repeat Problem 13.11 if the initial voltage on the 
capacitor is 120 V positive at the upper terminal.

 13.13  The make-before-break switch in the circuit in 
Fig. P13.13 has been in position a for a long time. At 
t = 0, it moves instantaneously to position b. Find 
vo for t Ú 0.

Figure P13.13
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2

 13.14  The switch in the circuit in Fig. P13.14 has been 
closed for a long time before opening at t = 0.

a) Construct the s-domain equivalent circuit for 
t 7 0.

b) Find Io.

c) Find io for t Ú 0.

Figure P13.14 
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 13.15  There is no energy stored in the circuit in Fig. P13.15 
at the time the sources are energized.

a) Find I1(s) and I2(s).

b) Use the initial- and final-value theorems to check 
the initial- and final-values of i1(t) and i2(t).

c) Find i1(t) and i2(t) for t Ú 0.

Figure P13.15
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Figure P13.24
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 13.25  The initial energy in the circuit in Fig. P13.25 is zero. 
The ideal voltage source is 600u(t) V.

a) Find Vo(s).

b) Use the initial- and final-value theorems to find 
vo(0+) and vo(∞).

c) Do the values obtained in (b) agree with known 
circuit behavior? Explain.

d) Find vo(t).

Figure P13.25
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 13.26  The switch in the circuit in Fig. P13.26 has been 
closed for a long time before opening at t = 0. Find 
vo for t Ú 0.

Figure P13.26
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 13.27  The switch in the circuit seen in Fig. P13.27 has 
been in position a for a long time. At t = 0, it moves 
 instantaneously to position b.

a) Find Vo.

b) Find vo.

Figure P13.27 
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Figure P13.19 
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 13.20  There is no initial energy in the circuit in Fig. P13.20 
before the switch closes at t = 0. Find vo(t) for t Ú 0.

Figure P13.20 
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1 mF
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 13.21  a) Find the s-domain expression for Vo in the circuit 
in Fig. P13.21.

b) Use the s-domain expression derived in (a) to 
predict the initial- and final-values of vo.

c) Find the time-domain expression for vo.

Figure P13.21 
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 13.22  There is no energy stored in the circuit in Fig. P13.22 
at the time the switch is closed.

a) Find vo for t Ú 0.

b) Does your solution make sense in terms of 
known circuit behavior? Explain.

Figure P13.22 
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 13.23  Find the time-domain expression for the current 
in the capacitor in Fig. 13.21. Assume the reference 
 direction for iC is down.

 13.24  Find vo in the circuit shown in Fig. P13.24 if 
ig = 20u(t) mA. There is no energy stored in the 
circuit at t = 0.
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Figure P13.30 
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 13.31  There is no energy stored in the circuit in Fig. P13.31 
at the time the current source is energized.

a) Find Ia and Ib.

b) Find ia and ib.

c) Find Va, Vb, and Ic.

d) Find va, vb, and vc.

e) Assume a capacitor will break down whenever 
its terminal voltage is 1000 V. How long after the 
current source turns on will one of the capacitors 
break down?

Figure P13.31
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 13.32  The switch in the circuit shown in Fig. P13.32 has been 
open for a long time. The voltage of the sinusoidal 
source is vg = Vm sin (vt + f). The switch closes at 
t = 0. Note that the angle f in the voltage expression 
determines the value of the voltage at the moment 
when the switch closes, that is, vg(0) = Vm sin  f.

a) Use the Laplace transform method to find i for 
t 7 0.

b) Using the expression derived in (a), write the 
 expression for the current after the switch has 
been closed for a long time.

c) Using the expression derived in (a), write the 
 expression for the transient component of i.

d) Find the steady-state expression for i using the 
phasor method. Verify that your expression is 
equivalent to that obtained in (b).

e) Specify the value of f so that the circuit pass-
es directly into steady-state operation when the 
switch is closed.
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 13.28  There is no energy stored in the circuit in Fig. P13.28 
at the time the current source turns on. Given that 
ig = 100u(t) A:

a) Find Io(s).

b) Use the initial- and final-value theorems to find 
io(0+) and io(∞).

c) Determine if the results obtained in (b) agree 
with known circuit behavior.

d) Find io(t).

Figure P13.28
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 13.29  There is no energy stored in the circuit in Fig.  P13.29 
at the time the current source is energized.

a) Find Ia and Ib.

b) Find ia and ib.

c) Find Va, Vb, and Vc.

d) Find va, vb, and vc.

e) Assume a capacitor will break down whenever 
its terminal voltage is 1000 V. How long after the 
current source turns on will one of the capacitors 
break down?

Figure P13.29
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 13.30  The switch in the circuit seen in Fig. P13.30 has been 
in position a for a long time before moving instanta-
neously to position b at t = 0.

a) Construct the s-domain equivalent circuit for 
t 7 0.

b) Find V1 and v1.

c) Find V2 and v2.
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Figure P13.36 
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 13.37  There is no energy stored in the circuit in Fig. P13.37 
at the time the switch is closed.

a) Find I1.

b) Use the initial- and final-value theorems to find 
i1(0+) and i1(∞).

c) Find i1.

Figure P13.37
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 13.38  Find vo in the circuit in Fig. P13.38 if the polarity dot 
on the 20 H coil is at the top.

 13.39  The magnetically coupled coils in the circuit seen in 
Fig. P13.39 carry initial currents of 300 and 200 A, as 
shown.

a) Find the initial energy stored in the circuit.

b) Find I1 and I2.

c) Find i1 and i2.

d) Find the total energy dissipated in the 240 and 
540 Ω resistors.

e) Repeat (a)–(d), with the dot on the 720 mH 
 inductor at the lower terminal.

Figure P13.39
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 13.40  In the circuit in Fig. P13.40, switch 1 closes at t = 0, 
and the make-before-break switch moves instanta-
neously from position a to position b.

a) Construct the s-domain equivalent circuit for 
t 7 0.

b) Find I1.
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Figure P13.32
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 13.33  Using the expression for capacitor voltage found 
in Example 13.6, show that the capacitor current in 
Fig. 13.20 is positive for 0 6 t 6 200 ms and negative 
for t 7 200 ms. Also show that at 200 ms, the current 
is zero and that this corresponds to when dvC>dt is 
zero.

 13.34  There is no energy stored in the circuit in Fig. P13.34 
at the time the voltage source is energized.

a) Find Vo, Io, and IL.

b) Find vo, io, and iL for t Ú 0.

Figure P13.34
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 13.35  The switch in the circuit in Fig. P13.35 has been 
in position a for a long time. At t = 0, the switch 
moves instantaneously to position b.

a) Construct the s-domain circuit for t 7 0.

b) Find Vo.

c) Find IL.

d) Find vo for t 7 0.

e) Find iL for t Ú 0.

Figure P13.35
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 13.36  The two switches in the circuit shown in Fig. P13.36 
operate simultaneously. There is no energy stored in 
the circuit at the instant the switches close. Find i(t) for 
t Ú 0 +  by first finding the s-domain Thévenin equiva-
lent of the circuit to the left of the terminals a, b.
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(b)  vo, and (c) how long it takes to saturate the 
 operational amplifier.

Figure P13.44
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 13.45  The op amp in the circuit shown in Fig. P13.45 is ide-
al. There is no energy stored in the circuit at the time 
it is energized. If vg = 5000tu(t) V, find (a) Vo, (b) 
vo, (c) how long it takes to saturate the operation-
al amplifier, and (d) how small the rate of increase 
in vg must be to prevent saturation.

Figure P13.45
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 13.46  The op amp in the circuit shown in Fig. P13.46 is 
ideal. There is no energy stored in the capacitors at 
the instant the circuit is energized.
a) Find vo if vg1 = 20u(t) V and vg2 = 16u(t) V.

b) How many milliseconds after the two voltage 
sources are turned on does the op amp saturate?

Figure P13.46 
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c) Use the initial- and final-value theorems to 
check the initial and final values of i1.

d) Find i1 for t Ú 0+.

Figure P13.40
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 13.41  The make-before-break switch in the circuit seen in 
Fig. P13.41 has been in position a for a long time. At 
t = 0, it moves instantaneously to position b. Find io 
for t Ú 0.

Figure P13.41
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 13.42  The switch in the circuit seen in Fig. P13.42 has been 
closed for a long time before opening at t = 0. Use 
the Laplace transform method of analysis to find vo.

Figure P13.42
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 13.43  There is no energy stored in the circuit seen in 
Fig.  P13.43 at the time the two sources are energized.

a) Use the principle of superposition to find Vo.

b) Find vo for t 7 0.

Figure P13.43
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 13.44  The op amp in the circuit seen in Fig. P13.44 is  ideal. 
There is no energy stored in the capacitors at the 
time the circuit is energized. Determine (a) Vo, 
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 13.50  Find the numerical expression for the transfer func-
tion (Vo>Vi) of each circuit in Fig. P13.50 and give 
the numerical value of the poles and zeros of each 
transfer function.

Figure P13.50
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 13.51 a) Find the transfer function H(s) = Vo>Vi for the 
circuit shown in Fig. P13.51. Identify the poles 
and zeros for this transfer function.

b) Find three components from Appendix H which 
when used in the circuit of Fig. P13.51 will result in 
a transfer function with two poles that are distinct 
real numbers. Calculate the values of the poles.

c) Find three components from Appendix H which 
when used in the circuit of Fig. P13.51 will result 
in a transfer function with two poles, both with 
the same value. Calculate the value of the poles.

d) Find three components from Appendix H which 
when used in the circuit of Fig. P13.51 will re-
sult in a transfer function with two poles that are 
complex conjugate complex numbers. Calculate 
the values of the poles.

Figure P13.51

R vovi
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 13.52  Repeat Problem 13.51 for the circuit in Fig. P13.52. 
In parts (b)—(d), let L = 10 mH and C = 1 mF, and 
use one or two resistors from Appendix H.
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 13.47  Find vo(t) in the circuit shown in Fig. P13.47 if the 
ideal op amp operates within its linear range and 
vg = 16u(t) mV.

Figure P13.47
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 13.48 a) Find the transfer function H(s) = Vo>Vi for the 
circuit shown in Fig. P13.48(a).

b) Find the transfer function H(s) = Vo>Vi for the 
circuit shown in Fig. P13.48(b).

c) Create two different circuits that have the trans-
fer function H(s) = Vo>Vi = s>(s + 10,000). 
Use components selected from Appendix H and 
Figs. P13.48(a) and (b).

Figure P13.48
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Sections 13.4–13.5

 13.49  a) Find the transfer function H(s) = Vo>Vi for the 
circuit shown in Fig. P13.49(a).

b) Find the transfer function H(s) = Vo>Vi for the 
circuit shown in Fig. P13.49(b).

c) Create two different circuits that have the trans-
fer function H(s) = Vo>Vi = 1000>(s + 1000). 
Use components selected from Appendix H and 
Figs. P13.49(a) and (b).

Figure P13.49
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Figure P13.55
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 13.56  The operational amplifier in the circuit in Fig. P13.56 
is ideal.

a) Find the numerical expression for the transfer 
function H(s) = Vo>Vg.

b) Give the numerical value of each zero and pole 
of H(s).

c) Use the transfer function to find the unit impulse 
response and unit step response for the circuit in 
Fig. P13.56.

Figure P13.56 
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 13.57  There is no energy stored in the circuit in Fig. P13.57 
at the time the switch is opened. The sinusoidal cur-
rent source is generating the signal 25 cos 200t mA. 
The response signal is the current io.

a) Find the transfer function Io>Ig.

b) Find Io(s).

c) Describe the nature of the transient component 
of io(t) without solving for io(t).

d) Describe the nature of the steady-state compo-
nent of io(t) without solving for io(t).

e) Verify the observations made in (c) and (d) by 
finding io(t).

Figure P13.57
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Figure P13.52
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 13.53 a) Find the numerical expression for the transfer 
function H(s) = Vo>Vi  for the circuit in Fig. P13.53.

b) Give the numerical value of each pole and zero 
of H(s).

Figure P13.53
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 13.54  The operational amplifier in the circuit in Fig. P13.54 
is ideal.

a) Derive the numerical expression of the trans-
fer function H(s) = Vo>Vg for the circuit in 
Fig. P13.54.

b) Give the numerical value of each pole and zero 
of H(s).

c) Use the transfer function to find the unit impulse 
response for the circuit in Fig. P13.54.

Figure P13.54
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 13.55  The operational amplifier in the circuit in Fig. P13.55 
is ideal.

a) Find the numerical expression for the transfer 
function H(s) = Vo>Vg.

b) Give the numerical value of each zero and pole 
of H(s).

c) Use the transfer function to find the unit step 
 response for the circuit in Fig. P13.55.
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 13.62  Interchange the inductor and resistor in Problem 13.61 
and again use the convolution integral to find vo.

 13.63 a) Use the convolution integral to find the  output 
voltage of the circuit in Fig. P13.52(a) if the 
 input voltage is the rectangular pulse shown in 
Fig.  P13.63.

b) Sketch vo(t) versus t for the time interval 
0 … t … 100 ms.

Figure P13.63
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 13.64 a) Repeat Problem 13.63, given that the resistor 
in the circuit in Fig. P13.52(a) is decreased to 
200 Ω.

b) Does decreasing the resistor increase or  decrease 
the memory of the circuit?

c) Which circuit comes closer to transmitting a 
replica of the input voltage?

 13.65 a) Given y(t) = h(t) * x(t), find y(t) when h(t) 
and x(t) are the rectangular pulses shown in 
Fig. P13.65(a).

b) Repeat (a) when h(t) changes to the rectangular 
pulse shown in Fig. P13.65(b).

c) Repeat (a) when h(t) changes to the rectangular 
pulse shown in Fig. P13.65(c).

d) Sketch y(t) versus t for (a)–(c) on a single graph.

e) Do the sketches in (d) make sense? Explain.

Figure P13.65
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 13.58  a) Find the transfer function Io>Ig as a function of 
m for the circuit seen in Fig. P13.58.

b) Find the largest value of m that will produce a 
bounded output signal for a bounded input  signal.

c) Find io for m = -3, 0, 4, 5, and 6 if ig = 5u(t) A.

Figure P13.58
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 13.59  In the circuit of Fig. P13.59 io is the output signal and 
vg is the input signal. Find the poles and zeros of the 
transfer function, assuming there is no initial energy 
stored in the linear transformer or in the  capacitor.

Figure P13.59
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 13.60 The switch in the circuit in Fig. P13.60 has been in 
position a for a long time. At t = 0, it moves instan-
taneously from a to b.
a) Construct the s-domain circuit for t 7 0. 
b) Find Vo(s).
c) Find vo(t) for t Ú 0.

Figure P13.60
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Section 13.6

 13.61  A rectangular voltage pulse vi[u(t) - u(t - 1)] V is 
applied to the circuit in Fig. P13.61. Use the convo-
lution integral to find vo.

Figure P13.61
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a) Use the convolution integral to derive the ex-
pressions for the output voltage.

b) Sketch the output voltage over the interval 0 
to 15 s.

c) Repeat parts (a) and (b) if the area under the 
voltage impulse response stays the same but the 
width of the impulse response narrows to 4 s.

d) Which output waveform is closer to replicating 
the input waveform: (b) or (c)? Explain.

Figure P13.68
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 13.69  Use the convolution integral to find vo in the circuit 
seen in Fig. P13.69 if vi = 75u(t) V.

Figure P13.69 
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 13.70 a) Assume the voltage impulse response of a circuit is

h(t) = e0, t 6 0;
10e-4t, t Ú 0.

Use the convolution integral to find the output 
voltage if the input signal is 10u(t) V.

b) Repeat (a) if the voltage impulse response is

h(t) = •
0, t 6 0;
10(1 - 2t), 0 … t … 0.5 s;
0, t Ú 0.5 s.

c) Plot the output voltage versus time for (a) and 
(b) for 0 … t … 1 s.

 13.71 a) Use the convolution integral to find vo in the 
 circuit in Fig. P13.71(a) if ig is the pulse shown in 
Fig. P13.71(b).

b) Use the convolution integral to find io.

c) Show that your solutions for vo and io 
are consistent by calculating vo and io at 
100- ms, 100+ ms, 200- ms, and 200+ ms.

 13.66 a) Find h(t) * x(t) when h(t) and x(t) are the rectan-
gular pulses shown in Fig. P13.66(a).

b) Repeat (a) when x(t) changes to the rectangular 
pulse shown in Fig. P13.66(b).

c) Repeat (a) when h(t) changes to the rectangular 
pulse shown in Fig. P13.66(c).

Figure P13.66
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 13.67  The voltage impulse response of a circuit is 
shown in Fig. P13.67(a). The input signal to the 
circuit is the  rectangular voltage pulse shown in 
Fig. P13.67(b).

a) Derive the equations for the output voltage. 
Note the range of time for which each equation 
is applicable.

b) Sketch vo for -1 … t … 34 s.

Figure P13.67
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 13.68  Assume the voltage impulse response of a circuit 
can be modeled by the triangular waveform shown 
in Fig. P13.68. The voltage input signal to this circuit 
is the step function 10u(t) V.
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 13.74 a) Find the impulse response of the circuit seen in 
Fig. P13.74 if vg is the input signal and vo is the 
output signal.

b) Assume that the voltage source has the wave-
form shown in Fig. P13.73(b). Use the convolu-
tion integral to find vo.

c) Sketch vo for 0 … t … 2 s.

d) Does vo have the same waveform as vg? Why or 
why not?

Figure P13.74
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 13.75  The current source in the circuit shown in 
Fig. P13.75(a) is generating the waveform shown in 
Fig. P13.75(b). Use the convolution integral to find 
vo at t = 5 ms.

Figure P13.75
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 13.76  The sinusoidal voltage pulse shown in Fig. P13.76(a) 
is applied to the circuit shown in Fig. P13.76(b). Use 
the convolution integral to find the value of vo at 
t = 75 ms.

Figure P13.76
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Figure P13.71
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 13.72  The input voltage in the circuit seen in Fig. P13.72 is

vi = 5[u(t) - u(t - 0.5)] V.

a) Use the convolution integral to find vo.

b) Sketch vo for 0 … t … 1 s.

Figure P13.72
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 13.73 a) Find the impulse response of the circuit shown 
in Fig. P13.73(a) if vg is the input signal and vo is 
the output signal.

b) Given that vg has the waveform shown in 
Fig. P13.73(b), use the convolution integral to 
find  vo.

c) Does vo have the same waveform as vg? Why or 
why not?

Figure P13.73
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 13.81  The transfer function for a linear time-invariant 
 circuit is

H(s) =
Io

Ig
=

125(s + 400)

s(s2 + 200s + 104)
.

If ig = 80 cos 500t A, what is the steady-state ex-
pression for io?

 13.82  When an input voltage of 30u(t) V is applied to a 
circuit, the response is known to be

vo = (50e-8000t - 20e-5000t)u(t) V.

What will the steady-state response be if 
vg = 120 cos 6000 t V?

Section 13.8

 13.83  Show that after V0Ce coulombs are transferred 
from C1 to C2 in the circuit shown in Fig. 13.47 
(with R = 0), the voltage across each capaci-
tor is C1V0>(C1 + C2). (Hint: Use the conserva-
tion-of-charge principle.)

 13.84  The voltage source in the circuit in Example 13.9 is 
changed to a unit impulse; that is, vg = d(t).

a) How much energy does the impulsive voltage 
source store in the capacitor?

b) How much energy does it store in the inductor?

c) Use the transfer function to find vo(t).

d) Show that the response found in (c) is  identical 
to the response generated by first charging 
the capacitor to 1000 V and then releasing the 
charge to the circuit, as shown in Fig. P13.84.

Figure P13.84
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 13.85  There is no energy stored in the circuit in Fig. P13.85 
at the time the impulsive voltage is applied.

a) Find vo(t) for t Ú 0.

b) Does your solution make sense in terms of 
known circuit behavior? Explain.

Figure P13.85
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 13.77 a) Show that if y(t) = h(t) * x(t), then 

Y(s) = H(x)X(s).

b) Use the result given in (a) to find f(t) if

F(s) =
a

s(s + a)2.

Section 13.7

 13.78  The operational amplifier in the circuit seen in 
Fig. P13.78 is ideal and is operating within its linear 
region.

a) Calculate the transfer function Vo>Vg.

b) If vg = cos 3000t V, what is the steady-state 
 expression for vo?

Figure P13.78
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 13.79  The op amp in the circuit seen in Fig. P13.79 is ideal.

a) Find the transfer function Vo>Vg.

b) Find vo if vg = 0.6 u(t) V.

c) Find the steady-state expression for vo if 
vg = 2 cos 10,000t V.

Figure P13.79
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 13.80  The transfer function for a linear time-invariant 
 circuit is

H(s) =
Vo

Vg
=

25(s + 8)

s2 + 60s + 150
 .

If vg = 10 cos 20t V, what is the steady-state ex-
pression for vo?
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Figure P13.90 
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 13.91  There is no energy stored in the circuit in Fig. P13.91 
at the time the impulse voltage is applied.

a) Find i1 for t Ú 0+.

b) Find i2 for t Ú 0+.

c) Find vo for t Ú 0+.

d) Do your solutions for i1, i2, and vo make sense in 
terms of known circuit behavior? Explain.

Figure P13.91
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 13.92  The switch in the circuit in Fig. P13.92 has been 
in position a for a long time. At t = 0, the switch 
moves to position b. Compute (a) v1(0-); (b) v2(0-); 
(c) v3(0-); (d) i(t); (e) v1(0 + ); (f) v2(0 + ); and 
(g) v3(0 + ).

Figure P13.92 
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 13.93  There is no energy stored in the circuit in Fig. P13.93 
at the time the impulsive current is applied.

a) Find vo for t Ú 0+.

b) Does your solution make sense in terms of 
known circuit behavior? Explain.

Figure P13.93
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 13.86  The inductor L1 in the circuit shown in Fig. P13.86 
is carrying an initial current of r A at the instant 
the switch opens. Find (a) v(t); (b) i1(t); (c) i2(t); and 
(d) l(t), where l(t) is the total flux linkage in the 
circuit.

Figure P13.86
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 13.87 a) Let R S ∞  in the circuit shown in Fig. P13.86, 
and use the solutions derived in Problem 13.86 
to find v(t), i1(t), and i2(t).

b) Let R = ∞  in the circuit shown in Fig. P13.86 
and use the Laplace transform method to find 
v(t), i1(t), and i2(t).

 13.88  The parallel combination of R2 and C2 in the circuit 
shown in Fig. P13.88 represents the input circuit to a 
cathode-ray oscilloscope (CRO). The parallel combi-
nation of R1 and C1 is a circuit model of a compensat-
ing lead that is used to connect the CRO to the source. 
There is no energy stored in C1 or C2 at the time when 
the 10 V source is connected to the CRO via the com-
pensating lead. The circuit values are C1 = 4 pF, 
C2 = 16 pF, R1 = 1.25 MΩ, and R2 = 5 MΩ.

a) Find vo.

b) Find io.

c) Repeat (a) and (b) given C1 is changed to 64 pF.

Figure P13.88
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 13.89  Show that if R1C1 = R2C2 in the circuit shown in 
Fig. P13.92, vo will be a scaled replica of the source 
voltage.

 13.90  The switch in the circuit in Fig. P13.90 has been 
closed for a long time. The switch opens at t = 0. 
Computer (a) i1(0-); (b) i1(0 + ); (c) i2(0-); (d) i2(0 + ); 
(e) i1(t); (f) i2(t); and (g) v(t).
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b) Using a computer program of your choice, plot  
vo(t) vs. t for 0 … t … 20 ms.

c) Compare the disturbance in the voltage in part (a) 
with that obtained in part (c) of Problem 13.94.

 13.96  The purpose of this problem is to show that the 
line-to-neutral voltage in the circuit in Fig. 13.59 
can go directly into steady state if the load Rb is 
disconnected from the circuit at precisely the 
right time. Let vo = Vm cos (120pt - u) V, where 
Vm = 12012. Assume vg does not change after Rb 
is disconnected.

a) Find the value of u (in degrees) so that vo goes 
directly into steady-state operation when the 
load Rb is disconnected.

b) For the value of u found in part (a), find vo(t) for 
t Ú 0.

c) Using a computer program of your choice, plot 
on a single graph, for -10 ms … t … 10 ms, vo(t) 
before and after load Rb is disconnected.

PRACTICAL
PERSPECTIVE

Sections 13.1–13.8

 13.94  Assume the line-to-neutral voltage Vo in the 60 Hz 
circuit of Fig. 13.59 is 120l0° V (rms). Load Ra is 
absorbing 1200 W; load Rb is absorbing 1800 W; and 
the inductive load is absorbing 350 magnetizing 
VAR. The inductive reactance of the line is 1 Ω. As-
sume Vg does not change after the switch opens.

a) Calculate the initial value of i2(t) and io(t).

b) Find Vo, vo(t), and vo(0+) using the s-domain cir-
cuit of Fig. 13.60.

c) Test the steady-state component of vo using pha-
sor domain analysis.

d) Using a computer program of your choice, plot  
vo vs. t for 0 … t … 20 ms.

 13.95  Assume the switch in the circuit in Fig. 13.59 opens 
at the instant the sinusoidal steady-state voltage vo is 
zero and going positive, i.e., vo = 12012 sin 120pt V.

a) Find vo(t) for t Ú 0.

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE
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CHAPTER 

Introduction to Frequency 
Selective Circuits
Up to this point in our analysis of circuits with sinusoidal sources, 
the source frequency has been held constant. In this chapter, we 
analyze the effect of varying source frequency on circuit voltages 
and currents. The result of this analysis is the frequency response 
of a circuit.

We’ve seen in previous chapters that a circuit’s response de-
pends on the types of elements in the circuit, the way the ele-
ments are connected, and the element impedances. Varying the 
frequency of a sinusoidal source does not change the element 
types or their connections, but it does change the capacitor and 
inductor impedances because these impedances are functions of 
frequency.

We can design circuits whose output signals reside within 
a desired frequency range, excluding all other frequencies that 
appear in the circuit’s input. Such circuits are called frequency- 
selective circuits. Many devices that communicate via electric sig-
nals, such as telephones, radios, televisions, and satellites, employ 
frequency-selective circuits.

Frequency-selective circuits are also called filters because 
they filter out certain input signals on the basis of frequency. Note 
that no practical frequency-selective circuit can perfectly or com-
pletely filter out selected frequencies. Rather, filters attenuate—
that is, weaken or lessen the effect of—any input signals with 
 frequencies outside the desired frequency band. For example, 
your home stereo system may have a graphic equalizer. Each band 
in the graphic equalizer is a filter that amplifies sounds  (audible 
frequencies) in the frequency range of the band and attenuates 
frequencies outside of that band. Thus, the graphic equalizer 
 enables you to change the sound volume in each frequency band.

We begin this chapter by analyzing circuits from each of the 
four major categories of filters: low pass, high pass, band pass, 
and band reject. The transfer function of a circuit is the starting 
point for the frequency response analysis. Pay close attention to 
the similarities among the transfer functions of circuits that per-
form the same filtering function. We will employ these similari-
ties when designing filter circuits in Chapter 15.

14.1 Some Preliminaries p. 566

14.2 Low-Pass Filters p. 567

14.3 High-Pass Filters p. 573

14.4 Bandpass Filters p. 578

14.5 Bandreject Filters p. 588

1 Know the RL and RC circuit configurations 
that act as low-pass filters and be able to 
design RL and RC circuit component val-
ues to meet a specified cutoff frequency.

2 Know the RL and RC circuit configurations 
that act as high-pass filters and be able to 
design RL and RC circuit component val-
ues to meet a specified cutoff frequency.

3 Know the RLC circuit configurations that 
act as bandpass filters, understand the 
definition of and relationship among the 
center frequency, cutoff frequencies, 
bandwidth, and quality factor of a band-
pass filter, and be able to design RLC 
circuit component values to meet design 
specifications.

4 Know the RLC circuit configurations that 
act as bandreject filters, understand the 
definition of and relationship among the 
center frequency, cutoff frequencies, band-
width, and quality factor of a band 
reject filter, and be able to design RLC 
circuit component values to meet design 
specifications.

CHAPTER OBJECTIVES



Practical Perspective
Pushbutton Telephone Circuits
A pushbutton telephone produces tones that you hear 
when you press a button. You may have wondered about 
these tones. How are they used to tell the telephone sys-
tem which button was pushed? Why are tones used at 
all? Why do the tones sound musical? How does the 
phone system tell the difference between button tones 
and the normal sounds of people talking or singing?

The telephone system was designed to handle audio 
signals—those with frequencies between 300 Hz and 3 
kHz. Thus, all signals from the system to the user have to 
be audible—including the dial tone and the busy signal. 
Similarly, all signals from the user to the system have to 
be audible, including the signal that the user has pressed 

a button. It is important to distinguish button signals 
from the normal audio signal, so a dual-tone-multiple- 
frequency (DTMF) design is employed. When a number 
button is pressed, a unique pair of sinusoidal tones with 
very precise frequencies is sent by the phone to the tele-
phone system. The DTMF frequency and timing specifica-
tions make it unlikely that a human voice could  produce 
the exact tone pairs, even if the person were trying. In 
the central telephone facility, electric circuits monitor the 
audio signal, listening for the tone pairs that signal a num-
ber. In the Practical Perspective example at the end of the 
chapter, we will examine the design of the DTMF filters 
used to determine which button has been pushed.

Fuse/Getty Images

Urbanbuzz/Alamy Stock Photo
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14.1 Some Preliminaries
Recall from Section 13.7 that a circuit’s transfer function provides an easy 
way to compute the steady-state response to a sinusoidal input. There, 
we considered only fixed-frequency sources. To study the frequency re-
sponse of a circuit, we replace a fixed-frequency sinusoidal source with a 
varying-frequency sinusoidal source. The transfer function is still an im-
mensely useful tool because the magnitude and phase of the output signal 
depend only on the magnitude and phase of the transfer function H(jv), 
which vary as a function of the source frequency v. Note that this method 
of analyzing the output of a circuit as its input frequency varies assumes 
that we can vary the input frequency without changing its magnitude or 
phase angle.

To further simplify this first look at frequency-selective circuits, we 
will also restrict our attention to cases where both the input and out-
put signals are sinusoidal voltages, as illustrated in Fig. 14.1. Thus, the 
circuit’s transfer function will be the ratio of the Laplace transform 
of the output voltage to the Laplace transform of the input voltage, or 
H(s) = Vo(s)>Vi(s). We should keep in mind, however, that for a partic-
ular application, a current may be either the input signal or output signal 
of interest.

The signals passed from the input to the output fall within a band 
of frequencies called the passband. Input voltages outside this band have 
their magnitudes attenuated by the circuit and are thus effectively pre-
vented from reaching the circuit’s output. Frequencies not in a circuit’s 
passband are in its stopband. Frequency-selective circuits are categorized 
by the location of the passband.

We can identify the type of frequency-selective circuit by examining 
its frequency response plot. A frequency response plot shows how a cir-
cuit’s transfer function (both amplitude and phase) changes as the source 
frequency changes. A frequency response plot has two parts.

• A graph of 0H(jv) 0  versus frequency v, called the magnitude plot.
• A graph of u(jv) versus frequency v, called the phase angle plot.

The ideal frequency response plots for the four major categories of fil-
ters are shown in Figs. 14.2 and 14.3. Figure 14.2 illustrates the ideal plots 
for a low-pass and a high-pass filter, respectively. Both filters have one 
passband and one stopband, which are defined by the cutoff frequency 
that separates them. The names low pass and high pass are derived from 
the magnitude plots: a low-pass filter passes signals at frequencies lower 
than the cutoff frequency from the input to the output, and a high-pass 
filter passes signals at frequencies higher than the cutoff frequency. Thus, 
the terms low and high as used here do not refer to any absolute val-
ues of frequency, but rather to relative values with respect to the cutoff 
frequency.

Note from the graphs for both these filters (as well as those for the 
bandpass and bandreject filters in Fig. 14.3) that the phase angle plot for 
an ideal filter varies linearly in the passband. It is of no interest outside the 
passband because there the magnitude is zero. Linear phase variation is 
necessary to avoid phase distortion.

The two remaining categories of filters each have two cutoff fre-
quencies. Figure 14.3(a) illustrates the ideal frequency response plot 
of a bandpass filter, which passes a source voltage to the output only 
when the source frequency is within the band defined by the two cutoff 
frequencies. Figure 14.3(b) shows the ideal plot of a bandreject filter, 
which passes a source voltage to the output only when the source fre-
quency is outside the band defined by the two cutoff frequencies. The 
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2
Circuit

Figure 14.1 ▲ A circuit with voltage input and 
output.
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Figure 14.2 ▲ Ideal frequency response plots for  
(a) an ideal low-pass filter and (b) an ideal high-pass 
filter.
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bandreject filter thus rejects, or stops, the source voltage from reaching 
the output when its frequency is within the band defined by the cutoff 
frequencies.

In specifying a filter using any of the circuits from this chapter, it is 
important to note that the magnitude and phase angle characteristics 
are not independent. In other words, the characteristics of a circuit that 
result in a particular magnitude plot will also dictate the form of the 
phase angle plot and vice versa. For example, once we select a desired 
form for the magnitude response of a circuit, the phase angle response is 
also determined. Alternatively, if we select a desired form for the phase 
angle response, the magnitude response is also determined. Although 
there are some frequency-selective circuits for which the magnitude and 
phase angle behavior can be independently specified, these circuits are 
not presented here.

The next sections present examples of circuits from each of the four 
filter categories. These circuits represent only a few of the many circuits 
that act as filters. As you read, focus your attention on trying to identify 
what properties of a circuit determine its behavior as a filter. For example, 
you should note the various forms of the transfer functions that perform the 
same filtering function. Identifying the form of a filter’s transfer function 
will ultimately help you in designing filter circuits for particular applications.

All of the filters in this chapter are passive filters because their 
behavior depends only on passive elements: resistors, capacitors, and 
inductors. Usually, the largest output amplitude a passive filter can 
achieve equals the input amplitude. The only passive filter described 
in this chapter that can amplify its output is the series RLC resonant 
filter. Also, if you place an impedance in series with the source or in 
parallel with the load, the maximum output amplitude will decrease. 
Because many practical filter applications require amplification (a 
ratio of output-to-input amplitude greater than 1), passive filters have 
some significant disadvantages. Many active filter circuits, introduced 
in Chapter 15, provide amplification, and thereby overcome this pas-
sive filter disadvantage.

14.2 Low-Pass Filters
Two circuits that behave as low-pass filters are the series RL circuit and 
the series RC circuit. Let’s investigate the circuit characteristics that affect 
the cutoff frequency.

The Series RL Circuit—Qualitative Analysis
A series RL circuit is shown in Fig. 14.4(a). The circuit’s input is a sinu-
soidal voltage source with varying frequency. The circuit’s output is the 
voltage across the resistor. Suppose the source frequency starts very low 
and increases gradually. We know that the behavior of the ideal resistor 
does not change because its impedance is independent of frequency. But 
consider how the behavior of the inductor changes.

Recall that the impedance of an inductor is jvL. At low frequencies, 
the inductor’s impedance is very small compared with the resistor’s im-
pedance, and the inductor effectively functions as a short circuit. The term 
low frequencies thus refers to any frequencies for which vL V R. The 
equivalent circuit for v = 0 is shown in Fig. 14.4(b). In this equivalent cir-
cuit, the output voltage and the input voltage are equal both in magnitude 
and in phase angle.
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Figure 14.3 ▲ Ideal frequency response plots for (a) 
an ideal bandpass filter and (b) an ideal bandreject 
filter.
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Figure 14.4 ▲ (a) A series RL low-pass filter. (b) 
The equivalent circuit at v = 0. and (c) The equiva-
lent circuit at v = ∞ .



568 Introduction to Frequency Selective Circuits

As the frequency increases, the impedance of the inductor increases 
relative to that of the resistor. Increasing the inductor’s impedance causes 
a corresponding increase in the magnitude of the voltage drop across the 
inductor and a corresponding decrease in the output voltage magnitude. 
Increasing the inductor’s impedance also introduces a shift in phase angle 
between the inductor’s voltage and current, resulting in a phase angle dif-
ference between the input and output voltage. The output voltage always 
lags the input voltage, and as the frequency increases, this phase lag ap-
proaches 90°.

At high frequencies, the inductor’s impedance is very large com-
pared with the resistor’s impedance, and the inductor thus functions as 
an open circuit, effectively blocking the flow of current in the circuit. The 
term high frequencies thus refers to any frequencies for which vL W R.  
The equivalent circuit for v = ∞  is shown in Fig. 14.4(c), where the out-
put voltage magnitude is zero. The phase angle of the output voltage is 
90° more negative than that of the input voltage, so the output lags the 
input by 90°.

Based on the behavior of the output voltage magnitude, this series RL 
circuit selectively passes low-frequency inputs to the output, and it blocks 
high-frequency inputs from reaching the output. The circuit’s response to 
varying input frequency is shown in Fig. 14.5, and these plots represent 
the frequency response of the series RL circuit in Fig. 14.4(a). The upper 
plot shows how 0H(jv) 0  varies with frequency. The lower plot shows how 
u(jv) varies with frequency. Appendix E presents a method for construct-
ing these plots.

We have also superimposed the ideal magnitude plot for a low-pass 
filter from Fig. 14.2(a) on the magnitude plot of the RL filter in Fig. 14.5 
(see the dashed line). There is an obvious difference between the magni-
tude plots of an ideal filter and an actual RL filter. The ideal filter exhibits 
a discontinuity in magnitude at the cutoff frequency, vc, which creates an 
abrupt transition between the passband and the stopband. While this is, 
ideally, how we would like our filters to perform, it is not possible to use 
real components to construct a circuit with an abrupt transition in mag-
nitude. Circuits acting as low-pass filters have a magnitude response that 
transitions gradually between the passband and the stopband. Hence, the 
magnitude plot of a real circuit requires us to define what we mean by the 
cutoff frequency, vc.

Defining the Cutoff Frequency
We need to define the cutoff frequency, vc, for realistic filter circuits be-
cause the magnitude plot does not allow us to identify a single frequency 
that divides the passband and the stopband. The definition for cutoff 
 frequency widely used by electrical engineers is the frequency for which 
the transfer function magnitude is decreased by the factor 1>12 from its 
maximum value:

vc v

1.0

ƒH( jv)ƒ

u( jv)
08

0

2908

Figure 14.5 ▲ The frequency response plot for the 
series RL circuit in Fig. 14.4(a).

CUTOFF FREQUENCY DEFINITION

 0H1 jvc2 0 =
112

 H max, (14.1)

where Hmax is the maximum magnitude of the transfer function. It follows 
from Eq. 14.1 that the passband of a filter is defined as the range of fre-
quencies for which the amplitude of the output voltage is at least 70.7% of 
the maximum possible amplitude.
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Defining the cutoff frequency using the constant 1>12 is not an ar-
bitrary choice. Examining another consequence of the cutoff frequency 
explains this choice. Recall from Section 10.5 that the average power de-
livered by any circuit to a load is proportional to VL

2, where VL is the am-
plitude of the voltage drop across the load:

P =
1
2

 
VL

2

R
.

If the circuit has a sinusoidal voltage source, Vi(jv), then the load voltage 
is also a sinusoid, and its amplitude is a function of the frequency v. We 
define Pmax as the value of the average power delivered to a load when the 
magnitude of the load voltage is maximum:

Pmax =
1
2

 
VL max 

2

R
.

If we vary the frequency of the sinusoidal voltage source, Vi(jv), the 
load voltage is a maximum when the magnitude of the circuit’s transfer 
function is also a maximum:

 VLmax = Hmax 0Vi 0 . (14.2)

Now consider what happens to the average power when the frequency of 
the voltage source is vc. Using Eqs. 14.1 and 14.2, the magnitude of the 
load voltage at vc is

 0VL1 jvc2 0 = 0H1 jvc2 0  0Vi 0

 =
112

 Hmax 0Vi 0

 =
112

 VL max .

Now, compute the power delivered to the load at the cutoff frequency:

 P1 jvc2 =
1
2

 
0VL

21 jvc2 0
R

 =
1
2

 
a 112

 VLmaxb
2

R

 =
1
2

 
V Lmax

2 >2

R

 =
Pmax 

2
.

We see that, at the cutoff frequency vc, the average power delivered by 
the circuit is one half the maximum average power. Thus, vc is also called 
the half-power frequency. In the filter’s passband, the average power de-
livered to a load is at least 50% of the maximum average power.
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The Series RL Circuit—Quantitative Analysis
Now that we have defined the cutoff frequency for filter circuits, we 
can analyze the series RL circuit to find the relationship between the 
component values and the cutoff frequency for this low-pass filter.  
We begin by constructing the s-domain equivalent of the circuit in 
Fig.  14.4(a), assuming the initial conditions are zero. The resulting 
equivalent circuit is shown in Fig. 14.6. The voltage transfer function 
for this circuit is

 H(s) =
Vo(s)

Vi(s)
=

R>L

s + R>L
. (14.3)

To study the frequency response, we make the substitution s = jv in 
Eq. 14.3:

H(jv) =
R>L

jv + R>L
.

We can now separate H(jv) into two equations. The first defines the 
transfer function magnitude as a function of frequency; the second defines 
the transfer function phase angle as a function of frequency:

  0H(jv) 0 =
R>L2v2 + (R>L)2,

 (14.4)

 u(jv) = -tan-1avL
R

b .

Close examination of Eq. 14.4 provides the quantitative support for the 
magnitude plot shown in Fig. 14.5.

• When v = 0, the denominator and the numerator are equal and 
0H(j0) 0 = 1. This means that at v = 0, the input voltage is passed 
to the output terminals without a change in the voltage magnitude.

• As the frequency increases, the numerator of Eq. 14.4 is unchanged, 
but the denominator gets larger. Thus, 0H(jv) 0  decreases as the fre-
quency increases, as shown in the plot in Fig. 14.5. Likewise, as the 
frequency increases, the phase angle changes from its dc value of 0°, 
becoming more negative.

• As v S ∞ , the denominator of Eq. 14.4 approches infinity and 
0H(jv) 0 S 0, as seen in Fig. 14.5. As v S  ∞ , the phase angle 
 approaches -90°, as seen from the phase angle plot in Fig. 14.5.

Using Eq. 14.4, we can compute the cutoff frequency, vc. Remember 
that vc is defined as the frequency at which 0H1 jvc2 0 = 11>122Hmax. 
For the low-pass filter, Hmax = 0H(j0) 0 = 1, as seen in Fig. 14.5. Thus, for 
the circuit in Fig. 14.4(a),

0H1 jvc2 0 =
112

 0 1 0 =
R>L2vc

2 + (R>L)2
.

Solving for vc, we get

1

2
Vi(s) R Vo(s)

1

2

sL

Figure 14.6 ▲ The s-domain equivalent for the 
 circuit in Fig. 14.4(a).

CUTOFF FREQUENCY FOR RL FILTERS

 vc =
R
L

. (14.5)
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Equation 14.5 provides an important result. The cutoff frequency, vc, 
can be set to any desired value by appropriately selecting values for R and L. 
We can therefore design a low-pass filter with whatever cutoff frequency is 
needed. Example 14.1 demonstrates the design potential of Eq. 14.5.

EXAMPLE 14.1 Designing a Low-Pass Filter

Electrocardiology is the study of the electric 
 signals produced by the heart. These signals main-
tain the heart’s rhythmic beat and are measured by 
an  instrument called an electrocardiograph. This 
instrument must be capable of detecting periodic 
signals whose frequency is about 1 Hz (the normal 
heart rate is 72 beats per minute). The instrument 
must operate in the presence of sinusoidal noise 
consisting of signals from the surrounding electri-
cal environment, whose fundamental frequency is 
60 Hz—the frequency at which electric power is 
supplied.

Choose values for R and L in the circuit of 
Fig. 14.4(a) such that the resulting circuit could 
be used in an electrocardiograph to filter out any 
noise above 10  Hz and pass the electric signals 
from the heart at or near 1 Hz. Then compute the 
magnitude of Vo at 1 Hz, 10 Hz, and 60 Hz to see 
how well the filter performs.

Solution
The problem is to select values for R and L that 
yield a low-pass filter with a cutoff frequency of 
10 Hz. From Eq. 14.5, we see that R and L cannot 
be specified independently to generate a value for 
vc. Therefore, let’s choose a commonly available 
value of L, 100 mH. Before we use Eq. 14.5 to com-
pute the value of R needed to obtain the desired 
cutoff frequency, we need to convert the cutoff fre-
quency from hertz to radians per second:

vc = 2p(10) = 20p rad>s.

Now, solve for the value of R that, together with 
L = 100 mH, will yield a low-pass filter, with a cut-
off frequency of 10 Hz:

R = vcL = (20p)1100 *  10-32 = 6.28 Ω.

We can compute the magnitude of Vo using the 
equation 0Vo 0 = 0H(jv) 0  #  0Vi 0 :

 0Vo(v) 0 =
R>L2v2 +  (R>L)2

 0Vi 0

 =
20p2v2 +  400p2

 0Vi 0 .

Table 14.1 summarizes the computed magnitude 
values for the frequencies 1 Hz, 10 Hz, and 60 Hz. 
As expected, the input and output voltages have 
the same magnitudes at the low frequency be-
cause the circuit is a low-pass filter. At the cutoff 
frequency, the output voltage magnitude has been 
reduced by 1>12 from the unity passband magni-
tude. At 60 Hz, the output voltage magnitude has 
been reduced by a factor of about 6, achieving the 
desired attenuation of the noise that could cor-
rupt the signal the electrocardiograph is designed 
to measure.

TABLE 14.1   Input and Output Voltage 
Magnitudes for Several 
Frequencies

f(Hz) 0Vi 0 (V) 0Vo 0 (V)

 1 1.0 0.995

10 1.0 0.707

60 1.0 0.164

A Series RC Circuit
The series RC circuit shown in Fig. 14.7 also behaves as a low-pass fil-
ter. We can verify this via the same qualitative analysis used previously. 
In fact, such a qualitative examination is an important problem-solving 
step that you should get in the habit of performing when analyzing filters. 
Doing so enables you to predict the filtering characteristics (low pass, high 
pass, etc.) and thus also predict the general form of the transfer function. 
If the calculated transfer function matches the qualitatively predicted 
form, you have an important accuracy check.

1

2
vi C vo

1

2

R

Figure 14.7 ▲ A series RC low-pass filter.
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EXAMPLE 14.2 Designing a Series RC Low-Pass Filter

For the series RC circuit in Fig. 14.7:

a) Find the transfer function between the source 
voltage and the output voltage.

b) Determine an equation for the cutoff frequency 
in the series RC circuit.

c) Choose values for R and C that will yield a low-
pass filter with a cutoff frequency of 3 kHz.

Solution

a) To derive an expression for the transfer function, we 
first construct the s-domain equivalent of the circuit 
in Fig. 14.7, as shown in Fig. 14.8. Using s-domain 
voltage division on the equivalent circuit, we find

H(s) =

1
RC

 

s +
1

RC
 
.

Now, substitute s = jv and compute the magni-
tude of the resulting expression:

0H(jv) 0 =

1
RC

 Av2 +  a 1
RC

b
2
.

b) At the cutoff frequency vc, 0H(jv) 0  is equal to 
11>122Hmax. For a low-pass filter, Hmax = H(j0), 
and for the circuit in Fig. 14.8, H(j0) = 1. We can 
then describe the relationship among the quanti-
ties R, C, and vc:

0H1 jvc2 0 =
112

 (1) =

1
RC

 Avc
2 + a 1

RC
b

2
.

Solving this equation for vc, we get

CUTOFF FREQUENCY FOR RC FILTERS

vc =
1

RC
.

c) From the results in (b), we see that the cutoff frequen-
cy is determined by the values of R and C. Because 
R and C cannot be determined independently, let’s 
choose C = 1 mF. Given a choice, we will usually spec-
ify a value for C first, rather than for R, because the 
number of available capacitor values is much smaller 
than the number of resistor values. Remember that we 
have to convert the specified cutoff frequency from 
3 kHz to (2p)(3) krad>s:

 R =
1

vcC

 =
1

(2p)13 * 1032 11 * 10-62
 = 53.05 Ω.

Vo(s)

1

2

R

1

2
Vi(s)

sC
1

Figure 14.8 ▲ The s-domain equivalent for the circuit in Fig. 14.7.

Note that the circuit’s output is defined as the voltage across the ca-
pacitor. We again use three frequency regions to determine how the series 
RC circuit in Fig. 14.7 behaves:

• Zero frequency (v = 0): The impedance of the capacitor is infinite, 
and the capacitor acts as an open circuit. The input and output volt-
ages are thus the same.

• Frequencies increasing from zero: The impedance of the capacitor 
decreases relative to the impedance of the resistor, and the source 
voltage divides between the resistive impedance and the capacitive 
impedance. The output voltage is thus smaller than the source voltage.

• Infinite frequency (v = ∞): The impedance of the capacitor is zero, 
and the capacitor acts as a short circuit. The output voltage is thus zero.

Based on this analysis, the series RC circuit functions as a low-pass filter. 
Example 14.2 explores this circuit quantitatively.



 14.3 High-Pass Filters 573

Figure 14.9 summarizes the two low-pass filter circuits we have analyzed. 
Look carefully at the transfer functions and notice their similar form—they 
differ only in the terms that specify the cutoff frequency. We can therefore 
identify a general form for the transfer functions of these two low-pass filters:

1

2
Vi R Vo

1

2

sL

s 1 R>L
R>L

H(s) 5

vc 5 R>L

1

2
Vi Vo

1

2

R

s 1 1>RC
1>RC

H(s) 5

sC
1

vc 5 1>RC

Figure 14.9 ▲ Two low-pass filters, the series RL 
and the series RC, together with their transfer func-
tions and cutoff frequencies.

TRANSFER FUNCTION FOR LOW-PASS FILTERS

 H(s) =
vc

s + vc
. (14.6)

Any circuit with a voltage ratio described by Eq. 14.6 would behave as 
a low-pass filter with a cutoff frequency of vc. The problems at the end 
of the chapter give you other examples of circuits with this voltage ratio.

Relating the Frequency Domain to the Time Domain
Finally, you might have noticed one other important relationship. Recall 
our discussion of the natural responses of the first-order RL and RC cir-
cuits in Chapter 7. An important parameter for these circuits is the time 
constant, t, which characterizes the shape of the time response. For the 
RL circuit, the time constant has the value L>R (Eq. 7.3); for the RC cir-
cuit, the time constant is RC (Eq. 7.8). Compare the time constants to the 
cutoff frequencies for these circuits and notice that

 t = 1>vc. (14.7)

This result is a direct consequence of the relationship between the 
time response of a circuit and its frequency response, as revealed by the 
Laplace transform. The discussion of memory and weighting as repre-
sented in the convolution integral of Section 13.6 shows that as vc S  ∞ , 
the filter has no memory, and the output approaches a scaled replica of 
the input; that is, no filtering has occurred. As vc S 0, the filter has in-
creased memory, and the output voltage is a distortion of the input be-
cause filtering has occurred.

Objective 1—Know the RL and RC circuit configurations that act as low-pass filters

 14.1 A series RC low-pass filter requires a cutoff fre-
quency of 8 kHz. Use R = 10 kΩ and compute 
the value of C required.

Answer: 1.99 nF.

 14.2 A series RL low-pass filter with a cutoff fre-
quency of 2 kHz is needed. Using R = 5 kΩ, 

compute (a) L; (b) 0H(jv) 0  at 50 kHz; and 
(c) u(jv) at 50 kHz.

Answer: (a) 0.40 H;

(b) 0.04;

(c) -87.71°.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 14.1 and 14.3.

14.3 High-Pass Filters
Now we examine two circuits that function as high-pass filters. Once 
again, they are the series RL circuit and the series RC circuit. We will see 
that the same series circuit can act as either a low-pass or a high-pass filter, 
depending on where the output voltage is defined. We will also determine 
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Figure 14.10 ▲ (a) A series RC high-pass filter; (b) 
the equivalent circuit at v = 0; and (c) the equiva-
lent circuit at v = ∞ .
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u( jv)
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Figure 14.11 ▲ The frequency response plot for the 
series RC circuit in Fig. 14.10(a).
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Vi(s) R Vo(s)
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Figure 14.12 ▲ The s-domain equivalent of the 
 circuit in Fig. 14.10(a).

the relationship between the component values and the cutoff frequency 
of these filters.

The Series RC Circuit—Qualitative Analysis
A series RC circuit is shown in Fig. 14.10(a). In contrast to its low-pass 
counterpart in Fig. 14.7, the output voltage here is defined across the resis-
tor, not the capacitor. Because of this, the effect of the changing capacitive 
impedance is different than it was in the low-pass configuration.

At v = 0, the capacitor behaves like an open circuit, so there is no current 
in the resistor. This is illustrated in the equivalent circuit in Fig. 14.10(b). In this 
circuit, there is no voltage across the resistor and vo = 0. The circuit filters out 
the low-frequency input voltage before it reaches the circuit’s output.

As the frequency of the voltage source increases, the impedance of 
the capacitor decreases relative to the impedance of the resistor, and the 
source voltage is now divided between the capacitor and the resistor. The 
output voltage magnitude thus begins to increase.

When the frequency of the source is infinite (v = ∞), the capacitor 
behaves as a short circuit, so the capacitor voltage is zero. This is illus-
trated in the equivalent circuit in Fig. 14.10(c). In this circuit, the input 
and output voltages are the same.

The phase angle difference between the input and output voltages 
also varies as the frequency of the source changes. For v = ∞ , the output 
voltage is the same as the input voltage, so the phase angle difference is 
zero. As the frequency of the source decreases and the impedance of the 
capacitor increases, a phase shift is introduced between the voltage and 
the current in the capacitor. This creates a phase difference between the 
input and output voltages. The phase angle of the output voltage leads that 
of the source voltage. When v = 0, this phase angle difference reaches its 
maximum of +90°.

Based on our qualitative analysis, we see that when the output is 
 defined as the voltage across the resistor, the series RC circuit behaves 
as a high-pass filter. The components and connections are identical to the 
low-pass series RC circuit, but the choice of output is different. Thus, we 
have confirmed the earlier observation that the filtering characteristics of 
a circuit depend on the definition of the output as well as on circuit com-
ponents, values, and connections.

Figure 14.11 shows the frequency response plot for the series RC 
high-pass filter. For reference, the dashed lines indicate the magnitude 
plot for an ideal high-pass filter. We now turn to a quantitative analysis of 
this same circuit.

The Series RC Circuit—Quantitative Analysis
To begin, construct the s-domain equivalent of the circuit in Fig. 14.10(a), 
as shown in Fig. 14.12. We use voltage division to find the transfer function:

H(s) =
Vo(s)

Vi(s)
=

s
s + 1>RC

.

Making the substitution s = jv gives

H(jv) =
jv

jv + 1>RC
.
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Next, we separate H(jv) into two equations. The first is the equation de-
scribing the magnitude of the transfer function; the second is the equation 
describing the phase angle of the transfer function:

  0H(jv) 0 =
v2v2 + (1>RC)2

, (14.8)

 u(jv) = 90° - tan-1vRC.

A close look at the equations for the magnitude and phase 
angle of the transfer function confirms the shape of the frequency 
response plot in Fig. 14.11. Using Eq. 14.8, we can calculate the 
cutoff frequency for the series RC high-pass filter. Recall that at 
the cutoff frequency, the magnitude of the transfer function is 
11>122Hmax. For a high-pass filter, Hmax = 0H(j∞) 0 , as seen from  
Fig. 14.11. We can construct an equation for vc by setting the left-
hand side of Eq. 14.8 to 11>122 0H(j∞) 0 , noting that for this series 
RC circuit, 0H(j∞) 0 = 1:

112
=

vc2vc
2 + (1>RC)2

.

Solving for vc, we get

 vc =
1

RC
. (14.9)

Equation 14.9 presents a familiar result. The cutoff frequency for the 
series RC circuit has the value 1>RC, whether the circuit is configured as 
a low-pass filter in Fig. 14.7 or as a high-pass filter in Fig. 14.10(a). This 
is not a surprising result, as we have already discovered a connection be-
tween the cutoff frequency, vc, and the time constant, t, of a circuit.

Example 14.3 analyzes a series RL circuit, this time configured as a 
high-pass filter. Example 14.4 examines the effect of adding a load resistor 
at the output of the filter.

EXAMPLE 14.3 Designing a Series RL High-Pass Filter

Show that the series RL circuit in Fig. 14.13 also 
acts like a high-pass filter:

1

2
vi L vo

1

2

R

Figure 14.13 ▲ The circuit for Example 14.3.

a) Derive an expression for the circuit’s transfer 
function.

b) Use the result from (a) to determine an equation 
for the cutoff frequency in the series RL circuit.

c) Choose values for R and L that will yield a high-
pass filter with a cutoff frequency of 15 kHz.

Solution
a) Begin by constructing the s-domain equivalent of 

the series RL circuit, as shown in Fig. 14.14. Then 
use voltage division to find the transfer function:

H(s) =
s

s + R>L
.

Making the substitution s = jv, we get

H(jv) =
jv

jv + R>L
.

Notice that this equation has the same form as 
the equation for the series RC high-pass filter.

b) To find an equation for the cutoff frequency, first 
compute the magnitude of H(jv):

0H(jv) 0 =
v2v2 +  (R>L)2

.
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EXAMPLE 14.4 Loading the Series RL High-Pass Filter

Examine the effect of placing a load resistor in par-
allel with the inductor in the RL high-pass filter 
shown in Fig. 14.15:

a) Determine the transfer function for the circuit in 
Fig. 14.15.

b) Sketch the magnitude plot for the loaded RL 
high-pass filter, using the values for R and L 
from the circuit in Example 14.3(c) and letting 
RL = R. On the same graph, sketch the magni-
tude plot for the unloaded RL high-pass filter of 
Example 14.3(c).

Solution

a) Begin by transforming the circuit in Fig. 14.15 to 
the s-domain, as shown in Fig. 14.16. Use voltage 
division across the parallel combination of in-
ductor and load resistor to compute the transfer 
function:

H(s) =

RLsL

RL + sL

 R +
RLsL

RL + sL

=
a RL

R + RL
bs

s + a RL

R + RL
bR

L

=
Ks

s + vc
,

where

K =
RL

R + RL
,   vc = KR>L.

Note that vc is the cutoff frequency of the loaded 
filter.

b) For the unloaded RL high-pass filter from 
 Example 14.3(c), the passband magnitude is 
1, and the cutoff frequency is 15 kHz. For the 
loaded RL high-pass filter, R = RL = 500 Ω, so 
K = 1>2. Thus, for the loaded filter, the passband 

 magnitude is (1)(1>2) = 1>2, and the cutoff fre-
quency is (15,000)(1>2) = 7.5 kHz. A sketch of 
the magnitude plots of the loaded and unloaded 
circuits is shown in Fig. 14.17.
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Figure 14.15 ▲ The circuit for Example 14.4.
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Figure 14.16 ▲ The s-domain equivalent of the circuit in 
Fig. 14.15.
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Figure 14.17 ▲ The magnitude plots for the unloaded RL 
high-pass filter of Fig 14.13 and the loaded RL high-pass 
filter of Fig. 14.15.

Then, as before, we set the left-hand side of this 
equation to 11>122Hmax, based on the defini-
tion of the cutoff frequency vc. Remember that 
Hmax = 0H(j∞) 0  for a high-pass filter, and for 

the series RL circuit, 0H(j∞) 0 = 1. We solve the 
resulting equation for the cutoff frequency:

112
=

vc2vc
2 +  (R>L)2

,    vc =
R
L

.

This is the same cutoff frequency we computed 
for the series RL low-pass filter.

c) Using the equation for vc computed in (b), we 
find that it is not possible to specify values for R 
and L independently. Therefore, let’s arbitrarily 
select a value of 500 Ω for R. Remember to con-
vert the cutoff frequency to radians per second:

L =
R
vc

=
500

(2p)(15,000)
= 5.31 mH.

sL

R

1

2
Vi(s) Vo(s)

1

2

Figure 14.14 ▲ The s-domain equivalent of the circuit in  
Fig. 14.13.
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Let’s compare the transfer functions of the unloaded filter in  
Example 14.3 and the loaded filter in Example 14.4. Both transfer func-
tions are in the form:

H(s) =
Ks

s + K(R>L)
,

with K = 1 for the unloaded filter and K = RL> 1R + RL2  for the loaded 
filter. Note that the value of K for the loaded circuit reduces to the value 
of K for the unloaded circuit when RL =  ∞ ; that is, when there is no load 
resistor.

The cutoff frequencies for both filters can be seen directly from their 
transfer functions. In both cases, vc = K(R>L), where K = 1 for the un-
loaded circuit, and K = RL> 1R + RL2  for the loaded circuit. Again, the 
cutoff frequency for the loaded circuit reduces to that of the unloaded 
circuit when RL =  ∞ . Because RL> 1R + RL2 6  1, the effect of the load 
resistor is to reduce the passband magnitude by the factor K and to lower 
the cutoff frequency by the same factor.

We predicted these results at the beginning of this chapter. When 
the output voltage amplitude of a passive high-pass filter is maximum, it 
equals the amplitude of the filter’s input voltage. Placing a load across the 
filter, as we did in Example 14.4, decreases the output voltage amplitude. 
If we need to amplify signals in the passband, we must turn to active fil-
ters, such as those discussed in Chapter 15.

The effect of a load on a filter’s transfer function poses another di-
lemma in circuit design. We typically begin with a transfer function speci-
fication and then design a filter to meet that specification. We may or may 
not know what the load on the filter will be. Ideally, we want the filter’s 
transfer function to remain the same regardless of the load on it, but this is 
not possible for the passive filters presented here.

Figure 14.18 summarizes the high-pass filter circuits we have ana-
lyzed. Looking at the expressions for H(s), we see that they differ only in 
the denominator, which includes the cutoff frequency. As we did with the 
low-pass filters in Eq. 14.6, we state a general form for the transfer func-
tion of these two high-pass filters:

s 1 1>RC
sH(s) 5

vc 5 1>RC
1

2
Vi R Vo

1

2

s 1 R>L
sH(s) 5

vc 5 R>L
1

2
Vi sL Vo

1

2

R

sC
1

Figure 14.18 ▲ Two high-pass filters, the series RC 
and the series RL, together with their transfer func-
tions and cutoff frequencies.

TRANSFER FUNCTION FOR HIGH-PASS FILTERS

 H(s) =
s

s + vc
. (14.10)

Any circuit with a voltage ratio described by Eq. 14.10 would behave 
as a high-pass filter with a cutoff frequency of vc. The problems at the 
end of the chapter give you other examples of circuits with this voltage 
ratio.

We have drawn attention to another important relationship. We have 
discovered that a series RC circuit has the same cutoff frequency whether 
it is configured as a low-pass filter or as a high-pass filter. The same is 
true of a series RL circuit. Given the connection between the cutoff fre-
quency of a filter circuit and its time constant, we should expect the cutoff 
frequency to be a characteristic parameter of the circuit whose value de-
pends only on the circuit components, their values, and the way they are 
connected.
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14.4 Bandpass Filters
The next filters we examine are those that pass voltages within a band 
of frequencies to the output while filtering out voltages at frequencies 
 outside this band. These filters are somewhat more complicated than the 
low-pass and high-pass filters of the previous sections. As we have already 
seen in Fig. 14.3(a), ideal bandpass filters have two cutoff frequencies, vc1 
and vc2, which identify the passband. For realistic bandpass filters, these 
cutoff frequencies are again defined as the frequencies for which the mag-
nitude of the transfer function equals 11>122Hmax.

Center Frequency, Bandwidth, and Quality Factor
Besides the cutoff frequencies vc1 and vc2, three other important param-
eters characterize a bandpass filter. The first is the center frequency, vo, 
defined as the frequency for which a circuit’s transfer function is purely 
real. Another name for the center frequency is the resonant frequency. 
This is the same name given to the frequency that characterizes the nat-
ural response of the second-order circuits in Chapter 8 because they are 
the same frequencies! When a circuit is driven at the resonant frequency, 
we say that the circuit is in resonance because the frequency of the forcing 
function is the same as the natural frequency of the circuit. The center 
frequency is the geometric center of the passband; that is, vo = 1vc1vc2. 
For bandpass filters, the magnitude of the transfer function is maximum at 
the center frequency (Hmax = 0H1 jvo2 0 ).

The second parameter is the bandwidth, b, which is the width of the 
passband. The final parameter is the quality factor Q, which is the ratio of 
the center frequency to the bandwidth. The quality factor describes the 
width of the passband, independent of its location on the frequency axis. It 
also describes the shape of the magnitude plot, independent of frequency.

Although five different parameters characterize bandpass filters—vc1, 
vc2, vo, b, and Q—only two of the five can be specified independently. 
That is, once we specify any two of these parameter values, the other 
three can be calculated from the dependent relationships among them. 
We explore these relationships next, as we derive expressions for the five 
characteristic parameters in terms of the component values for two RLC 
circuits that act as bandpass filters.

Objective 2—Know the RL and RC circuit configurations that act as high-pass filters

 14.3 A series RL high-pass filter has R = 5 kΩ and 
L = 3.5 mH. What is vc for this filter?

Answer: 1.43 Mrad>s.

 14.4 A series RC high-pass filter has C = 1 mF. 
Compute the cutoff frequency for the following 
values of R: (a) 100 Ω; (b) 5 kΩ; and (c) 30 kΩ.

Answer: (a) 10 krad>s;

(b) 200 rad>s;

(c) 33.33 rad>s.

 14.5 Compute the transfer function of a series RC 
low-pass filter that has a load resistor RL in 
parallel with its capacitor.

Answer: H(s) =

1
RC

 

s +
1

KRC
 
, where K =

RL

R + RL
.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 14.13 and 14.17.
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Figure 14.19 ▲ (a) A series RLC bandpass filter; 
(b) the equivalent circuit for v = 0; and (c) the 
equivalent circuit for v = ∞ .

The Series RLC Circuit—Qualitative Analysis
Figure 14.19(a) depicts a series RLC circuit. We want to consider the ef-
fect of changing the source frequency on the magnitude of the output volt-
age. As before, changes to the source frequency result in changes to the 
impedance of the capacitor and the inductor. This time, the qualitative 
analysis is somewhat more complicated because the circuit has both an 
inductor and a capacitor.

At v = 0, the capacitor behaves like an open circuit, and the inductor 
behaves like a short circuit. The equivalent circuit is shown in Fig. 14.19(b). 
The open circuit representing the capacitor impedance prevents current 
from reaching the resistor, and the resulting output voltage is zero.

At v =  ∞ , the capacitor behaves like a short circuit, and the inductor 
behaves like an open circuit. The equivalent circuit is shown in Fig. 14.19(c). 
The inductor now prevents current from reaching the resistor, and again the 
output voltage is zero.

But what happens in the frequency region between v = 0 and v = ∞?  
Between these two extremes, both the capacitor and the inductor have 
finite impedances. In this region, the source voltage divides among the 
capacitor, inductor, and resistor. Remember that the capacitor impedance 
is negative, whereas the inductor impedance is positive. Thus, at some fre-
quency, the capacitor impedance and the inductor impedance have equal 
magnitudes and opposite signs; the two impedances cancel out, so the out-
put voltage equals the source voltage. This special frequency is the center 
frequency, vo. On either side of vo, the output voltage is less than the 
source voltage. Note that at vo, the series combination of the inductor and 
capacitor behaves like a short circuit.

The frequency response plot for the circuit in Fig. 14.19(a) is shown 
in Fig. 14.20. The ideal bandpass filter magnitude plot is overlaid (as a 
dashed line) on the transfer function magnitude plot for comparison.

Now consider what happens to the transfer function phase angle. At 
the center frequency, vo, the phase angles of the input and output volt-
ages are equal, so the phase angle of the transfer function is zero. As the 
frequency decreases, the capacitor phase angle is larger than the induc-
tor phase angle. Because the capacitor contributes positive phase shift, 
the transfer function phase angle is positive. At very low frequencies, the 
transfer function phase angle is +90°.

Conversely, if the frequency increases from the center frequency, the 
inductor phase angle is larger than the capacitor phase angle. The induc-
tor contributes negative phase shift, so the transfer function phase angle 
is negative. At very high frequencies, the transfer function phase angle is 
-90°. The plot of the transfer function phase angle is shown in Fig. 14.20.

The Series RLC Circuit—Quantitative Analysis
We begin by drawing the s-domain equivalent for the series RLC circuit, 
as shown in Fig. 14.21. Using voltage division, we find that the transfer 
function equation is

 H(s) =
(R>L)s

s2 + (R>L)s + (1>LC)
. (14.11)

As before, we substitute s = jv into Eq. 14.11 and produce the equations 
for the magnitude and the phase angle of the transfer function:

  0H(jv) 0  =
v(R>L)23(1>LC) - v242 + 3v(R>L)42

, (14.12)

1
2

v

v

1.0

ƒH( jv)ƒ

u( jv)

2908

908

08

0
vc1 vc2vo

b

Figure 14.20 ▲ The frequency response plot for the 
series RLC bandpass filter circuit in Fig. 14.19.

sL

1

2
Vi(s)

1>sC

R Vo(s)

1

2

Figure 14.21 ▲ The s-domain equivalent for the 
circuit in Fig. 14.19(a).
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Next, calculate the cutoff frequencies, vc1 and vc2. Remember 
that at the cutoff frequencies, the magnitude of the transfer function is 
11>122Hmax. Because Hmax = 0H1 jvo2 0 , we find Hmax by substituting 
Eq. 14.13 into Eq. 14.12:

 Hmax = 0H1 jvo2 0

 =
vo(R>L)23(1>LC) - vo

2 42 +  1voR>L2 2

 =
2(1>LC)(R>L)33(1>LC) - (1>LC)42 + 32(1>LC)(R>L)42

= 1.

Now set the left-hand side of Eq. 14.12 to 11>122Hmax (which equals 
1>12) and prepare to solve for vc:

 
112

=
vc(R>L)23(1>LC) - vc

242 + 1vcR>L2 2

 =
123(vcL>R) - (1>vcRC)42 + 1

.

We can equate the denominators of the two sides of this expression and 
simplify to get

{1 = vc 
L
R

-
1

vcRC
.

Rearrange to get the following quadratic equation:

vc
2 { R

L
 vc -

1
LC

= 0.

 u(jv) = 90° - tan-1 c v(R>L)

(1>LC) - v2 d .

Now calculate the five parameters that characterize this RLC band-
pass filter. Recall that the center frequency, vo, is defined as the frequency 
for which the circuit’s transfer function is purely real. The transfer func-
tion for the RLC circuit in Fig. 14.21 will be real when the capacitor and 
inductor impedances sum to zero:

jvoL +
1

jvoC
= 0.

Solving for vo, we get

CENTER FREQUENCY

 vo = A 1
LC

. (14.13)
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CUTOFF FREQUENCIES, SERIES RLC FILTERS

 vc1 = -
R

2L
+ Ca R

2L
b

2

+ a 1
LC

b , (14.14)

 vc2 =
R

2L
 + Ca R

2L
b

2

+  a 1
LC

b .  (14.15)

The solution of the quadratic equation yields four values for the cut-
off frequency. Only two of these values are positive and have physical 
significance; they identify the passband of this filter:

We can use Eqs. 14.14 and 14.15 to confirm that the center frequency, vo, 
is the geometric mean of the two cutoff frequencies:

Recall that the bandwidth of a bandpass filter is defined as the dif-
ference between the two cutoff frequencies. Because vc2 7 vc1 we can 
compute the bandwidth by subtracting Eq. 14.14 from Eq. 14.15:

RELATIONSHIP BETWEEN CENTER FREQUENCY  
AND CUTOFF FREQUENCIES

 vo = 1vc1
#  vc2

RELATIONSHIP BETWEEN BANDWIDTH  
AND CUTOFF FREQUENCIES

b = vc2 -  vc1

 = B c -  
R
2L

+ B a R
2L

b
2

+ a 1
LC

b d c R
2L

+ B a R
2L

b
2

+ a 1
LC

b d

 = A 1
LC

.

 = £ R
2L

+ B a R
2L

b
2

+  a 1
LC

b § -  £ -  
R
2L

+ B a R
2L

b
2

+  a 1
LC

b § ,

so

BANDWIDTH, SERIES RLC FILTERS

 b =
R
L

 . (14.16)
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We now have five parameters that characterize the series RLC band-
pass filter: two cutoff frequencies, vc1 and vc2, which delimit the pass-
band; the center frequency, vo, at which the magnitude of the transfer 
function is maximum; the bandwidth, b, a measure of the width of the 
passband; and the quality factor, Q, a second measure of passband width. 
Remember, only two of these parameters can be specified independently 
in a design. We have already observed that the quality factor is the ratio 
of the center frequency to the bandwidth. We can also rewrite the equa-
tions for the cutoff frequencies in terms of the center frequency and the 
bandwidth:

 vc1 = -
b

2
+ B ab

2
b

2

+ vo
2,

 vc2 =
b

2
+ B ab

2
b

2

+ vo
2.

Alternative forms for these equations express the cutoff frequencies in 
terms of the quality factor and the center frequency (see Problem 14.24):

 vc1 = vo
# c -  

1
2Q

+ B1 + a 1
2Q

b
2

d ,

 vc2 = vo
# c 1

2Q
+ B1 + a 1

2Q
b

2

d .

Examples 14.5, 14.6, and 14.7 illustrate the design of bandpass filters, 
introduce another RLC circuit that behaves as a bandpass filter, and ex-
amine the effects of source resistance on the characteristic parameters of 
a series RLC bandpass filter.

The quality factor, the last of the five characteristic parameters, is defined 
as the ratio of center frequency to bandwidth. Using Eqs. 14.13 and 14.16:

RELATIONSHIP AMONG QUALITY FACTOR,  
CENTER FREQUENCY AND BANDWIDTH

 Q =
vo

b

 =
11>LC

(R>L)
,

so

QUALITY FACTOR, SERIES RLC FILTERS

 Q = B L

R2C
. (14.17)
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EXAMPLE 14.5 Designing a Bandpass Filter

A graphic equalizer is an audio amplifier that al-
lows you to select different levels of amplification 
within different frequency regions. Using the series 
RLC circuit in Fig. 14.19(a), choose values for R, L, 
and C that yield a bandpass circuit able to select in-
puts within the 1 kHz–10 kHz frequency band. Such 
a circuit might be used in a graphic equalizer to se-
lect this frequency band from the larger audio band 
(generally 0–20 kHz) prior to amplification.

Solution
We need to compute values for R, L, and C that 
produce a bandpass filter with cutoff frequencies 
of 1 kHz and 10 kHz. There are many possible 
 approaches to a solution. For instance, we could use 
Eqs. 14.14 and 14.15, which specify vc1 and vc2 in 
terms of R, L, and C. Because of the form of these 
equations, the algebraic manipulations might get 
complicated. Instead, we will calculate the center 
frequency, vo, from the cutoff frequencies and then 
use Eq. 14.13 to compute L and C from vo. Next 
we will calculate the bandwidth, b, from the cutoff 
frequencies and finally, use Eq. 14.16 to compute R 
from b. While this approach involves several com-
putational steps, each calculation is fairly simple.

Any approach we choose will provide only 
two equations—insufficient to solve for the three  
unknowns—because of the dependencies among 
the bandpass filter characteristics. Thus, we need to 
select a value for either R, L, or C and use the two 
equations we’ve chosen to calculate the remain-
ing component values. Here, we arbitrarily choose 
1 mF as the capacitor value.

We compute the center frequency as the geo-
metric mean of the cutoff frequencies:

fo = 2fc1fc2 = 2(1000)110,0002 = 3162.28 Hz.

Next, use Eq. 14.13 to find L using C and the 
center frequency, which must be converted to  
radians>sec:

L =
1

vo
2C

 =
1

32p13162.28242110-62
 =  2.533 mH.

The bandwidth is the difference between the 
two cutoff frequency values, so

b = vc2 - vc1 = 10,000 - 1000 = 9  kHz.

Now convert the bandwidth to radians>sec and use  
Eq. 14.16 to calculate R:

R = bL = 32p(9000)4 12.533 * 10-32 = 143.24 Ω.

To check whether these component values pro-
duce the bandpass filter we want, substitute them into  
Eqs. 14.14 and 14.15. We find that

 vc1 = 6283.19 rad>s 11000 Hz2 ,

 vc2 = 62,831.85 rad>s 110,000 Hz2 ,

which are the cutoff frequencies specified for the 
filter.

This example reminds us that only two of the 
five bandpass filter parameters can be specified in-
dependently. The other three parameters can be 
computed from the two that are specified. In turn, 
these five parameter values depend on the three 
component values, R, L, and C, of which only two 
can be specified independently. It is almost always 
easiest to calculate the center frequency and band-
width from whatever two parameters are specified, 
and then use Eqs. 14.13 and 14.16 to calculate the 
two unknown component values.

EXAMPLE 14.6 Designing a Parallel RLC Bandpass Filter

a) Show that the RLC circuit in Fig. 14.22 is also a 
bandpass filter by deriving an expression for the 
transfer function H(s). Note that this circuit is a 
parallel RLC circuit with the parallel-connected 
current source and resistor source-transformed to 
a series-connected voltage source and resistor. This 
permits us to continue defining the filter transfer 
functions as ratios of output to input voltages.

b) Compute the center frequency, vo.

c) Calculate the cutoff frequencies, vc1 and vc2, the 
bandwidth, b, and the quality factor, Q.

d) Compute values for R and L to yield a band-
pass filter with a center frequency of 5 kHz and 
a bandwidth of 200 Hz, using a 5 mF capacitor.

R

1

2
vi voC L

1

2

Figure 14.22 ▲ The circuit for Example 14.6.
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Solution

a) Begin by transforming the circuit in Fig. 14.22 
to the s domain; the result is shown in Fig. 14.23.  
We can find the transfer function for the  
s-domain circuit using voltage division if we first 
compute the equivalent impedance of the paral-
lel combination of L and C, identified as Zeq(s) 
in Fig. 14.23:

1

2

Zeq(s)
R

Vi(s) Vo(s)1>sC sL

1

2

Figure 14.23 ▲ The s-domain equivalent of the circuit in  
Fig. 14.22.

Zeq = sL } 1
sC

=
1sL2 11>sC2
sL + 11>sC2 =

sL

s2LC + 1
.

Now,

H(s) =
Vo(s)

Vi(s)
=

Zeq

R + Zeq
=

s
RC

 

s2 +
s

RC
+

1
LC

 
.

b) To find the center frequency, we need to cal-
culate the frequency for which the transfer 
function  magnitude is maximum. Substituting 
s = jv in H(s),

 0H(jv) 0 =

v

RC
 B a 1

LC
- v2b

2

+  a v

RC
b

2

 =
1

S1 + °vRC -  
1

v
L
R
¢

2
.

The magnitude of this transfer function is maxi-
mum when

a 1
LC

- v2b
2

= 0.

Thus,

vo = A 1
LC

 

and

Hmax = 0H1 jvo2 0 = 1.

c) At the cutoff frequencies, the magnitude of 
the transfer function is 11>122Hmax = 1>12. 
Substituting this constant on the left-hand side 
of the magnitude equation and simplifying,  
we get

£vcRC -  
1

vc
L
R

 
§ = {1.

Rearranging this equation once again produces 
two quadratic equations for the cutoff frequen-
cies, with four solutions. Only two of them are 
positive and therefore have physical significance:

CUTOFF FREQUENCIES, PARALLEL 
RLC FILTERS

 vc1 = -
1

2RC
+ B a 1

2RC
b

2

+  
1

LC
,

 vc2 =
1

2RC
  + B a 1

2RC
b

2

+  
1

LC
.

We compute the bandwidth from the cutoff 
frequencies:

BANDWIDTH, PARALLEL RLC FILTERS

b = vc2 -  vc1 =
1

RC
.

Finally, use the definition of quality factor to cal-
culate Q:

QUALITY FACTOR, PARALLEL  
RLC FILTERS

 Q =
vo

b
= BR2C

L
.

Notice that once again we can specify the cutoff 
frequencies for this bandpass filter in terms of its 
center frequency and bandwidth:

 vc1 = -
b

2
+ B ab

2
b

2

+  vo
2,
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 vc2 =
b

2
+ B ab

2
b

2

+  vo
2.

d) Use the equation for bandwidth in (c) to com-
pute a value for R, given C = 5 mF. Remember 
to convert the bandwidth to radians>sec:

 R =
1
bC

 =
1

(2p)(200)15 * 10-62

 = 159.15 Ω.

Using the value of capacitance and the equation 
for center frequency in (b), compute the inductor 
value:

 L =
1

vo
2C

 =
1

32p(5000)4215 * 10-62

 = 202.64  mH.

EXAMPLE 14.7  Determining Effect of a Nonideal Voltage Source  
on a RLC Bandpass Filter

For each of the bandpass filters we have con-
structed, we have always assumed an ideal voltage  
source, that is, a voltage source with no series 
resistance. When we design with a filter using 
values of R, L, and C whose equivalent imped-
ance has a magnitude close to the actual im-
pedance of the voltage source, it is not valid to  
assume the voltage source is ideal. In this  
example, we determine the effect of the nonzero 
source resistance Ri on the series RLC bandpass 
filter characteristics.

a) Determine the transfer function for the circuit in 
Fig. 14.24.

construct the transfer function using voltage 
 division:

H(s) =

R
L

 s

s2 + aR + Ri

L
bs +

1
LC

.

Substitute s = jv and calculate the transfer func-
tion magnitude:

0H(jv) 0 =

R
L

 vB a 1
LC

- v2b
2

+  av 
R + Ri

L
b

2
.

The center frequency, vo, is the frequency at 
which this transfer function magnitude is maxi-
mum, which is

vo = A 1
LC

.

1

2

Ri sL

Vi(s) Vo(s)

1>sC

1

2

R

Figure 14.25 ▲ The s-domain equivalent of the circuit in  
Fig. 14.24.

1

2

Ri L

vi vo

C

1

2

R

Figure 14.24 ▲ The circuit for Example 14.7.

b) Sketch the magnitude plot for the circuit in  
Fig. 14.24, using the values for R, L, and C from 
Example 14.5 and setting Ri = R. On the same 
graph, sketch the magnitude plot for the circuit 
in Example 14.5, where Ri = 0.

Solution
a) Begin by transforming the circuit in Fig. 14.24 

into the s domain, as shown in Fig. 14.25. Now 
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At the center frequency, the maximum magnitude is

Hmax = 0H1 jvo2 0 =
R

Ri + R
.

The cutoff frequencies can be computed by setting the 
transfer function magnitude equal to 11>122Hmax:

 vc1 = -  
R + Ri

2L
+ B aR + Ri

2L
b

2

+  
1

LC
,

 vc2 =
R + Ri

2L
+ B aR + Ri

2L
b

2

+  
1

LC
.

The bandwidth is calculated from the cutoff 
frequencies:

b = vc2 - vc1 =
R + Ri

L
.

Finally, the quality factor is computed from the center 
frequency and the bandwidth:

Q =
vo

b
=

2L>C

R + Ri
.

From this analysis, note that we can write the transfer 
function of the series RLC bandpass filter with non-
zero source resistance as

H(s) =
Kbs

s2 + bs + vo
2 ,

where

K =
R

R + Ri
.

Note that when Ri = 0, K = 1 and the transfer 
 function is

H(s) =
bs

s2 + bs + vo
2 .

b) The circuit in Example 14.5 has a center frequency of 
3162.28 Hz and a bandwidth of 9 kHz, and Hmax = 1. If 
we use the same values for R, L, and C in the circuit in 
Fig. 14.24 and let Ri = R, then the center frequency re-
mains at 3162.28 kHz, but b = 1R + Ri2 >L = 18 kHz, 
and Hmax = R> 1R + Ri2 = 1>2. The transfer func-
tion magnitudes for these two bandpass filters are plot-
ted on the same graph in Fig. 14.26.
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Figure 14.26 ▲ The magnitude plots for a series RLC bandpass filter with a zero source resis-
tance and a nonzero source resistance.

If we compare the characteristic parameter values for the filter with 
Ri = 0 to the values for the filter with Ri ≠ 0, we see the following:

• The center frequencies are the same.
• The maximum transfer function magnitude for the filter with Ri ≠ 0 

is smaller than that for the filter with Ri = 0.
• The bandwidth for the filter with Ri ≠ 0 is larger than that for the 

filter with Ri = 0. Thus, the cutoff frequencies and the quality factors 
for the two circuits are also different.

Adding a nonzero source resistance to a series RLC bandpass filter leaves 
the center frequency unchanged but widens the passband and reduces the 
passband magnitude.
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Here we see the same design challenge we saw when adding a load re-
sistor to the high-pass filter. We would like to design bandpass filters with 
filtering properties that are unchanged by the internal resistance of the 
voltage source. Unfortunately, this is not possible for filters constructed 
from passive elements. In Chapter 15, we will discover that active filters 
are insensitive to changes in source resistance and thus are better suited to 
designs in which this is an important issue.

Figure 14.27 summarizes the two RLC bandpass filters we have stud-
ied. Note that the expressions for the circuit transfer functions have the 
same form. As we have done previously, we can create a general form for 
the transfer functions of these two bandpass filters:

R
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o
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2

1
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2

Figure 14.27 ▲ Two RLC bandpass filters, together 
with equations for the transfer function, center fre-
quency, and bandwidth of each.

TRANSFER FUNCTION FOR BANDPASS FILTERS

 H(s) =
bs

s2 + bs + vo
2. (14.18)

Any circuit with the transfer function in Eq. 14.18 acts as a bandpass filter 
with a center frequency vo and a bandwidth b.

In Example 14.7, we saw that the transfer function can also be written 
in the form

H(s) =
Kbs

s2 + bs + vo
2 ,

where the values for K and b depend on whether the series resistance of 
the voltage source is zero or nonzero.

Relating the Frequency Domain to the Time Domain
It should come as no surprise that the parameters characterizing the fre-
quency response of RLC bandpass filters and the parameters characterizing 
the time response of RLC circuits are related. Consider the series RLC cir-
cuit in Fig. 14.19(a). In Chapter 8 we discovered that the natural response 
of this circuit is characterized by the neper frequency (a) and the resonant 
frequency (vo). These parameters were expressed in terms of the circuit 
components in Eqs. 8.29 and 8.30, which are repeated here for convenience:

 a =
R
2L

,

 vo = A 1
LC

.

We see that the same parameter vo is used to characterize both the time 
response and the frequency response. That’s why the center frequency 
is also called the resonant frequency. The bandwidth and the neper fre-
quency are related by the equation

 b = 2a. (14.19)

Recall that the natural response of a series RLC circuit may be 
 underdamped, overdamped, or critically damped. The transition from over-
damped to underdamped occurs when vo

2 = a2. Consider the relationship 
between a and b from Eq. 14.19 and the definition of the quality factor Q. 
The transition from an overdamped to an underdamped response occurs 
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when Q = 1>2. Thus, a circuit whose frequency response contains a sharp 
peak at vo, indicating a high Q and a narrow bandwidth, will have an under-
damped natural response. Conversely, a circuit whose frequency response has 
a broad bandwidth and a low Q will have an overdamped natural response.

Objective 3—Know the RLC circuit configurations that act as bandpass filters

 14.6 Using the circuit in Fig. 14.19(a), compute the 
values of R and L to give a bandpass filter with 
a center frequency of 12 kHz and a quality 
factor of 6. Use a 0.1 mF capacitor.

Answer: L = 1.76 mH, R = 22.10 Ω.

 14.7 Using the circuit in Fig. 14.22, compute the 
values of L and C to give a bandpass filter with 
a center frequency of 2 kHz and a bandwidth of 
500 Hz. Use a 250 Ω resistor.

Answer: L = 4.97 mH, C = 1.27 mF.

 14.8 Recalculate the component values for the 
circuit in Example 14.6(d) so that the frequency 
response of the resulting circuit is unchanged 
using a 0.2 mF capacitor.

Answer: L = 5.07 mH, R = 3.98 kΩ.

 14.9 Recalculate the component values for the 
circuit in Example 14.6(d) so that the quality 
factor of the resulting circuit is unchanged but 
the center frequency has been moved to 2 kHz. 
Use a 0.2 mF capacitor.

Answer: R = 9.95 kΩ, L = 31.66 mH.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 14.26 and 14.30.

14.5 Bandreject Filters
We turn now to the last of the four filter categories—the bandreject filter. 
This filter passes source voltages outside the band between the two cutoff 
frequencies to the output (the passband) and attenuates source voltages 
before they reach the output at frequencies between the two cutoff fre-
quencies (the stopband). Bandpass filters and bandreject filters thus per-
form complementary functions in the frequency domain.

Bandreject filters and bandpass filters have the same characteristic 
parameters: the two cutoff frequencies, the center frequency, the band-
width, and the quality factor. Again, only two of these five parameters can 
be specified independently.

We examine two circuits that function as bandreject filters and then 
derive equations relating the circuit component values to the characteris-
tic parameters for each circuit.

The Series RLC Circuit—Qualitative Analysis
Figure 14.28(a) shows a series RLC circuit. Although the circuit compo-
nents and connections are identical to those in the series RLC bandpass  
filter in Fig. 14.19(a), the output voltage is now defined across the inductor- 
capacitor pair. As we saw in the case of low- and high-pass filters, the 
same circuit may perform two different filtering functions, depending on 
the definition of the output voltage.

We have already noted that at v = 0, the inductor behaves like a 
short circuit and the capacitor behaves like an open circuit, as shown in 
Fig, 14.28(b). At v = ∞ , these roles switch, as shown in Fig. 14.28(c). In 
both equivalent circuits, the output voltage is defined across an open cir-
cuit, so the output and input voltages have the same magnitude. This se-
ries RLC bandreject filter circuit then has two passbands—one below the 
lower cutoff frequency and the other above the upper cutoff frequency.

1

2

1

2

1

2

R

R

R

vi

vi

vi

(a)

C

1

2

vo

1

2

vo

1

2

vo

(b)

L

C

(c)

L

L

C

Figure 14.28 ▲ (a) A series RLC bandreject filter. 
(b) The equivalent circuit for v = 0. (c) The equiva-
lent circuit for v = ∞ .
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Between these two passbands, both the inductor and the capacitor have 
finite impedances of opposite signs. As the frequency is increased from zero, 
the inductor impedance increases and the capacitor impedance decreases. 
Therefore, the phase shift between the input and the output approaches 
-90° as vL approaches 1>vC. As soon as vL exceeds 1>vC, the phase shift 
jumps to +90° and then approaches zero as v continues to increase.

At some frequency between the two passbands, the impedances of 
the inductor and capacitor are equal but have opposite signs, so their sum 
is zero. Thus, at this frequency, the series combination of the inductor 
and capacitor acts like a short circuit, and the output voltage magnitude is 
zero. This is the center frequency of the series RLC bandreject filter.

Figure 14.29 presents a sketch of the frequency response for the series 
RLC bandreject filter from Fig. 14.28(a). Note that the magnitude plot 
is overlaid with that of the ideal bandreject filter from Fig. 14.3(b). Our 
qualitative analysis has confirmed the shape of the magnitude and phase 
angle plots. We now turn to a quantitative analysis of the circuit to con-
firm this frequency response and to compute values for the parameters 
that characterize this response.

The Series RLC Circuit—Quantitative Analysis
After transforming to the s domain, as shown in Fig. 14.30, we use voltage 
division to find the transfer function equation:

H(s) =
sL +

1
sC

 

R + sL +
1

sC
 

=
s2 +

1
LC

 

s2 +
R
L

 s +
1

LC
 
.

Substituting jv for s in H(s), we generate equations for the transfer func-
tion magnitude and the phase angle:

 0H(jv) 0  =
` 1
LC

- v2 `Ca 1
LC

- v2b
2

+ avR
L

b
2
,

 u(jv) = -tan-1±
vR
L

 

1
LC

- v2
≤ .

Note that the equations for the transfer function magnitude and phase 
angle confirm the frequency response shape pictured in Fig. 14.29, which 
we developed from the qualitative analysis.

We use the circuit in Fig. 14.30 to calculate the center frequency. For 
the bandreject filter, the center frequency is still defined as the frequency 
for which the sum of the impedances of the capacitor and inductor is zero. 
In the bandpass filter, the magnitude at the center frequency was a max-
imum, but in the bandreject filter, this magnitude is a minimum. This is 
because in the bandreject filter, the center frequency is in the stopband, 
not in the passband. Because the sum of the capacitor and inductor im-
pedances is zero at the center frequency,

vo = A 1
LC

.

Substituting 21>LC for vo in the equation for the transfer function mag-
nitude shows that 0H1 jvo2 0 = 0.

0

ƒH( jv)ƒ

u( jv)

1.0

908

2908

08

vc1 vc2 vvo

1
2

Figure 14.29 ▲ The frequency response plot for the 
series RLC bandreject filter circuit in Fig. 14.28(a).

1

2

R

Vi(s)

1>sC

1

2

Vo(s)

sL

Figure 14.30 ▲ The s-domain equivalent of the 
 circuit in Fig. 14.28(a).
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The cutoff frequencies, the bandwidth, and the quality factor are defined 
and calculated for the bandreject filter and the bandpass filter in exactly the 
same way. Note that for the bandreject filter, Hmax = 0H(j0) 0 = 0H(j∞) 0 ,  
and for the series RLC bandreject filter in Fig. 14.28(a), Hmax = 1. Thus,

 vc1 = -
R
2L

+ B a R
2L

b
2

+
1

LC
,

 vc2 =
R
2L

+ B a R
2L

b
2

+
1

LC
.

These equations are the same as Eqs. 14.14 and 14.15.
Use the cutoff frequencies to generate an expression for the bandwidth, b:

b = R>L.

This equation is the same as Eq. 14.16.
Finally, the center frequency and the bandwidth produce an equation 

for the quality factor, Q:

Q = A L

R2C
.

This equation and Eq. 14.17 are the same.
Again, we can represent the expressions for the two cutoff frequencies in 

terms of the bandwidth and center frequency, as we did for the bandpass filter:

 vc1 = -
b

2
+ B ab

2
b

2

+ vo
2,

 vc2 =
b

2
+ B ab

2
b

2

+ vo
2.

Alternative forms for these equations express the cutoff frequencies in 
terms of the quality factor and the center frequency:

 vc1 = vo
# c -  

1
2Q

+ B1 + a 1
2Q

b
2

d ,

 vc2 = vo
# c 1

2Q
+ B1 + a 1

2Q
b

2

d .

Example 14.8 presents the design of a series RLC bandreject filter.

EXAMPLE 14.8 Designing a Series RLC Bandreject Filter

Using the series RLC circuit in Fig. 14.28(a), com-
pute the component values that yield a bandreject 
filter with a bandwidth of 250 Hz and a center fre-
quency of 750 Hz. Use a 100 nF capacitor. Compute 
values for R, L, vc1, vc2, and Q.

Solution
We begin by using the definition of quality factor to 
compute its value for this filter:

Q = vo>b = 3.

Use Eq. 14.13 to compute L, remembering to con-
vert vo to radians per second:

L =
1

vo
2C

=
1

32p(750)421100 *  10-92 = 450 mH.

Use Eq. 14.16 to calculate R:

R = bL = 2p(250)1450 * 10-32 = 707 Ω.
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The values for the center frequency and bandwidth 
can be used to compute the two cutoff frequencies:

 vc1 = -
b

2
+ B ab

2
b

2

+  vo
2 = 3992.0 rad>s,

 vc2 =
b

2
+ B ab

2
b

2

+  vo
2 = 5562.8 rad>s.

The cutoff frequencies are at 635.3 Hz and 885.3 
Hz. Their difference is 885.3 - 635.3 = 250 Hz, 
confirming the specified bandwidth. The geomet-
ric mean is 11635.32 1885.32 = 750 Hz, confirm-
ing the specified center frequency.

As you might suspect by now, another configuration that produces 
a bandreject filter is a parallel RLC circuit. The analysis details of the 
parallel RLC circuit are left to Problem 14.37, and the results are summa-
rized in Fig. 14.31, along with the series RLC bandreject filter. As we did 
for other categories of filters, we can state a general form for the transfer 
functions of bandreject filters, replacing the constant terms with b and vo:

TRANSFER FUNCTION FOR BANDREJECT FILTERS

 H(s) =
s2 + vo

2

s2 + bs + vo
2. (14.20)

Equation 14.20 is useful in filter design because any circuit with a transfer 
function in this form can be used as a bandreject filter.

1

2

H(s) 5
s2 1 (R>L)s 1 1>LC

s2 1 1>LC

R

Vi

1

2

Vo

sL

b 5 R>Lvo 5 1>LC

sC
1

1

2
R

1

2

Vo

sL

Vi

H(s) 5

b 5 1>RCvo 5 1>LC

s2 1 s>RC 1 1>LC

s2 1 1>LC

sC
1

Figure 14.31 ▲ Two RLC bandreject filters,  
together with equations for the transfer function, 
center frequency, and bandwidth of each.

Objective 4—Know the RLC circuit configurations that act as bandreject filters

 14.10 Design the component values for the series 
RLC bandreject filter shown in Fig. 14.28(a) 
so that the center frequency is 4 kHz and the 
quality factor is 5. Use a 500 nF capacitor.

Answer: L = 3.17 mH,

R = 15.92 Ω.

 14.11 Recompute the component values for Assess-
ment Problem 14.10 to achieve a bandreject filter 
with a center frequency of 20 kHz. The filter has 
a 100 Ω resistor. The quality factor remains at 5.

Answer: L = 3.98 mH,

C = 15.92 nF.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 14.41 and 14.42.
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Practical Perspective
Pushbutton Telephone Circuits

In the Practical Perspective at the start of this chapter, we described 
the dual-tone-multiple-frequency (DTMF) system used to signal that a 
button has been pushed on a pushbutton telephone. A key element of 
the DTMF system is the DTMF receiver—a circuit that decodes the tones 
produced by pushing a button and determines which button was pushed.

In order to design a DTMF receiver, we need a better understanding 
of the DTMF system. As you can see from Fig. 14.32, the buttons on the 
telephone are organized into rows and columns. The pair of tones gener-
ated by pushing a button depends on the button’s row and column. The 
button’s row determines its low-frequency tone, and the button’s column 
determines its high-frequency tone.1 For example, pressing the “6”  button 
produces sinusoidal tones with the frequencies 770 Hz and 1477 Hz.

At the telephone switching facility, bandpass filters in the DTMF 
receiver first detect whether tones from both the low-frequency and 
high-frequency groups are simultaneously present. This test rejects 
many extraneous audio signals that are not DTMF. If tones are present in 
both bands, other filters are used to select among the possible tones in 
each band so that the frequencies can be decoded, identifying a unique 
button. Additional tests are performed to prevent false button detection. 
For example, only one tone per frequency band is allowed; the high- 
and low-band frequencies must start and stop within a few milliseconds 
of one another to be considered valid; and the high- and low-band sig-
nal amplitudes must be sufficiently close to each other.

You may wonder why bandpass filters are used instead of a 
 high-pass filter for the high-frequency group of DTMF tones and a low-
pass filter for the low-frequency group of DTMF tones. The reason is 
that the telephone system uses frequencies outside of the 300 - 3 kHz 
band for other signaling purposes, such as ringing the phone’s bell. 
Bandpass filters prevent the DTMF receiver from erroneously detecting 
these other signals.

SELF-CHECK: Assess your understanding of this Practical Perspective 
by trying Chapter Problems 14.51–14.53.

1A fourth high-frequency tone is reserved at 1633 Hz. This tone is used infrequently and is not produced by a standard 12-button telephone.

Figure 14.32 ▲ Tones generated by the rows and 
columns of telephone pushbuttons.

Summary
• A frequency selective circuit, or filter, enables signals 

at certain frequencies to reach the output, and it at-
tenuates signals at other frequencies to prevent them 
from reaching the output. The passband contains 
the  frequencies of those signals that are passed; the 
 stopband contains the frequencies of those signals that 
are attenuated. (See page 566.)

• The cutoff frequency, vc, separates frequencies in the 
stopband from frequencies in the passband. At the cut-
off frequency, the magnitude of the transfer function 
equals 11>122Hmax. (See page 568.)

• A low-pass filter passes voltages at frequencies below 
vc and attenuates frequencies above vc. Any circuit with 
the transfer function

H(s) =
vc

s + vc

functions as a low-pass filter. (See page 573.)

• A high-pass filter passes voltages at frequencies above 
vc and attenuates voltages at frequencies below vc. Any 
circuit with the transfer function
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H(s) =
s

s + vc

functions as a high-pass filter. (See page 577.)

• Bandpass filters and bandreject filters 
each have two cutoff frequencies, vc1 
and vc2. These filters are further charac-
terized by their center frequency (vo), 
bandwidth (b), and quality factor (Q). These 
quantities are defined as

 vo = 1vc1
#  vc2,

 b = vc2 -  vc1,

 Q = vo>b.

(See pages 581 and 582.)

• A bandpass filter passes voltages at frequencies 
within the passband, which is between vc1 and 
vc2. It attenuates frequencies outside of the pass-
band. Any circuit with the transfer function

H(s) =
bS

s2 + bS + vo
2

functions as a bandpass filter. (See page 587.)

• A bandreject filter attenuates voltages at fre-
quencies within the stopband, which is between 
vc1 and vc2. It passes frequencies outside of the 
stopband. Any circuit with the transfer function

H(s) =
s2 +  vo

2

s2 + bS +  vo
2

functions as a bandreject filter. (See page 591.)

• Adding a load to the output of a passive filter 
changes its filtering properties by altering the lo-
cation and magnitude of the passband. Replacing 
an ideal voltage source with one whose source 
resistance is nonzero also changes the filtering 
properties of the rest of the circuit, again by al-
tering the location and magnitude of the pass-
band. (See page 576 and 585.)

Section 14.2

 14.1  a) Find the cutoff frequency in hertz for the RL fil-
ter shown in Fig. P14.1.

b) Calculate H( jv) at vc , 0.125vc , and 8vc.

c) If vi = 20 cos vt V, write the steady-state 
 expression for vo when v = vc , v = 0.125vc , 
and v = 8vc .

Figure P14.1

50 mH

1

2

vi

1

2

vo1.2 kV

 14.2  a) Find the cutoff frequency (in hertz) of the low-
pass filter shown in Fig. P14.2.

b) Calculate H( jv) at vc , 0.1vc , and 10vc  .

c) If vi = 25 cos vt mV, write the steady-state 
expression for vo when v = vc , 0.1vc , and 10vc  .

Figure P14.2

160 V

1

2

vi

1

2

vo5 mF

 14.3  A resistor, denoted as Rl , is added in series with the 
inductor in the circuit in Fig. 14.4(a). The new low-
pass filter circuit is shown in Fig. P14.3.

a) Derive the expression for H(s) where 
H(s) = Vo>Vi.

b) At what frequency will the magnitude of H( jv) 
be maximum?

c) What is the maximum value of the magnitude of 
H( jv)?

d) At what frequency will the magnitude of H( jv) 
equal its maximum value divided by 12?

e) Assume a resistance of 300 Ω is added in 
 series with the 50 mH inductor in the circuit in 
Fig. P14.1. Find vc , H( j0), H( jvc), H( j0.2vc), and 
H( j5vc).

Figure P14.3

Rl

R

L

1

2

vi

1

2

vo

 14.4  A resistor denoted as RL is connected in paral-
lel with the capacitor in the circuit in Fig. 14.7. 
The loaded low-pass filter circuit is shown in 
Fig. P14.7.

Problems
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a) Derive the expression for the voltage transfer 
function Vo>Vi.

b) At what frequency will the magnitude of H( jv) 
be maximum?

c) What is the maximum value of the magnitude of 
H( jv)?

d) At what frequency will the magnitude of H( jv) 
equal its maximum value divided by 12?

e) Assume a resistance of 320 Ω is added in par-
allel with the 5 mF capacitor in the circuit in 
Fig. P14.4. Find vc , H( j0), H( jvc), H( j0.2vc), and 
H( j5vc).

Figure P14.4

R

RL

1

2

vo

1

2

vi C

 14.5  Consider the low-pass filter in Fig. P14.5, which has 
a load resistor RL.

a) What is the transfer function of the unloaded 
filter?

b) What is the transfer function of the loaded filter?

c) Compare the transfer function of the unloaded 
filter in part (a) and the transfer function of the 
loaded filter in part (b). Are the cutoff frequen-
cies different? Are the passband gains different?

d) If R = 270 Ω and L = 5 mH, what is the cutoff 
frequency of the unloaded filter in rad>s?

e) What is the smallest value of load resistance that 
can be used with the filter components in part (d) 
so that the cutoff frequency of the resulting filter 
is no more than 2% different from the unloaded 
filter?

Figure P14.5 

1

2
vi R RLvo

1

2

L

Vo(s)
Vi(s)

H(s) 5

 14.6  Consider the low-pass filter designed in Problem 14.5.

a) Assume the cutoff frequency cannot decrease by 
more than 10% from the specified value, 8 krad>s. 
What is the smallest value of load  resistance that 
can be connected across the output terminals of 
the filter?

b) If the resistor found in part (a) is connected 
across the output terminals of the filter, what is 
the magnitude of H(jv) when v = 0?

 14.7  Use a 1 mH inductor to design a low-pass, RL, pas-
sive filter with a cutoff frequency of 5 kHz.

a) Specify the value of the resistor.

b) A load having a resistance of 68 Ω is connected 
across the output terminals of the filter. What is 
the corner, or cutoff, frequency of the loaded fil-
ter in hertz?

c) If you must use a single resistor from Appendix  H 
for part (a), what resistor should you use? What 
is the resulting cutoff frequency of the filter?

 14.8  Use a 10 mH inductor to design a low-pass passive 
filter with a cutoff frequency of 1600 rad>s.

a) Specify the cutoff frequency in hertz.

b) Specify the value of the filter resistor.

c) Assume the cutoff frequency cannot decrease 
by more than 10%. What is the smallest value of 
load resistance that can be connected across the 
output terminals of the filter?

d) If the resistor found in (c) is connected across 
the output terminals, what is the magnitude of 
H( jv) when v = 0?

 14.9  Design a passive RC low pass filter (see Fig. 14.7) 
with a cutoff frequency of 100 Hz using a 4.7 mF 
 capacitor.

a) What is the cutoff frequency in rad>s?

b) What is the value of the resistor?

c) Draw your circuit, labeling the component val-
ues and output voltage.

d) What is the transfer function of the filter in part (c)?

e) If the filter in part (c) is loaded with a resistor 
whose value is the same as the resistor part (b), 
what is the transfer function of this loaded filter?

f) What is the cutoff frequency of the loaded filter 
from part (e)?

g) What is the gain in the pass band of the loaded 
filter from part (e)?

 14.10  Use a 500 nF capacitor to design a low-pass passive 
filter with a cutoff frequency of 50 krad>s.

a) Specify the cutoff frequency in hertz.

b) Specify the value of the filter resistor.

c) Assume the cutoff frequency cannot increase by 
more than 5%. What is the smallest value of load 
resistance that can be connected across the out-
put terminals of the filter?

d) If the resistor found in (c) is connected across 
the output terminals, what is the magnitude of 
H(jv) when v = 0?

DESIGN
PROBLEM
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Figure P14.14 
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2
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1 kV

vo
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2

2 mH

 14.15  Suppose a 150 Ω load resistor is attached to the fil-
ter in Fig. P14.11.

a) What is the transfer function, H(s) = Vo(s)>Vi(s), 
of this filter?

b) What is the cutoff frequency of this filter?

c) How does the cutoff frequency of the loaded 
filter compare with the cutoff frequency of the 
unloaded filter in Fig. P14.11?

d) What else is different for these two filters?

 14.16  Design a passive RC high pass filter (see 
Fig. 14.10[a]) with a cutoff frequency of 5 kHz using 
a 10 pF capacitor.

a) What is the cutoff frequency in rad>s?

b) What is the value of the resistor?

c) Draw your circuit, labeling the component val-
ues and output voltage.

d) What is the transfer function of the filter in 
part (c)?

e) If the filter in part (c) is loaded with a resis-
tor whose value is the same as the resistor 
in (b), what is the transfer function of this 
loaded  filter?

f) What is the cutoff frequency of the loaded filter 
from part (e)?

g) What is the gain in the pass band of the loaded 
filter from part (e)?

 14.17  Using a 100 mH inductor, design a high-pass, RL, 
passive filter with a cutoff frequency of 1500 krad>s.

a) Specify the value of the resistance, selecting 
from the components in Appendix H.

b) Assume the filter is connected to a pure resistive 
load. The cutoff frequency is not to drop below 
1200 krad>s. What is the smallest load resistor 
from Appendix H that can be connected across 
the output terminals of the filter?

Section 14.4

 14.18  For the bandpass filter shown in Fig. P14.18, find 
(a) vo, (b) fo, (c) Q, (d) vc1, (e) fc1, (f) vc2, (g) fc2, and 
(h) b.

DESIGN
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Section 14.3

 14.11  a) Find the cutoff frequency (in hertz) for the high-
pass filter shown in Fig. P14.11.

b) Find H( jv) at vc , 0.125vc , and 8vc  .

c) If vi = 75 cos vt V, write the steady-state 
 expression for vo when v = vc , v = 0.125vc , 
and v = 8vc.

Figure P14.11

20 V

80 mF

1

2

vi

1

2

vo

 14.12  A resistor, denoted as Rc , is connected in series with 
the capacitor in the circuit in Fig. 14.11(a). The new 
high-pass filter circuit is shown in Fig. P14.12.

a) Derive the expression for H(s) where 
H(s) = Vo>Vi.

b) At what frequency will the magnitude of H( jv) 
be maximum?

c) What is the maximum value of the magnitude of 
H( jv)?

d) At what frequency will the magnitude of H( jv) 
equal its maximum value divided by 12?

e) Assume a resistance of 5 Ω is connected in 
 series with the 80 mF capacitor in the circuit in 
Fig. P14.11. Calculate vc , H( jvc), H( j0.125vc), 
and H( j8vc).

Figure P14.12
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 14.13  Using a 100 nF capacitor, design a high-pass passive 
filter with a cutoff frequency of 300 Hz.

a) Specify the value of R in kilohms.

b) A 47 kΩ resistor is connected across the 
 output terminals of the filter. What is the cutoff 
 frequency, in hertz, of the loaded filter?

 14.14  Consider the circuit shown in Fig. P14.14.

a) What is the transfer function, H(s) = Vo(s)>Vi(s), 
of this filter?

b) What is the cutoff frequency of this filter?

c) What is the magnitude of the filter’s transfer 
function at s = jvc?

DESIGN
PROBLEM
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 14.25  Using a 50 nF capacitor in the bandpass circuit 
shown in Fig. 14.22, design a filter with a quality 
 factor of 5 and a center frequency of 20 krad>s.

a) Specify the numerical values of R and L.

b) Calculate the upper and lower cutoff frequen-
cies in kilohertz.

c) Calculate the bandwidth in hertz.

 14.26  Design a series RLC bandpass filter using only three 
components from Appendix H that comes closest to 
meeting the filter specifications in Problem 14.26.

a) Draw your filter, labeling all component values 
and the input and output voltages.

b) Calculate the percent error in this new filter’s 
center frequency and quality factor when com-
pared to the values specified in Problem 14.26.

 14.27  Use a 5 nF capacitor to design a series RLC band-
pass filter, as shown at the top of Fig. 14.27. The cen-
ter frequency of the filter is 8 kHz, and the quality 
factor is 2.

a) Specify the values of R and L.

b) What is the lower cutoff frequency in kilohertz?

c) What is the upper cutoff frequency in kilohertz?

d) What is the bandwidth of the filter in kilohertz?

 14.28  Design a series RLC bandpass filter using only three 
components from Appendix H that comes closest to 
meeting the filter specifications in Problem 14.27.

a) Draw your filter, labeling all component values 
and the input and output voltages.

b) Calculate the percent error in this new  filter’s cen-
ter frequency and quality factor when  compared 
to the values specified in Problem 14.27.

 14.29  For the bandpass filter shown in Fig. P14.29, calculate 
the following: (a) fo; (b) Q; (c) fc1; (d) fc2; and (e) b.

Figure P14.29

20 V 40 mH

180 V

40 nF

1

2

vi

1

2

vo

 14.30  The input voltage in the circuit in Fig. P14.29 is 
10 cos vt V. Calculate the output voltage when 
(a) v = vo ; (b) v = vc1 ; and (c) v = vc2.

 14.31  Consider the circuit shown in Fig. P14.31.

a) Find vo.

b) Find b.

c) Find Q.
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Figure P14.18

8 kV

10 nF

1

2

vo

1

2

vi 10 mH

 14.19  Calculate the center frequency, the bandwidth, and 
the quality factor of a bandpass filter that has an 
upper cutoff frequency of 141 krad>s and a lower 
cutoff frequency of 133 krad>s.

 14.20  A bandpass filter has a center, or resonant, fre-
quency of 50 krad>s and a quality factor of 4. Find 
the bandwidth, the upper cutoff frequency, and 
the lower cutoff frequency. Express all answers in 
kilohertz.

 14.21  Design a series RLC bandpass filter (see Fig. 14.19[a]) 
with a quality of 8 and a center  frequency of 50 krad>s, 
using a 0.01 mF capacitor.

a) Draw your circuit, labeling the component val-
ues and output voltage.

b) For the filter in part (a), calculate the bandwidth 
and the values of the two cutoff frequencies.

 14.22  The input to the series RLC bandpass filter designed 
in Problem 14.21 is 5cosvt V. Find the voltage drop 
across the resistor when (a) v = vo; (b) v= vc1; 
(c) v = vc2; (d) v = 0.1vo; (e) v = 10vo.

 14.23  The input to the series RLC bandpass filter  designed 
in Problem 14.21 is 5cosvt V. Find the voltage drop 
across the series combination of the inductor and ca-
pacitor when (a) v = vo; (b) v = vc1; (c) v = vc2; 
(d) v = 0.1vo; (e) v = 10vo.

 14.24  a) Using the relationship between the bandwidth 
and the cutoff frequencies and the relationship 
between the center frequency and the cutoff 
 frequencies, show that

 vc1 = -
b

2
+ B ab

2
b

2

+ vo
2;

 vc2 =
b

2
+ B ab

2
b

2

+ vo
2.

b) Using the expressions for the two cutoff 
 frequencies in terms of the center frequency and 
the bandwidth given in part (a), show that

 vc1 = vo
# c -  

1
2Q

+ B1 + a 1
2Q

b
2

d ,

 vc2 = vo
# c 1

2Q
+ B1 + a 1

2Q
b

2

d .
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d) What is the expression for the quality factor of 
the system?

e) What is the expression for the loaded quality 
factor (QL) as a function of the unloaded quality 
factor (QU)?

f) What are the expressions for the cutoff frequen-
cies vc1 and vc2?

Figure P14.33
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 14.34  The parameters in the circuit in Fig. P14.33 are 
R = 2.4  kΩ , C = 50  pF, and L = 2  mH. The 
quality factor of the circuit is not to drop below 7.5. 
What is the smallest permissible value of the load 
resistor RL?

Section 14.5

 14.35  For the bandreject filter in Fig. P14.35, calculate 
(a) vo ; (b) fo ; (c) Q; (d) b in hertz; (e) vc1 ; (f) fc1 ; 
(g) vc2 ; and (h) fc2 .

Figure P14.35
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 14.36  For the bandreject filter in Fig. P14.35,

a) Find H(jv) at vo, vc1, vc2 , 0.1vo, and 10vo.

b) If vi = 80 cos vt V, write the steady-state ex-
pression for vo when v = vo, v = vc1, v = vc2, 
v = 0.1vo, and v = 10vo.

 14.37  a) Show (via a qualitative analysis) that the circuit 
in Fig. P14.37 is a bandreject filter.

b) Support the qualitative analysis of (a) by finding 
the voltage transfer function of the filter.

c) Derive the expression for the center frequency 
of the filter.

d) Derive the expressions for the cutoff frequencies 
vc1 and vc2.

e) What is the expression for the bandwidth of the 
filter?

f) What is the expression for the quality factor of 
the circuit?

d) Find the steady-state expression for vo when 
vi = 250  cos  vot  mV.

e) Show that if RL is expressed in kilohms the Q of 
the circuit in Fig. P14.31 is

Q =
20

1 + 100>RL
.

f) Plot Q versus RL for 20 kΩ … RL … 2 MΩ.

Figure P14.31
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 14.32  A block diagram of a system consisting of a sinusoi-
dal voltage source, a series RLC bandpass filter, and 
a load is shown in Fig. P14.32. The internal imped-
ance of the sinusoidal source is 80 + j0 Ω, and the 
impedance of the load is 480 + j0 Ω.
The RLC series bandpass filter has a 20 nF capac-
itor, a center frequency of 50  krad>s, and a quality 
factor of 6.25.

a) Draw a circuit diagram of the system.

b) Specify the numerical values of L and R for the 
filter section of the system.

c) What is the quality factor of the interconnected 
system?

d) What is the bandwidth (in hertz) of the intercon-
nected system?

Figure P14.32

 14.33  The purpose of this problem is to investigate how a 
resistive load connected across the output terminals 
of the bandpass filter shown in Fig. 14.19 affects the 
quality factor and hence the bandwidth of the filtering 
system. The loaded filter circuit is shown in Fig. P14.33.

a) Calculate the transfer function Vo>Vi for the cir-
cuit shown in Fig. P14.33.

b) What is the expression for the bandwidth of the 
system?

c) What is the expression for the loaded bandwidth 
(bL) as a function of the unloaded bandwidth 
(bU)?
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 14.43  Assume the bandreject filter in Problem 14.42 is 
loaded with a 1 kΩ  resistor.

a) What is the quality factor of the loaded circuit?

b) What is the bandwidth (in kilohertz) of the load-
ed circuit?

c) What is the upper cutoff frequency in kilohertz?

d) What is the lower cutoff frequency in kilohertz?

 14.44  Design a parallel RLC bandreject filter using 
only three components from Appendix H that 
comes closest to meeting the filter specifications in 
Problem 14.42.

a) Draw your filter, labeling all component values 
and the input and output voltages.

b) Calculate the percent error in this new filter’s 
center frequency and quality factor when com-
pared to the values specified in Problem 14.42.

 14.45  The purpose of this problem is to investigate how a 
resistive load connected across the output terminals 
of the bandreject filter shown in Fig. 14.28(a) affects 
the behavior of the filter. The loaded filter circuit is 
shown in Fig. P14.45.

a) Find the voltage transfer function Vo>Vi.

b) What is the expression for the center frequency?

c) What is the expression for the bandwidth?

d) What is the expression for the quality factor?

e) Evaluate H(jvo).

f) Evaluate H(j0).

g) Evaluate H(j∞).

h) What are the expressions for the corner frequen-
cies vc1 and vc2?

Figure P14.45
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 14.46  The parameters in the circuit in Fig. P14.45 are 
R = 30 Ω, L = 1 mH, C = 4 pF, and RL = 150 Ω.

a) Find vo, b (in kilohertz), and Q.

b) Find H(j0) and H(j∞).

c) Find fc2 and fc1.

d) Show that if RL is expressed in ohms the Q of 
the circuit is

Q =
50
3

 [1 + (30>RL)].

e) Plot Q versus RL for 10 Ω … RL … 300 Ω.
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Figure P14.37
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 14.38  For the bandreject filter in Fig. P14.38, calculate 
(a) vo; (b) fo; (c) Q; (d) vc1; (e) fc1; (f) vc2; (g) fc2; and 
(h) b in kilohertz.

Figure P14.38
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 14.39  Design an RLC bandreject filter (see Fig. 14.28[a]) 
with a quality of 2.5 and a center frequency of 
25 krad>s, using a 200 nF capacitor.

a) Draw your circuit, labeling the component val-
ues and output voltage.

b) For the filter in part (a), calculate the bandwidth 
and the values of the two cutoff frequencies.

 14.40  The input to the RLC bandreject filter designed in 
Problem 14.39 is 10cosvt V. Find the voltage drop 
across the series combination of the inductor and ca-
pacitor when (a) v = vo; (b) v = vc1; (c) v = vc2; 
(d) v = 0.125vo; (e) v = 8vo.

 14.41  The input to the RLC bandreject filter designed in 
Problem 14.39 is 10cosvt V. Find the voltage drop 
across the resistor when (a) v = vo; (b) v = vc1; 
(c) v = vc2; (d) v = 0.125vo; (e) v = 8vo.

 14.42  Use a 500 nF capacitor to design a bandreject filter, 
as shown in Fig. P14.42. The filter has a center fre-
quency of 4 kHz and a quality factor of 5.

a) Specify the numerical values of R and L.

b) Calculate the upper and lower corner, or cutoff, 
frequencies in kilohertz.

c) Calculate the filter bandwidth in kilohertz.

Figure P14.42
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Figure P14.49
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 14.50  Repeat Problem 14.49 for the circuit shown in 
Fig. P14.50. Note that the output voltage is now the 
voltage across the capacitor.

Figure P14.50
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 14.51  Design a series RLC bandpass filter (see Fig. 14.27) 
for detecting the low-frequency tone generated by 
pushing a telephone button as shown in Fig. 14.32.

a) Calculate the values of L and C that place the 
cutoff frequencies at the edges of the DTMF 
low-frequency band. Note that the resistance in 
standard telephone circuits is always R = 600 Ω.

b) What is the output amplitude of this circuit at 
each of the low-band frequencies, relative to the 
peak amplitude of the bandpass filter?

c) What is the output amplitude of this circuit at 
the lowest of the high-band frequencies?

 14.52  Design a DTMF high-band bandpass filter similar to 
the low-band filter design in Problem 14.51. Be sure 
to include the fourth high-frequency tone, 1633 Hz, 
in your design. What is the response amplitude 
of your filter to the highest of the low-frequency 
DTMF tones?

 14.53  The 20 Hz signal that rings a telephone’s bell has 
to have a very large amplitude to produce a loud 
enough bell signal. How much larger can the ringing 
signal amplitude be, relative to the low-band DTMF 
signal, so that the response of the filter in Problem 
14.51 is no more than half as large as the largest of 
the DTMF tones?

PRACTICAL
PERSPECTIVE

DESIGN
PROBLEM

PRACTICAL
PERSPECTIVE

DESIGN
PROBLEM

PRACTICAL
PERSPECTIVE

DESIGN
PROBLEM

 14.47  A 500 Ω load is added to the bandreject filter shown 
in Fig. P14.42. The center frequency of the filter is 
25 krad>s, and the capacitor is 25 nF. At very low 
and very high frequencies, the amplitude of the si-
nusoidal output voltage should be at least 90% of 
the amplitude of the sinusoidal input voltage.

a) Specify the numerical values of R and L.

b) What is the quality factor of the circuit?

Sections 14.1–14.5

 14.48  Given the following voltage transfer function:

 H(s) =
Vo

Vi

 =
25 * 106

s2 + 1000s + 25 * 106 .

a) At what frequencies (in radians per second) is 
the magnitude of the transfer function equal to 
unity?

b) At what frequency is the magnitude of the trans-
fer function maximum?

c) What is the maximum value of the transfer func-
tion magnitude?

 14.49  Consider the series RLC circuit shown in Fig. P14.49. 
When the output is the voltage across the resistor, we 
know this circuit is a bandpass filter. When the  output 
is the voltage across the series combination of the 
 inductor and capacitor, we know this circuit is a ban-
dreject filter. This problem investigates the behavior 
of this circuit when the output is across the inductor.

a) Find the transfer function, H(s) = Vo(s)>Vi(s) 
when Vo(s) is the voltage across the inductor.

b) Find the magnitude of the transfer function in 
part (a) for very low frequencies.

c) Find the magnitude of the transfer function in 
part (a) for very high frequencies.

d) Based on your answers in parts (b) and (c), what 
type of filter is this?

e) Suppose R = 600 Ω, L = 400 mH, C = 2.5 mF. 
Calculate the cutoff frequency of this filter, that 
is, the frequency at which the magnitude of the 
transfer function is 1>12.
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15
CHAPTER 

Active Filter Circuits
Active filter circuits, which employ op amps, can be config-
ured as low-pass filters, high-pass filters, bandpass filters and 
bandreject filters, just like the passive circuits we analyzed in 
Chapter 14. Active filter circuits have several advantages over 
their passive counterparts.

• Active circuits can produce bandpass and bandreject filters 
without using inductors. This is advantageous because 
inductors are usually large, heavy, and costly, and they can 
introduce electromagnetic field effects that compromise the 
desired frequency response characteristics.

• Active filters provide control over passband amplification 
that is not available in passive filter circuits. Examine the 
transfer functions of all the filter circuits from Chapter 14 
and you will notice that the maximum magnitude does not 
exceed 1. This is not surprising, since most of the transfer 
functions in Chapter 14 were derived using voltage division. 
Active filters permit us to specify both the filtering char-
acteristics and a passband gain, an advantage over passive 
filters.

• Active filters can have resistive loads at their outputs whose 
presence does not alter the filter characteristics due to the 
properties of ideal op amps. This is another advantage of 
active filters, as both the cutoff frequency and the passband 
magnitude of passive filters can change when a resistive 
load is added at the output.

Thus, we can implement filter designs using active circuits when 
physical size, passband amplification, and load variation are im-
portant parameters in the design specifications.

In this chapter, we analyze a few of the many filter circuits 
that use op amps. You will see how these op amp circuits over-
come the disadvantages of passive filter circuits. We will also 
combine basic op amp filter circuits to achieve specific frequency 
responses and to attain a more nearly ideal filter response. Note 
that throughout this chapter we assume that every op amp be-
haves as an ideal op amp.

15.1  First-Order Low-Pass and High-Pass 
Filters p. 602

15.2 Scaling p. 605

15.3  Op Amp Bandpass and Bandreject 
Filters p. 608

15.4 Higher-Order Op Amp Filters p. 615

15.5  Narrowband Bandpass and Bandreject 
Filters p. 628

1 Know the op amp circuits that behave as 
first-order low-pass and high-pass filters 
and be able to calculate component values 
for these circuits to meet specifications of 
cutoff frequency and passband gain.

2 Be able to design filter circuits starting 
with a prototype circuit and use scaling 
to achieve desired frequency response 
 characteristics and component values.

3 Understand how to use cascaded first-  
and second-order Butterworth filters to 
implement low-pass, high-pass, bandpass, 
and bandreject filters of any order.

4 Be able to use the design equations to 
calculate component values for prototype 
narrowband bandpass, and narrowband 
bandreject filters to meet desired filter 
specifications.

CHAPTER OBJECTIVES



Practical Perspective
Bass Volume Control
The circuits we analyze in this chapter are frequency 
 selective, which means that the circuit’s behavior depends 
on its sinusoidal input frequency. These filter circuits play 
important roles in many audioelectronic applications.

Audioelectronic systems such as radios, CD players, 
and home stereo systems often provide separate volume 
controls labeled “treble” and “bass.” These controls allow 
you to set the volume of high-frequency audio signals 
(“treble”) and the volume of low-frequency audio signals 

(“bass”) independently. Adjusting the amplification (boost) 
or attenuation (cut) in these two frequency bands allows 
you to customize the sound with more precision than you 
get using a single volume control.

The Practical Perspective example at the end of this 
chapter presents a bass volume control circuit composed 
of a single op amp together with resistors and capaci-
tors. An adjustable resistor controls the amplification in 
the bass frequency range.

Bass Treble

Arnut09Job/Shutterstock

Be Good/Shutterstock

Juraj Kovac/Shutterstock

Peter Gudella/Shutterstock
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15.1 First-Order Low-Pass  
and High-Pass Filters

Consider the circuit in Fig. 15.1. When the frequency of the source is var-
ied, only the impedance of the capacitor is affected. At very low frequen-
cies, the capacitor acts like an open circuit, and the op amp circuit acts like 
an inverting amplifier with a gain of -R2>R1. At very high frequencies, 
the capacitor acts like a short circuit that connects the op amp’s output to 
ground. The op amp circuit in Fig. 15.1 thus functions as a low-pass filter 
with a passband gain of -R2>R1.

To confirm this qualitative assessment, we compute the transfer func-
tion H(s) = Vo(s)>Vi(s). Note that the circuit in Fig. 15.1 has the general 
form of the circuit shown in Fig. 15.2, where the impedance in the input path 
1Zi2  is the resistor R1, and the impedance in the feedback path 1Zf2  is the 
parallel combination of the resistor R2 and the capacitor impedance 1>sC.

The circuit in Fig. 15.2 has the same configuration as the inverting am-
plifier circuit from Chapter 5, so its transfer function is -Zf>Zi. Therefore, 
the transfer function for the circuit in Fig. 15.1 is

 H(s) =
-Zf

Zi
=

-R2 } a 1
sC

b
R1

= -K
vc

s + vc
, (15.1)

where

 K =
R2

R1
, (15.2)

and

 vc =
1

R2C
. (15.3)

Note that Eq. 15.1 has the same form as the general equation for low-pass 
filters given in Eq. 14.6, with an important difference: the gain in the pass-
band, K, is set by the ratio R2>R1. The op amp low-pass filter thus permits 
the passband gain and the cutoff frequency to be specified independently.

A Note About Frequency Response Plots
Frequency response plots, introduced in Chapter 14, provide valuable in-
sight into the way a filter circuit functions. Thus, we make extensive use 
of frequency response plots in this chapter, too. The frequency response 
plots in Chapter 14 have two components—a plot of the transfer func-
tion magnitude versus frequency and a plot of the transfer function phase 
angle, in degrees, versus frequency. The two plots are usually stacked on 
top of one another so that they can share the same frequency axis.

In this chapter, we use a special type of frequency response plot called 
the Bode plot. Bode plots are discussed in detail in Appendix E, which 
includes information about how to construct these plots by hand. You will 
probably use a computer to construct Bode plots, so here we summarize 
the special features of these plots. Bode plots differ from the frequency 
response plots in Chapter 14 in two important ways.

• A Bode plot uses a logarithmic axis for the frequency values instead of 
a linear axis. This permits us to plot a wider range of frequencies of in-
terest. Normally, we plot three or four decades of frequencies, say from 
102 rad>s to 106 rad>s, or 1 kHz to 1 MHz, choosing the frequency range 
where the transfer function characteristics are changing. If we plot both 
the magnitude and phase angle plots, they share the frequency axis.
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Figure 15.1 ▲ A first-order low-pass filter.
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Figure 15.2 ▲ A general op amp circuit.
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• The Bode magnitude is plotted in decibels (dB) versus the log of the 
frequency, instead of plotting the absolute magnitude versus linear 
frequency. The decibel is discussed in Appendix D. Briefly, if the mag-
nitude of the transfer function is 0H1 jv2 0 , its value in dB is given by

AdB = 20 log10 0H1 jv2 0 .
Note that although 0H1 jv2 0  is an unsigned quantity, AdB is a signed 
quantity. When AdB = 0, the transfer function magnitude is 1, since 
20 log10(1) = 0. When AdB 6  0, the transfer function magnitude is be-
tween 0 and 1, and when AdB 7 0, the transfer function magnitude is 
greater than 1. Finally, note that

20 log10 0 1>12 0 = -3 dB.

Recall that at a filter’s cutoff frequency the transfer function’s magni-
tude has been reduced from its maximum value by 1>12. Translating this 
definition to magnitude in dB, we find that a transfer function’s magnitude 
at its cutoff frequency has been reduced from its maximum magnitude by 
3 dB. For example, if the magnitude of a low-pass filter in its passband is 
26 dB, the magnitude used to find the cutoff frequency is 26 - 3 = 23 dB.

Example 15.1 illustrates the design of a first-order low-pass filter to 
meet desired specifications of passband gain and cutoff frequency; it also 
illustrates a Bode magnitude plot of the filter’s transfer function.

EXAMPLE 15.1 Designing a Low-Pass Op Amp Filter

Using the circuit shown in Fig. 15.1, calculate values 
for C and R2 that, together with R1 = 1 Ω, produce 
a low-pass filter having a gain of 1 in the passband 
and a cutoff frequency of 1 rad>s. Find the transfer 
function for this filter and use it to sketch a Bode 
magnitude plot of the filter’s frequency response.

Solution
Equation 15.2 gives the passband gain in terms of 
R1 and R2, so we use it to calculate the required 
value of R2:

R2 = KR1 = (1)(1) = 1 Ω.

Now use Eq. 15.3 to calculate C and satisfy the cut-
off frequency specification:

C =
1

R2vc
=

1
(1)(1)

= 1 F.

The transfer function for the low-pass filter is 
given by Eq. 15.1:

H(s) = -K
vc

s + vc
=

-1
s + 1

 .

The Bode plot of 0H1 jv2 0  is shown in Fig. 15.3. We 
have just designed a prototype low-pass op amp fil-
ter. It uses a resistor value of 1 Ω and a capacitor 
value of 1 F, and it has a cutoff frequency of 1 rad>s. 

As we shall see in the next section, prototype fil-
ters provide a useful starting point for the design of 
filters that use more realistic component values to 
achieve a desired frequency response.
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Figure 15.3 ▲ The Bode magnitude plot of the low-pass filter from 
Example 15.1.
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You may have recognized the circuit in Fig. 15.1 as the integrating 
amplifier circuit introduced in Chapter 7. They are indeed the same cir-
cuit, so integrating in the time domain corresponds to low-pass filtering in 
the frequency domain. This relationship between integration and low-pass 
filtering is also evident from the operational Laplace transform for inte-
gration derived in Chapter 12.

The circuit in Fig. 15.4 is an active first-order high-pass filter. This 
circuit also has the general form of the circuit in Fig. 15.2, only now the 
impedance in the input path is the series combination of R1 and 1>sC, and 
the impedance in the feedback path is the resistor R2. The transfer func-
tion for the circuit in Fig 15.4 is thus

 H(s) =
-Zf

Zi
=

-R2

R1 +
1

sC

= -K
s

s + vc
, (15.4)

where

 K =
R2

R1
, (15.5)

and

 vc =
1

R1C
. (15.6)

The form of the transfer function given in Eq. 15.4 is the same as that in 
Eq. 14.10, the equation for passive high-pass filters. Again, the active filter 
can have a passband gain greater than 1.

Example 15.2 designs an active high-pass filter that must meet fre-
quency response specifications from a Bode plot.
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Figure 15.4 ▲ A first-order high-pass filter.

EXAMPLE 15.2 Designing a High-Pass Op Amp Filter

Figure 15.5 shows the Bode magnitude plot of a 
high-pass filter. Using the active high-pass filter cir-
cuit in Fig. 15.4, calculate values of R1 and R2 that 
produce the desired magnitude response. Use a 
0.1 mF capacitor. If a 10 kΩ load resistor is added to 
this filter, how will the magnitude response change?

Solution
Begin by writing a transfer function that has the 
magnitude plot shown in Fig. 15.5. To do this, 
note that the gain in the passband is 20 dB; there-
fore, K = 10. Also note that the 3 dB point is  
500 rad>s, which must be the filter’s cutoff fre-
quency. Equation 15.4 is the transfer function for a 
high-pass filter, so the transfer function that has the 
magnitude response shown in Fig. 15.5 is given by

H(s) =
-10s

s + 500
 .

Next, equate this transfer function with Eq. 15.4:

H(s) =
-10s

s + 500
=

- 1R2>R12s

s + 11>R1C2 .
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Figure 15.5 ▲ The Bode magnitude plot of the high-pass filter for 
Example 15.2.
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Equating the numerators and denominators and 
then simplifying, we get two equations:

10 =
R2

R1
, 500 =

1
R1C

.

Using the specified value of C (0.1 mF), we find

R1 = 20 kΩ, R2 = 200 kΩ .

The circuit is shown in Fig. 15.6.
Because we have made the assumption that the 

op amp is ideal, adding any load resistor, regardless 
of its resistance, has no effect on the filter circuit. 
Thus, the magnitude response of a high-pass filter 

with a load resistor is the same as that of a high-
pass filter with no load resistor, which is depicted in  
Fig. 15.5.
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Figure 15.6 ▲ The high-pass filter for Example 15.2.

Objective 1—Know the op amp circuits that behave as first-order low-pass and high-pass filters and be 
able to calculate their component values

 15.1 Compute the values for R2 and C that yield  
a high-pass filter with a passband gain of 1  
and a cutoff frequency of 1 rad>s if R1 is  
1 Ω. (Note: This is the prototype high-pass 
filter.)

Answer: R2 = 1 Ω, C = 1 F.

 15.2 Compute the resistor values needed for the 
low-pass filter circuit in Fig. 15.1 to produce the 
transfer function

H(s) =
-20,000

s + 5000
.

Use a 5 mF capacitor.

Answer: R1 = 10 Ω, R2 = 40 Ω.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 15.1 and 15.8.

15.2 Scaling
When designing and analyzing filter circuits, it is convenient to use com-
ponent values like 1 Ω, 1 H, and 1 F because any computations required 
are simple. Unfortunately, these values are unrealistic for specifying prac-
tical components, and they result in filters with undesirable characteris-
tics, like a cutoff frequency of 1 rad>s. But we can use scaling to transform 
the convenient component values into realistic values and transform un-
desirable filter characteristics into desirable ones. There are two types of 
scaling: magnitude and frequency.

Magnitude Scaling

We scale a circuit in magnitude by multiplying the impedance at a given 
frequency by the scale factor km. Thus, we multiply all resistors and in-
ductors by km and all capacitors by 1>km. If we let unprimed variables 
represent the initial values of the parameters, and we let primed variables 
represent the scaled values of the variables, we have

R′ = kmR, L′ = kmL,  and  C′ = C>km.



606 Active Filter Circuits

Note that km is by definition a positive real number that can be either less 
than or greater than 1.

Frequency Scaling

We scale a circuit in frequency by changing the circuit’s component values 
so that at the new frequency, the impedance of each element is the same 
as it was at the original frequency. Because resistive impedance is inde-
pendent of frequency, resistors are unaffected by frequency scaling. If we 
let kf  denote the frequency scale factor, inductor and capacitor values are 
both multiplied by 1>kf. Thus, for frequency scaling,

R′ = R, L′ = L>kf, and C′ = C>kf.

The frequency scale factor kf  is also a positive real number that can be less 
than or greater than 1.

A circuit can be scaled simultaneously in both magnitude and 
 frequency. The scaled values (primed) in terms of the original values 
 (unprimed) are

COMPONENT SCALE FACTORS

 R′ = kmR,

  L′ =
km

kf
 L,  (15.7)

 C′ =
1

kmkf
 C.

The Use of Scaling in the Design of Filters
When designing filters, follow these steps to use scaling:

• Select the cutoff frequency, vc, to be 1 rad>s (if you are designing low- 
or high-pass filters), or select the center frequency, vo, to be 1 rad>s 
(if you are designing bandpass or bandreject filters).

• Select a 1 F capacitor and calculate the values of the resistors needed 
to give the desired passband gain (if you are designing an active filter) 
and the 1 rad>s cutoff or center frequency.

• Use scaling to compute more realistic component values that give the 
desired cutoff or center frequency.

Example 15.3 illustrates the scaling process in general, and Example 15.4 
illustrates the use of scaling in the design of a low-pass filter.

vi

1 F1 H

1

2

vs1 V
1

2

Figure 15.7 ▲ The series RLC circuit for Example 15.3.

EXAMPLE 15.3 Scaling a Series RLC Filter

The passive series RLC filter shown in Fig. 15.7 has 
a center frequency of 11>LC = 1 rad>s, a band-
width of R>L = 1 rad>s, and thus a quality factor 
of 1. Use scaling to compute new values of R and 
L that yield a circuit with the same quality factor 
but with a center frequency of 500 Hz. Use a 2 mF 
capacitor.
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Solution
Compute the frequency scale factor that will shift the 
center frequency from 1 rad>s to 500 Hz. Remember, 
the unprimed variables represent values before scal-
ing, whereas the primed variables represent values 
after scaling.

kf =
v′o
vo

=
2p(500)

1
= 3141.59.

Now, use Eq. 15.7 to compute the magnitude scale 
factor that, together with the frequency scale factor, 
will yield a capacitor value of 2 mF:

km =
1
kf

 
C
C′

=
1

13141.592 12 * 10-62 = 159.155.

Use Eq. 15.7 again to compute the magnitude- and 
frequency-scaled values of R and L:

 R′ = kmR = 159.155 Ω,

 L′ =
km

kf
 L = 50.66 mH.

With these component values, the center fre-
quency of the series RLC circuit is 11>LC = 3141.61 rad>s or 500 Hz, 

and the bandwidth is 

R>L = 3141.61 rad>s or 500 Hz; 

thus, the quality factor is still 1.

EXAMPLE 15.4 Scaling a Prototype Low-Pass Op Amp Filter

Use the prototype low-pass op amp filter from 
Example 15.1, along with magnitude and frequency 
scaling, to compute the resistor values for a low- 
pass filter with a gain of 5, a cutoff frequency of  
1000 Hz, and a feedback capacitor of 10 nF. 
Construct a Bode plot of the resulting transfer 
function’s magnitude.

Solution
To begin, use frequency scaling to place the cutoff 
frequency at 1000 Hz:

kf = v′c>vc = 2p(1000)>1 = 6283.185,

where the primed variable has the new value and 
the unprimed variable has the old value of the cut-
off frequency. Then compute the magnitude scale 
factor that, together with kf = 6283.185, will scale 
the capacitor to 10 nF:

km =
1
kf

 
C
C′

=
1

16283.1852 110-82 = 15,915.5.

Since resistors are scaled only by using magnitude 
scaling,

R′1 = R′2 = kmR = 115,915.52(1) = 15,915.5 Ω.

Finally, we need to meet the passband gain 
specification. We can adjust the values of either R′1 
or R′2 because K = R′2>R′1. If we adjust R′2, we will 
change the cutoff frequency because v′c = 1>R′2C′. 
Therefore, we can adjust the value of R′1 to alter 
only the passband gain:

R′1 = R′2>K = 115,915.52 >(5) = 3183.1 Ω.

The final component values are

R′1 = 3183.1 Ω, R′2 = 15,915.5 Ω, C′ = 10 nF.

The transfer function of the filter is given by

H(s) =
-31,415.93

s + 6283.185
.

The Bode plot of this transfer function’s magnitude 
is shown in Fig. 15.8.
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Figure 15.8 ▲ The Bode magnitude plot of the low-pass filter 
from Example 15.4.
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15.3 Op Amp Bandpass  
and Bandreject Filters

We now analyze and design op amp circuits that act as bandpass and band-
reject filters. Our initial approach is motivated by the Bode plot construc-
tion shown in Fig. 15.9. We can see from the plot that the bandpass filter 
consists of three separate elements:

Objective 2—Be able to design filter circuits starting with a prototype and use scaling to achieve desired 
frequency response and component values

 15.3 What magnitude and frequency scale factors 
will transform the prototype high-pass filter 
into a high-pass filter with a 0.5 mF capacitor 
and a cutoff frequency of 10 kHz?

Answer: kf = 62,831.85, km = 31.831.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 15.15 and 15.16.

• A unity-gain low-pass filter whose cutoff frequency is vc2, the larger 
of the two cutoff frequencies.

• A unity-gain high-pass filter whose cutoff frequency is vc1, the smaller  
of the two cutoff frequencies.

• A gain component to provide the desired passband gain.

These three subcircuits are cascaded in series. The subcircuit transfer func-
tions are multiplied to form the cascade transfer function, and the subcir-
cuit magnitude plots are added to create the cascade magnitude plot.
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Figure 15.9 ▲ Constructing the Bode magnitude plot of a bandpass filter.
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This method of constructing an active bandpass filter and its corre-
sponding magnitude response assumes that the lower cutoff frequency 
(vc1) is significantly smaller than the upper cutoff frequency (vc2). The 
resulting filter is called a broadband bandpass filter because the band of 
frequencies passed is wide. The formal definition of a broadband filter 
requires that the two cutoff frequencies satisfy the equation

vc2

vc1
 Ú 2.

As illustrated by the Bode plot construction in Fig. 15.9, we require that 
the magnitude of the high-pass filter be unity at the cutoff frequency of the 
low-pass filter and that the magnitude of the low-pass filter be unity at the 
cutoff frequency of the high-pass filter. Then the bandpass filter will have 
the cutoff frequencies specified by the low-pass and high-pass filters. We 
need to determine the relationship between vc1 and vc2 that will satisfy 
the requirements illustrated in Fig. 15.9.

We can construct a circuit consisting of three subcircuits by cascading a 
low-pass op amp filter, a high-pass op amp filter, and an inverting amplifier 
(see Section 5.3), as shown in Fig. 15.10(a). Figure 15.10(a) is called a block 
diagram. Each block represents a component or subcircuit, and the output 
of one block is the input to the next, in the direction indicated. We want to 
establish the relationship between vc1 and vc2 that will permit each subcir-
cuit to be designed independently, without concern for the other subcircuits 
in the cascade. This reduces the bandpass filter design to the design of a 
unity-gain first-order low-pass filter, a unity-gain first-order high-pass filter, 
and an inverting amplifier, each of which is a simple circuit.

The transfer function of the cascaded bandpass filter is the product of 
the transfer functions of the three cascaded subcircuits:

 H(s) =
Vo

Vi

 = a -vc2

s + vc2
b a -s

s + vc1
b a

-Rf

Ri
b

 =
-Kvc2s

1s + vc12 1s + vc22

  =
-Kvc2s

s2 + (vc1 + vc2)s + vc1vc2
. (15.8)
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Figure 15.10 ▲ A cascaded op amp bandpass filter. (a) The block diagram. (b) The circuit.
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Equation 15.8 is not in the standard form for the transfer function of a 
bandpass filter discussed in Chapter 14, namely,

HBP =
bs

s2 + bs + vo
2  .

In order to convert Eq. 15.8 into the form of the standard transfer func-
tion for a bandpass filter, we require that

vc2 W vc1.

When the upper cutoff frequency is much larger than the lower cutoff 
frequency,

1vc1 + vc22 ≈ vc2,

and the transfer function for the cascaded bandpass filter in Eq. 15.8 
becomes

H(s) =
-Kvc2s

s2 + vc2s + vc1vc2
 .

Thus, if the bandpass filter specifications include an upper cutoff fre-
quency that is much larger than the lower cutoff frequency, we can design 
each subcircuit of the cascaded circuit independently. We compute the 
values of RL and CL in the low-pass filter to give us the desired upper 
cutoff frequency, vc2:

vc2 =
1

RLCL
.

We compute the values of RH and CH in the high-pass filter to give us the 
desired lower cutoff frequency, vc1:

vc1 =
1

RHCH
.

Now we compute the values of Ri and Rf  in the inverting amplifier 
to provide the desired passband gain. To do this, we consider the mag-
nitude of the bandpass filter’s transfer function, evaluated at the center 
frequency, vo:

 0H1 jvo2 0 = ` -Kvc21 jvo2
1 jvo2 2 +  vc21 jvo2 + vc1vc2

 `

 =
Kvc2

vc2

 = K.

Recall from Chapter 5 that the gain of the inverting amplifier is Rf>Ri. 
Therefore,

0H1 jvo2 0 =
Rf

Ri
 .

Any choice of resistors that satisfies this equation will produce the desired 
passband gain.

Example 15.5 illustrates the design process for the cascaded bandpass 
filter.
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Figure 15.11 ▲ The cascaded op amp bandpass filter designed in Example 15.5.

EXAMPLE 15.5 Designing a Broadband Bandpass Op Amp Filter

Design a bandpass filter for a graphic equalizer to 
provide an amplification of 2 within the band of fre-
quencies between 100 and 10,000 Hz. Use 0.2 mF 
capacitors.

Solution
We can design each subcircuit in the cascade and 
meet the specified cutoff frequency values only if 
the upper cutoff frequency is much larger than the 
lower cutoff frequency. In this case, vc2 = 100vc1, 
so we can say that vc2 W vc1. Begin with the low-
pass filter, whose cutoff frequency is vc2. From  
Eq. 15.3,

 vc2 =
1

RLCL
= 2p(10000),

 RL =
1

32p(10000)4 10.2 * 10-62
 ≈ 80 Ω.

Next, we turn to the high-pass filter, whose cutoff 
frequency is vc1. From Eq. 15.6,

 vc1 =
1

RHCH
= 2p(100),

 RH =
1

32p(100)4 10.2 * 10-62
 ≈ 7958 Ω.

Finally, we need the gain stage. Two resistors are re-
quired, so one of the resistors can be selected arbi-
trarily. Let’s select a 1 kΩ resistor for Ri. Then,

 Rf = 2(1000)

 = 2000 Ω = 2 kΩ.

The resulting circuit is shown in Fig. 15.11. We 
leave it to you to show that the magnitude of this 
circuit’s transfer function is reduced by 1>12 from 
its maximum value at both cutoff frequencies, veri-
fying the validity of the assumption vc2 W vc1.

We can use a subcircuit approach when designing op amp bandreject 
filters, too, as illustrated in Fig. 15.12. Like the bandpass filter, the band-
reject filter consists of three separate elements.

• A unity-gain low-pass filter with a cutoff frequency of vc1, which is 
the smaller of the two cutoff frequencies.

• A unity-gain high-pass filter with a cutoff frequency of vc2, which is 
the larger of the two cutoff frequencies.

• A summing amplifier that provides the desired gain in the passbands.

There are important differences between the three subcircuits that 
comprise the bandpass filter and those that comprise the bandreject filter. 
The cutoff frequencies of the low-pass and high-pass filters are obviously 
different—in the bandpass filter, the low-pass filter subcircuit has a cutoff 
frequency of vc2, and in the bandreject filter, the low-pass filter subcircuit 
has a cutoff frequency of vc1. The cutoff frequencies for the high-pass fil-
ter subcircuit are also reversed. The most important difference is that the 
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Figure 15.12 ▲ Constructing the Bode magnitude plot of a bandreject 
filter.

three subcircuits in the bandreject filter cannot be cascaded in series be-
cause they do not combine additively on the Bode plot. Instead, the low-
pass and high-pass filters act in parallel, and a summing amplifier combines 
their outputs and provides the passband gain. Figure 15.13 shows this de-
sign both in block diagram form and as a circuit.

Again, it is assumed that the two cutoff frequencies for the band-
reject filter are widely separated so that the resulting design is a broad-
band bandreject filter, and vc2 W vc1. Then each subcircuit in the 
parallel design can be created independently, and the cutoff frequency 
specifications will be satisfied. The transfer function of the resulting cir-
cuit is the sum of the low-pass and high-pass filter transfer functions. 
From Fig. 15.13(b),

 H(s) = a -  
Rf

Ri
b c -vc1

s + vc1
+

-s
s + vc2

d

 =
Rf

Ri
 avc11s + vc22 + s1s + vc12

1s + vc12 1s + vc22 b

  =
Rf

Ri
 a s2 + 2vc1s + vc1vc2

(s + vc1)(s + vc2)
b .  (15.9)

As we saw in the cascaded bandpass filter design, the two cutoff 
frequencies for the transfer function in Eq. 15.9 are vc1 and vc2 only if 
vc2 W vc1. Then the cutoff frequencies are given by the equations

 vc1 =
1

RLCL
,

 vc2 =
1

RHCH
.
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In the two passbands (as s S 0 and s S ∞), the gain of the transfer func-
tion is Rf>Ri. Therefore,

K =
Rf

Ri
.

As with the design of the cascaded bandpass filter, we have six un-
knowns and three equations. Typically, we choose a commercially avail-
able capacitor value for CL and CH. Then we use the equations for the 
cutoff frequencies of the low-pass and high-pass filters, calculating RL and 
RH to meet the specified cutoff frequencies. Finally, we choose a value 
for either Rf  or Ri and then use the equation for K to compute the other 
resistance to meet the passband gain specification.

The magnitude of the transfer function in Eq. 15.9 at the center fre-
quency, vo = 1vc1vc2, is

 0H(jvo) 0 = `
Rf

Ri
 a (jvo)2 + 2vc1(jvo) + vc1vc2

(jvo)2 + (vc1 + vc2)(jvo) + vc1vc2
b `

 =
Rf

Ri
 

2vc1

1vc1 + vc22

 ≈
Rf

Ri
 
2vc1

vc2
.

If vc2 W vc1, then 0H1 jvo2 0 V 2Rf>Ri (because vc1>vc2 V 1), so the 
magnitude at the center frequency is much smaller than the passband 
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Figure 15.13 ▲ A parallel op amp bandreject filter. (a) The block diagram. (b) The 
circuit.
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magnitude. Thus, the bandreject filter successfully rejects frequencies 
near the center frequency but only if the specifications meet the require-
ments of a broadband filter.

Example 15.6 illustrates the design process for the parallel bandreject 
filter.

EXAMPLE 15.6 Designing a Broadband Bandreject Op Amp Filter

Design a circuit based on the parallel bandreject 
op amp filter in Fig. 15.13(b). The Bode magnitude 
plot of the filter is shown in Fig. 15.14. Use 0.5 mF 
capacitors in your design.

Solution
From the Bode magnitude plot in Fig. 15.14, we see 
that the bandreject filter’s cutoff frequencies are 
100 rad>s and 2000 rad>s and its passband gain is 
3. Thus, vc2 = 20vc1, so we make the assumption 
that vc2 W vc1. Let’s begin with the prototype 
low-pass filter from Example 15.1 and use scal-
ing to meet the specifications for cutoff frequency 
and capacitor value. The frequency scale factor 
kf  is 100, which shifts the cutoff frequency from 
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Figure 15.14 ▲ The Bode magnitude plot for the circuit to be de-
signed in Example 15.6.

1 rad>s to 100 rad>s. The magnitude scale factor km  
is 20,000, which, together with the frequency scale 
factor, scales the capacitor from 1 F to 0.5 mF. Using 
these scale factors results in the following scaled com-
ponent values:

 RL = 20 kΩ,

 CL = 0.5 mF.

The resulting cutoff frequency of the low-pass filter 
component is

vc1 =
1

RLCL
=

1

120 * 103210.5 * 10-62 = 100 rad>s.

We use the same approach to design the high-
pass filter, starting with the prototype high-pass 
op amp filter. Here, the frequency scale factor 
is kf = 2000, shifting the cutoff frequency from  
1 rad>s to 2000 rad>s. The magnitude scale factor 
is km = 1000, which, together with the frequency 
scale factor, scales the capacitor from 1 F to 0.5 mF. 
The scaled component values are

 RH = 1 kΩ,

 CH = 0.5 mF.

Finally, because the cutoff frequencies are 
widely separated, we can use the ratio Rf>Ri to cre-
ate the passband gain of 3. Let’s choose Ri = 1 kΩ, 
as we are already using that resistance for RH. Then 
Rf = 3 kΩ, and K = Rf>Ri = 3000>1000 = 3. The 
resulting active broadband bandreject filter circuit 
is shown in Fig. 15.15.

Now let’s check our assumption that vc2 W vc1 
by calculating the actual gain at the specified cutoff 
frequencies. We do this by making the substitutions 
s = j100 and s = j2000 into the transfer function for 
the parallel bandreject filter, Eq. 15.9, and calculat-
ing the resulting magnitude. You should verify that 
the magnitude at the specified cutoff frequencies  
is greater than the magnitude of 3>12 = 2.12  
that we expect. Therefore, our rejecting band 
is more narrow than specified in the problem 
statement.



 15.4 Higher-Order Op Amp Filters 615

15.4 Higher-Order Op Amp Filters
None of the filter circuits we have examined so far, whether passive 
or active, are ideal. Remember from Chapter 14 that an ideal filter 
has a discontinuity at the cutoff frequency, which sharply divides the 
passband and the stopband. Although we cannot hope to construct a 
linear circuit with a discontinuous frequency response, we can con-
struct circuits with a sharper, yet still continuous, transition at the cut-
off frequency.

Cascading Identical Filters
How can we obtain a sharper transition between the passband and the 
stopband? One approach is suggested by the Bode magnitude plots in 
Fig. 15.16. This figure shows the Bode magnitude plots of a cascade of 
identical prototype low-pass filters and includes plots of a single filter, 
two in cascade, three in cascade, and four in cascade. You can see that the 
transition from the passband to the stopband becomes sharper as more 
filters are added to the cascade. The rules for constructing Bode plots 
(from Appendix E) tell us that with one filter, the transition occurs with 
an asymptotic slope of 20 decibels per decade (dB>dec). Because circuits 
in cascade are additive on a Bode magnitude plot, a cascade with two 
filters has a transition with an asymptotic slope of 20 + 20 = 40 dB>dec; 
for three filters, the asymptotic slope is 60 dB>dec, and for four filters, it 
is 80 dB>dec, as seen in Fig. 15.16.
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Figure 15.15 ▲ The resulting bandreject filter circuit designed in Example 15.6.

SELF-CHECK: Assess your understanding of this material by trying Chapter Problems 15.30 and 15.31.
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In general, an n-element cascade of identical low-pass filters will 
transition from the passband to the stopband with a slope of 20n dB>dec.  
Figure 15.17 shows both the block diagram and the circuit diagram for 
such a cascade. We compute the transfer function for a cascade of n proto-
type low-pass filters by multiplying the individual transfer functions:

 H(s) = a -1
s + 1

b a -1
s + 1

b g a -1
s + 1

b

  =
(-1)n

(s + 1)n .  (15.10)
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Figure 15.16 ▲ The Bode magnitude plot of a cascade of identical 
prototype first-order filters.
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Figure 15.17 ▲ A cascade of identical unity-gain low-pass filters. (a) The block diagram. (b) The circuit.
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A cascade of first-order low-pass filters yields a higher-order filter. 
From Eq. 15.10, a cascade of n first-order filters produces an nth-order 
filter because the transfer function has n poles, and the filter has a final 
slope of 20n dB>dec in the transition band.

There is an important issue yet to be resolved, as you will see if you 
look closely at Fig. 15.16. As the order of the low-pass filter is increased 
by adding prototype low-pass filters to the cascade, the cutoff frequency 
changes. For example, in a cascade of two first-order low-pass filters, the 
magnitude of the resulting second-order filter at 1 rad>s, the cutoff fre-
quency of the single prototype low-pass filer, is -6 dB. The cutoff  
frequency of the second-order filter is not 1 rad>s. In fact, the cutoff fre-
quency is less than 1 rad>s.

Therefore, we need to find the cutoff frequency of the nth-order filter 
formed in the cascade of n first-order filters. Then we can use frequency 
scaling to calculate component values that move the cutoff frequency to 
its specified location. The cutoff frequency, vcn, satisfies the equation 
0H1 jv2 0 = 1>12:

 H(s) =
1 -12 n

1s + 12 n,

 0H1 jvcn2 0 = ` 1
1 jvcn + 12 n ` =

112
,

 
1

12vcn
2 + 12 n

=
112

,

 
1

vcn
2 + 1

= a 112
b

2>n
,

 2n
2 = vcn

2 + 1,

  vcn = 32n
2 - 1.  (15.11)

Let’s use Eq. 15.11 to find the cutoff frequency of a fourth-order 
 unity-gain low-pass filter constructed from a cascade of four prototype low-
pass filters:

vc4 = 324 2 - 1 = 0.435 rad>s.

Thus, we can design a fourth-order low-pass filter with the cut-
off frequency vc by starting with a fourth-order cascade consisting 
of prototype low-pass filters and then scaling the components by 
kf = vc>0.435.

We can build a higher-order low-pass filter with a nonunity gain by 
adding an inverting amplifier circuit to the cascade. Example 15.7 illus-
trates the design of a fourth-order low-pass filter with nonunity gain.

EXAMPLE 15.7 Designing a Fourth-Order Low-Pass Active Filter

Design a fourth-order low-pass filter with a cutoff 
frequency of 500 Hz and a passband gain of 10. Use 
1 mF capacitors. Sketch the Bode magnitude plot 
for this filter.

Solution
Our design cascades four prototype low-pass fil-
ters. We have already used Eq. 15.11 to calculate 
the cutoff frequency for the resulting fourth-order 
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Figure 15.18 ▲ The cascade circuit for the fourth-order low-pass filter designed in Example 15.7.
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Figure 15.19 ▲ The Bode magnitude plot for the fourth-order 
 low-pass filter designed in Example 15.7.

low-pass filter as 0.435 rad>s. A frequency scale 
factor of kf = 7222.39 will scale the component val-
ues to give a 500 Hz cutoff frequency. A magnitude 
scale factor of km = 138.46, together with the fre-
quency scale factor, scales the capacitor value from 
1 F to 1 mF. The scaled component values are thus

R = 138.46 Ω; C = 1 mF.

Add an inverting amplifier stage with a gain of 
Rf>Ri = 10 to satisfy the passband gain specifica-
tion. As usual, we can arbitrarily select one of the 
two resistor values. Because we are already using 
138.46 Ω resistors, let Ri = 138.46 Ω; then,

Rf = 10Ri = 1384.6 Ω.

The circuit for this cascaded fourth-order low-
pass filter is shown in Fig. 15.18. It has the transfer 
function

H(s) = -10 c 7222.39
s + 7222.39

d
4

.

The Bode magnitude plot for this transfer function 
is sketched in Fig. 15.19.

By cascading identical low-pass filters, we can increase the asymptotic 
slope in the transition between passband and stopband, but our approach 
has a serious shortcoming: The gain of the filter is not constant between 
zero and the cutoff frequency vc. Remember that in an ideal low-pass 
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filter, the passband magnitude is 1 for all frequencies below the cutoff 
frequency. But in Fig. 15.16, we see that the passband magnitude is less 
than 1 (0 dB), even for frequencies much less than the cutoff frequency.

We can understand why the passband magnitude is not ideal by look-
ing at the magnitude of the transfer function for a unity-gain low-pass 
nth-order cascade. Because

H(s) =
vcn

n

1s + vcn2 n,

the magnitude is

 0H1 jv2 0 =
vcn

n

12v2 + vcn
2 2 n

 =
1

121v>vcn2 2 + 12 n
 .

As we can see from this expression, when v V vcn, the denominator is 
approximately 1, and the magnitude of the transfer function is also nearly 1. 
But as v S vcn, the denominator becomes larger than 1, so the magnitude 
becomes smaller than 1. Because the cascade of low-pass filters results in 
this nonideal behavior in the passband, other approaches are used when 
designing higher-order filters. One such approach is examined next.

Butterworth Filters
A unity-gain Butterworth low-pass filter has a transfer function whose 
magnitude is

 0H(jv) 0 =
121 + 1v>vc2 2n

, (15.12)

where n is an integer that denotes the order of the filter.1

When studying Eq. 15.12, note the following:

• The cutoff frequency is vc rad>s for all values of n.
• If n is large enough, the denominator is always close to unity when 

v 6 vc.
• In the expression for 0H1 jv2 0 , the exponent of v>vc is always even.

This last observation is important because only even exponents exist in cir-
cuits with resistors, inductors, capacitors and op amps. (See Problem 15.33.)

Given an equation for the magnitude of the transfer function, how do 
we find H(s)? We can simplify the derivation for H(s) by using a prototype 
filter, so we set vc equal to 1 rad>s in Eq. 15.12. As before, we will use scaling 
to transform the prototype filter to a filter that meets the given specifications.

To find H(s), first note that if N is a complex quantity, then 
0N 0 2 = NN *, where N * is the conjugate of N. It follows that

0H(jv) 0 2 = H(jv) H(- jv).

But because s = jv, we can write

0H(jv) 0 2 = H(s) H(-s).

1This filter was developed by the British engineer S. Butterworth and reported in Wireless 
Engineering 7 (1930): 536–541.
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Now observe that s2 = -v2. Thus,

 0H1 jv2 0 2 =
1

1 + v2n

 =
1

1 + 1v22 n

 =
1

1 + 1 -s22 n

 =
1

1 + 1 -12 ns2n,

or

H(s) H(-s) =
1

1 + (-1)ns2n .

Follow these steps to find H(s) for a given value of n:

1. Find the roots of the polynomial

1 + 1 -12 ns2n = 0.

2. Assign the left-half plane roots to H(s) and the right-half plane 
roots to H1 -s2 .

3. Combine terms in the denominator of H(s) to form first- and  
second-order factors.

Example 15.8 illustrates this process.

EXAMPLE 15.8 Calculating Butterworth Transfer Functions

Find the Butterworth transfer functions for n = 2 
and n = 3.

Solution
For n = 2, we find the roots of the polynomial

1 + 1 -12 2s4 = 0.

Rearranging terms, we find

s4 = -1 = 1l180°.

Therefore, the four roots are

 s1 = 1l45° = 1>12 + j>12,

 s2 = 1l135° = -1>12 + j>12,

 s3 = 1l225° = -1>12 + - j>12,

 s4 = 1l 315° = 1>12 + - j>12. 

Roots s2 and s3 are in the left-half plane. Thus,

 H(s) =
1

1s + 1>12 - j>122 1s + 1>12 + j>122

 =
1

1s2 + 12s + 12 .

For n = 3, we find the roots of the polynomial

1 + 1 -12 3s6 = 0.

Rearranging terms,

s6 = 1l0° = 1l360°.

Therefore, the six roots are

 s1 = 1l0° = 1,

 s2 = 1l60° = 1>2 + j13>2,

 s3 = 1l120° = -1>2 + j13>2,

 s4 = 1l180° = -1 + j0,

 s5 = 1l240° = -1>2 + - j13>2,

 s6 = 1l300° = 1>2 + - j13>2.
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Butterworth Filter Circuits
Now that we know how to specify the transfer function for a Butterworth 
filter circuit (either by calculating the poles of the transfer function directly or 
by using Table 15.1), we need to design a circuit with such a transfer function. 
Notice the form of the Butterworth polynomials in Table 15.1. They are the 
product of first- and second-order factors; therefore, we can construct a cir-
cuit whose transfer function has a Butterworth polynomial in its denominator 
by cascading active filter circuits, each of which provides one of the needed 
factors. Figure 15.20 presents a block diagram of a cascade whose transfer 
function has a fifth-order Butterworth polynomial in its denominator.

All odd-order Butterworth polynomials include the factor 1s + 12 , 
so all odd-order Butterworth filter circuits must have a subcircuit with the 
transfer function H(s) = 1> 1s + 12 . This is the transfer function of the 
prototype low-pass active filter from Fig. 15.1. So what remains is to find 
a circuit whose transfer function has the form H(s) = 1> 1s2 + b1s + 12 .

Such a circuit is shown in Fig. 15.21. To analyze this circuit, write the 
s-domain KCL equations at the noninverting terminal of the op amp and 
at the node labeled Va:

 
Va - Vi

R
+ (Va - Vo)sC1 +

Va - Vo

R
= 0,

 VosC2 +
Vo - Va

R
= 0.

Simplifying the two KCL equations yields

 (2 + RC1s)Va - (1 + RC1s)Vo = Vi,

 -Va + (1 + RC2s)Vo = 0.

Roots s3, s4, and s5 are in the left-half plane. Thus,

 H(s) =
1

1s + 12 1s + 1>2 - j13>22 1s + 1>2 + j13>22
 =

1
1s + 12 1s2 + s + 12 .

Note that the roots of the Butterworth polynomial 
are always equally spaced around the unit circle in 
the s plane. To assist in the design of Butterworth 
filters, Table 15.1 lists the Butterworth polynomials 
up to n = 8 .

TABLE 15.1 Normalized (so that vc = 1 rad>s ) Butterworth Polynomials up to the Eighth Order

n nth-Order Butterworth Polynomial

1 1s + 12
2 1s2 + 12s + 12
3 1s + 12 1s2 + s + 12
4 1s2 + 0.765s + 12 1s2 + 1.848s + 12
5 1s + 12 1s2 + 0.618s + 12 1s2 + 1.618s + 12
6 1s2 + 0.518s + 12 1s2 + 12 + 12 1s2 + 1.932s + 12
7 1s + 12 1s2 + 0.445s + 12 1s2 + 1.247s + 12 1s2 + 1.802s + 12
8 1s2 + 0.390s + 12 1s2 + 1.111s + 12 1s2 + 1.6663s + 12 1s2 + 1.962s + 12

VoVi
1

s2 1 0.618s 1 1
1

s2 1 1.618s 1 1
1

s 1 1

Figure 15.20 ▲ A cascade of first- and second-order circuits with the indicated trans-
fer functions yielding a fifth-order low-pass Butterworth filter with vc = 1 rad>s.

1

2

Vo

RR

Vi

Va

sC2

1

sC1

1
2

1

1

2

Figure 15.21 ▲ A circuit that provides the second- 
order transfer function for the Butterworth filter 
cascade.



622 Active Filter Circuits

Use back-substitution to eliminate Va:

12 + RC1s2 11 + RC2s2Vo - 11 + RC1s2Vo = Vi.

Then, rearrange this equation to write the transfer function for the circuit 
in Fig. 15.21:

H(s) =
Vo

Vi
=

1
R2C1C2

s2 +
2

RC1
s +

1
R2C1C2

.

Finally, set R = 1 Ω; then

 H(s) =

1
C1C2

s2 +
2

C1
s +

1
C1C2

. (15.13)

Equation 15.13 has the form required for the second-order circuit in 
the Butterworth cascade. To get a transfer function of the form

H(s) =
1

s2 + b1s + 1
,

we use the circuit in Fig. 15.21 and choose capacitor values so that

 b1 =
2

C1
 and 1 =

1
C1C2

. (15.14)

We have thus outlined the procedure for designing an nth-order 
Butterworth low-pass filter circuit with a cutoff frequency of vc = 1 rad>s 
and a gain of 1 in the passband. We can use frequency scaling to calculate 
revised capacitor values that yield any specified cutoff frequency, and we 
can use magnitude scaling to provide more realistic or practical compo-
nent values in our design. Cascading an inverting amplifier circuit pro-
vides a passband gain other than 1.

Example 15.9 illustrates this design process.

EXAMPLE 15.9 Designing a Fourth-Order Low-Pass Butterworth Filter

Design a fourth-order Butterworth low-pass filter 
with a cutoff frequency of 500 Hz and a passband 
gain of 10. Use as many 1 kΩ resistors as possi-
ble. Compare the Bode magnitude plot for this 
Butterworth filter with that of the identical cascade 
filter in Example 15.7.

Solution
From Table 15.1, we find that the fourth-order 
Butterworth polynomial is

1s2 + 0.765s + 12 1s2 + 1.848s + 12 .

We will thus need a cascade of two second-order fil-
ters to get the fourth-order transfer function and an 
inverting amplifier circuit to get a passband gain of 
10. The circuit is shown in Fig. 15.22.

The first stage of the cascade is a circuit whose 
transfer function has the polynomial (s2 + 0.765s + 1) 
in its denominator. From Eq. 15.14,

 C1a =
2

0.765
= 2.61 F,

 C2a =
1

2.61
= 0.38 F.

The second stage of the cascade is a circuit whose the 
transfer function has the polynomial (s2 + 1.848s + 1) 
in its denominator. From Eq. 15.14,

 C1b =
2

1.848
= 1.08 F,

 C2b =
1

1.08
= 0.924 F.
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These values for C1a, C2a, C1b, and C2b yield 
a fourth-order Butterworth filter with a cutoff 
frequency of 1 rad>s. A frequency scale factor of 
kf = 3141.6 will move the cutoff frequency to 500 
Hz. A magnitude scale factor of km = 1000 allows 
us to use 1 kΩ resistors in place of 1 Ω resistors. 
The resulting scaled component values are

 R = 1 kΩ,

 C1a = 831 nF,

 C2a = 121 nF,

 C1b = 344 nF,

 C2b = 294 nF.

Finally, we need to specify the resistor values in the 
inverting amplifier stage to yield a passband gain of 
10. Let R1 = 1 kΩ; then

Rf = 10R1 = 10 kΩ.

Figure 15.23 compares the magnitude responses 
of the fourth-order identical cascade filter from 
Example 15.7 and the Butterworth filter we just de-
signed. Note that both filters provide a passband gain 
of 10 (20 dB) and a cutoff frequency of 500 Hz, but 
the Butterworth filter is closer to an ideal low-pass 
filter due to its flatter passband and steeper rolloff at 
the cutoff frequency. Thus, the Butterworth design is 
preferred to the identical cascade design.

R R

C1a

C2a

R

R1

Rf

R

C1b

C2bvi

1

2

vo1

2

2

1

2

1

2

1

Figure 15.22 ▲ A fourth-order Butterworth filter with nonunity gain.
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Figure 15.23 ▲ A comparison of the magnitude responses for a fourth-order low-pass 
filter using the identical cascade and Butterworth designs.
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The Order of a Butterworth Filter
You have probably noticed that the higher the order of the Butterworth 
filter, the closer the transfer function magnitude is to that of an ideal low-
pass filter. In other words, as n increases, the magnitude stays close to 
unity in the passband, the transition band narrows, and the magnitude 
stays close to zero in the stopband. At the same time, as the order in-
creases, the number of circuit components increases. Thus, when design-
ing a filter, determining the smallest value of n that will meet the filtering 
specifications is an important first step.

The filtering specifications for a low-pass filter usually define the 
abruptness of the transition region, as shown in Fig. 15.24. Once Ap, 
vp, As, and vs are specified, the order of the Butterworth filter can be 
determined.

For the Butterworth filter,

 Ap = 20 log10
121 + vp

2n
= -10 log 1011 + vp

2n2 ,

 As = 20 log10
121 + vs

2n
= -10 log 1011 + vs

2n2 .

It follows from the definition of the logarithm that

 10-0.1Ap = 1 + vp
2n,

 10-0.1As = 1 + vs
2n.

Now, solve for vp
n and vs

n and find the ratio 1vs>vp2 n. We get

a vs

vp
b

n

=
210-0.1As - 1210-0.1Ap - 1

=
ss

sp
 ,

where the symbols ss and sp have been introduced for convenience.
From the expression for ss>sp we can write

n log101vs>vp2 = log101ss>sp2 ,

or

 n =
 log101ss>sp2
 log101vs>vp2

 . (15.15)

We can simplify Eq. 15.15 if vp is the cutoff frequency because then Ap 
equals -20 log1012, and sp = 1. Hence

n =
 log10ss

 log101vs>vp2
.

One further simplification is possible. We are using a Butterworth fil-
ter to achieve a steep transition region. Therefore, the filtering specifica-
tion will make 10-0.1As W 1. Thus

 ss ≈ 10-0.05As,

  log10ss ≈ -0.05As.

Therefore, a good approximation for the calculation of n is

 n =
-0.05As

 log101vs>vp2
. (15.16)

Pass
band

Transition band Stop band

As

Ap

ƒH( jv) ƒ dB

vp vs

log10v

Figure 15.24 ▲ Defining the transition region for a 
low-pass filter.
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Note that vs>vp = fs>fp, so we can work with frequencies specified in 
 either radians per second or hertz to calculate n.

The order of the filter must be an integer; hence, in using either  
Eq. 15.15 or Eq. 15.16, we select the nearest integer value greater than the 
result given by the equation. Examples 15.10 and 15.11 illustrate the use of 
Eqs. 15.15 and 15.16.

EXAMPLE 15.10 Determining the Order of a Butterworth Filter

a) Determine the order of a Butterworth filter that 
has a cutoff frequency of 1000 Hz and a gain of 
no more than -50 dB at 6000 Hz.

b) What is the actual gain in dB at 6000 Hz?

Solution

a) Because the cutoff frequency is specified, we 
know sp = 1. We also note from the specification 
that 10-0.11-502 is much greater than 1. Hence, we 
can use Eq. 15.16 with confidence:

n =
1 -0.052 1 -502

 log1016000>10002 = 3.21.

Therefore, we need a fourth-order Butterworth 
filter.

b) We can use Eq. 15.12 to calculate the actual gain 
at 6000 Hz. The gain in decibels will be

K = 20 log10a 121 + 68
b = -62.25 dB.

EXAMPLE 15.11  An Alternate Approach to Determining the Order of a 
Butterworth Filter

a) Determine the order of a Butterworth filter 
whose magnitude is 10 dB less than the passband 
magnitude at 500 Hz and at least 60 dB less than 
the passband magnitude at 5000 Hz.

b) Determine the cutoff frequency of the filter (in 
hertz).

c) What is the actual gain of the filter (in decibels) 
at 5000 Hz?

Solution

a) Because the cutoff frequency is not given, we use 
Eq. 15.15 to determine the order of the filter:

 sp = 210-0.11-102 - 1 = 3,

 ss = 210-0.11-602 - 1 ≈ 1000,

 vs>vp = fs>fp = 5000>500 = 10,

 n =
log1011000>32

log10(10)
= 2.52.

Therefore, we need a third-order Butterworth fil-
ter to meet the specifications.

b) Knowing that the gain at 500 Hz is -10 dB, 
we can determine the cutoff frequency. From  
Eq. 15.12 we can write

-10 log1031 + 1v>vc2 64 = -10,

where v = 1000p rad>s. Therefore

1 + 1v>vc2 6 = 10,

and

 vc =
v26 9

 = 2178.26 rad>s.

It follows that

fc = 346.68 Hz.

c) The actual gain of the filter at 5000 Hz is

 K = -10 log1031 + 15000>346.682 64
 = -69.54 dB.
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Butterworth High-Pass, Bandpass, and Bandreject 
Filters
An nth-order Butterworth high-pass filter has a transfer function with the 
nth-order Butterworth polynomial in the denominator, just like the nth- 
order Butterworth low-pass filter. But in the high-pass filter, the numerator 
of the transfer function is sn, whereas in the low-pass filter, the numerator 
is 1. Again, we use a cascade approach in designing the Butterworth high-
pass filter. The first-order factor is achieved by including a prototype high-
pass filter (Fig. 15.4, with R1 = R2 = 1 Ω, and C = 1 F) in the cascade.

To produce the second-order factors in the Butterworth polynomial, 
we need a circuit with a transfer function of the form

H(s) =
s2

s2 + b1s + 1
.

Such a circuit is shown in Fig. 15.25.
This circuit has the transfer function

H(s) =
Vo

Vi
=

s2

s2 +
2

R2C
 s +

1
R1R2C

2 
.

Setting C = 1 F yields

 H(s) =
s2

s2 +
2

R2
 s +

1
R1R2

 
 . (15.17)

Thus, we can realize any second-order factor in a Butterworth polynomial 
of the form 1s2 + b1s + 12  by including in the cascade the second-order 
circuit in Fig. 15.25 with resistor values that satisfy Eq. 15.18:

 b1 =
2

R2
  and 1 =

1
R1R2

. (15.18)

At this point, we pause to make a couple of observations about the 
circuits in Figs. 15.21 and 15.25 and their prototype transfer functions 
1> 1s2 + b1s + 12  and s2> 1s2 + b1s + 12 .

• The high-pass circuit in Fig. 15.25 was obtained from the low-pass 
circuit in Fig. 15.21 by interchanging resistors and capacitors.

• The prototype transfer function of a high-pass filter can be obtained 
from that of a low-pass filter by replacing s in the low-pass expression 
with 1>s (see Problem 15.46).

These observations are important because they are true in general.
We can use frequency and magnitude scaling to design a Butterworth 

high-pass filter with practical component values and a cutoff frequency 
other than 1 rad>s. Adding an inverting amplifier to the cascade will ac-
commodate designs with nonunity passband gains. The problems at the 
end of the chapter include several Butterworth high-pass filter designs.

Now that we can design both nth-order low-pass and high-pass 
Butterworth filters with arbitrary cutoff frequencies and passband gains, 
we can combine these filters in cascade (as we did in Section 15.3) to pro-
duce nth-order Butterworth bandpass filters. We can combine these filters 
in parallel with a summing amplifier (again, as we did in Section 15.3) 
to produce nth-order Butterworth bandreject filters. Example 15.12 illus-
trates the design of a Butterworth bandpass filter.

1

2

vo

CC
R1

R2vi

2

1

1

2

Figure 15.25 ▲ A second-order Butterworth high-
pass filter circuit.



 15.4 Higher-Order Op Amp Filters 627

EXAMPLE 15.12 Designing a Butterworth Bandpass Filter

Design the bandpass filter from Example 15.5 using 
a cascade of a fourth-order low-pass Butterworth 
filter, a fourth-order high-pass Butterworth filter, 
and an inverting amplifier. The filter should provide 
an amplification of 2 within the band of frequencies 
between 100 and 10,000 Hz and use as many 2 kΩ  
resistors and 0.2 mF capacitors as possible.

Solution
The circuit is shown in Fig. 15.26. The first two 
stages in the cascade form the fourth-order low-pass 
Butterworth filter, which should have a cutoff fre-
quency of 10,000 Hz. We have already designed the 
prototype fourth-order low-pass Butterworth filter 
in Example 15.9, so R = 1 Ω  and

 C1a = 2.61 F, C2a = 0.38 F,

 C1b = 1.08 F, C2b = 0.924 F.

This prototype low-pass filter has a cutoff frequency 
of 1 rad>s, so to move the cutoff frequency to 10,000 Hz 
we need a frequency scale factor kf = 20,000p . To 
use 2 kΩ  resistors, we need to scale the 1 Ω  resis-
tors using a magnitude scale factor km = 2000. The 
scaled capacitor values are

 C1a = 20.77 nF, C2a = 3.02 nF,

 C1b = 8.59 nF, C2b = 7.35 nF.

The next two stages in the cascade form the 
fourth-order high-pass Butterworth filter, which 

should have a cutoff frequency of 100 Hz. To design 
the prototype filter, let C = 1 F. The first stage of 
the prototype high-pass filter must have a transfer 
function whose denominator is the Butterworth 
polynomial (s2 + 0.765 s + 1). From Eq. 15.18,

R2a =
2

0.765
= 2.61 Ω, R1a =

1
R2a

=
1

2.61
= 0.38 Ω.

The second stage of the prototype high-pass filter 
must have a transfer function whose denominator 
is the Butterworth polynomial (s2 + 1.848 s + 1). 
From Eq. 15.18,

R2b =
2

1.848
= 1.08 Ω, R1b =

1
R2b

=
1

1.08
= 0.924 Ω.

This prototype high-pass filter has a cutoff frequency  
of 1 rad>s, so to move the cutoff frequency to 100 Hz,  
we need a frequency scale factor kf = 200p. To use 
0.2 mF capacitors, we need a magnitude scale factor 
km = 7957.747. The scaled resistor values are

 R1a = 3023.94 Ω, R2a = 20,769.72 Ω,

 R1b = 7352.96 Ω, R2b = 8594.37 Ω.

The final stage of the cascade in Fig. 15.26 is the in-
verting amplifier, which must have a gain of 2. Let’s 
use R = 2 kΩ, so Rf = 2R = 4 kΩ.
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Figure 15.26 ▲ The fourth-order Butterworth bandpass filter for Example 15.12.
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15.5 Narrowband Bandpass  
and Bandreject Filters

We can only implement broadband or low-Q bandpass and bandreject fil-
ters when using the cascade and parallel subcircuit designs from the previ-
ous sections. This limitation is due principally to the form of the transfer 
functions for cascaded bandpass and parallel bandreject filters—they only 
have discrete real poles. The largest quality factor we can achieve with 
discrete real poles arises when the cutoff frequencies, and thus the pole 
locations, are the same. As an example, consider the transfer function for 
a bandpass filter created from a cascade of a first-order low-pass filter 
and a first-order high-pass filter, where both filters have the same cutoff 
frequency:

 H(s) = a -vc

s + vc
b a -s

s + vc
b

 =
svc

s2 + 2vcs + vc
2

 =
0.5bs

s2 + bs + vc
2 .

This equation is in the standard form of the transfer function of a band-
pass filter, and thus we can determine the bandwidth and center frequency 
directly:

 b = 2vc,

 vo
2 = vc

2.

From the equations for bandwidth and center frequency and the defini-
tion of Q, we see that

Q =
vo

b
=

vc

2vc
=

1
2

 .

Thus, with discrete real poles, the highest quality bandpass filter (or ban-
dreject filter) we can achieve has Q = 1>2.

To build active filters with high-quality factor values, we need an op amp 
circuit whose transfer function has complex conjugate poles. Figure 15.27 de-
picts one such circuit for us to analyze. At the inverting input of the op amp, 
write a KCL equation to get

Va

1>sC
=

-Vo

R3
 .

Objective 3—Understand how to use cascaded first- and second-order Butterworth filters

 15.4 For the circuit in Fig. 15.25, find values of R1 
and R2 that yield a second-order prototype 
Butterworth high-pass filter.

Answer: R1 = 0.707 Ω, R2 = 1.41 Ω.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 15.34, 15.36, and 15.40.
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2
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2

Figure 15.27 ▲ An active high-Q bandpass filter.
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Solving for Va,

Va =
-Vo

sR3C
 .

At the node labeled Va, write a KCL equation to get

Vi - Va

R1
=

Va - Vo

1>sC
+

Va

1>sC
+

Va

R2
 .

Solving for Vi,

Vi = (1 + 2sR1C + R1>R2)Va - sR1CVo.

Substituting the equation for Va into the equation for Vi and then re-
arranging, we get an expression for the transfer function Vo>Vi:

 H(s) =

-s
R1C

 

s2 +
2

R3C
 s +

1
ReqR3C

2 
 , (15.19)

where

Req = R1 }R2 =
R1R2

R1 + R2
.

Equation 15.19 is in the standard form for a bandpass filter transfer 
function; that is,

H(s) =
-Kbs

s2 + bs + vo
2  ,

so we can equate terms and solve for the values of the resistors that will 
achieve a specified center frequency (vo), quality factor (Q), and pass-
band gain (K):

 b =
2

R3C
 ;

 Kb =
1

R1C
 ;

 vo
2 =

1
ReqR3C

2 .

Let’s define the prototype version of the circuit in Fig. 15.27 as a 
bandpass filter with vo = 1 rad>s and C = 1 F. Then the expressions for 
R1, R2, and R3 can be given in terms of the desired quality factor and pass-
band gain. You should verify (in Problem 15.57) that for the prototype 
circuit, the expressions for R1, R2, and R3 are

 R1 = Q>K,

  R2 = Q> 12Q2 - K2 , (15.20)

 R3 = 2Q.

Use scaling to achieve the desired center frequency and to specify practi-
cal values for the circuit components. This design process is illustrated in 
Example 15.13.
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EXAMPLE 15.13 Designing a High-Q Bandpass Filter

Design a bandpass filter, using the circuit in  
Fig. 15.27, that has a center frequency of 3000 Hz, 
a quality factor of 10, and a passband gain of 2. Use 
0.01 mF capacitors in your design. Compute the 
transfer function of your circuit, and sketch a Bode 
plot of its magnitude response.

Solution
Since Q = 10 and K = 2, the values for R1, R2, and 
R3 in the prototype circuit, from Eq. 15.20, are

 R1 =
Q

K
=

10
2

= 5 Ω,

 R2 =
Q

2Q2 - K
=

10
200 - 2

=
10
198

 Ω,

 R3 = 2Q = 2(10) = 20 Ω.

The scaling factors are kf = 6000p, to move 
the center frequency from 1 rad>s to 3000 Hz, and 
km = 108>kf , so we can use 0.01 mF capacitors. 
After scaling,

 R1 = 26.5 kΩ,

 R2 = 268.0 Ω,

 R3 = 106.1 kΩ.

The circuit is shown in Fig. 15.28.

Substituting the values of resistance and capac-
itance in Eq. 15.19 gives the transfer function for 
this circuit:

H(s) =
-3770s

s2 + 1885.0s + 355 * 106 .

It is easy to see that this transfer function meets the 
specification of the bandpass filter defined in the 
example. A Bode plot of its magnitude response is 
sketched in Fig. 15.29.

1

2

vo

0.01 mF26.5 kV

0.01 mF 106.1 kV

268 Vvi

2

1
1

2

Figure 15.28 ▲ The high-Q bandpass filter de-
signed in Example 15.13.
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Figure 15.29 ▲ The Bode magnitude plot for the high-Q bandpass 
filter designed in Example 15.13.

The parallel implementation of a bandreject filter that combines 
low-pass and high-pass filter components with a summing amplifier 
has the same low-Q restriction as the cascaded bandpass filter. The 
circuit in Fig. 15.30 is an active high-Q bandreject filter known as the  
twin-T notch filter because of the two T-shaped parts of the circuit at the 
nodes labeled a and b.

We begin analyzing this circuit by writing a KCL equation at the node 
labeled Va:

1Va - Vi2sC + 1Va - Vo2sC +
21Va - sVo2

R
= 0
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or

Va[2sCR + 2] - Vo[sCR + 2s] = sCRVi .

Writing a KCL equation at the node labeled Vb yields

Vb - Vi

R
+

Vb - Vo

R
+ 1Vb - sVo22sC = 0

or

Vb[2 + 2RCs] - Vo[1 + 2sRCs] = Vi .

Writing a KCL equation at the noninverting input terminal of the top 
op amp gives

1Vo - Va2sC +
Vo - Vb

R
= 0

or

-sRCVa - Vb + (sRC + 1)Vo = 0.

From the three KCL equations, we can use Cramer’s rule to solve for Vo:

 Vo =

†
21RCs + 12 0 sCRVi

0 21RCs + 12 Vi

-RCs -1 0
†

†
21RCs + 12 0 - 1RCs + 2s2

0 21RCs + 12 - 12sRCs + 12
-RCs -1 RCs + 1

†

 =
(R2C 2s2 + 1)Vi

R2C 2s2 + 4RC(1 - s)s + 1
.

Rearranging this equation for Vo, we can solve for the transfer function:

 H(s) =
Vo

Vi
=

as2 +
1

R2C 2 b

c s2 +
4(1 - s)

RC
s +

1
R2C 2 d

 , (15.21)

Va

VbR R

Vi

Vo

R
2

1

2

sVo

1

2

sVo

(1 2 s)R

sR

sC
1

sC
1

2sC
1

1

2

2

1

1

2

Figure 15.30 ▲ A high-Q active bandreject filter.
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which is in the standard form for the transfer function of a bandreject 
filter:

H(s) =
s2 + v0

2

s2 + bs + v0
2 .

Therefore,

 vo
2 =

1
R2C 2 ,

 b =
4(1 - s)

RC
.

In this circuit, we have three parameters (R, C, and s) and two design 
constraints (vo and b). Thus, one parameter is chosen arbitrarily; it is usu-
ally the capacitor value because it normally has the fewest commercially 
available options. Once C is chosen,

  R =
1

voC
,  

(15.22)

 s = 1 -
b

4vo
= 1 -

1
4Q

.

Example 15.14 illustrates the design of a high-Q active bandreject 
filter.

EXAMPLE 15.14 Designing a High-Q Bandreject Filter

Design a high-Q active bandreject filter (based on 
the circuit in Fig. 15.30) with a center frequency 
of 5000 rad>s and a bandwidth of 1000 rad>s. Use 
1 mF capacitors in your design.

Solution
In the bandreject prototype filter, vo = 1 rad>s, 
R = 1 Ω, and C = 1 F. Once vo and Q are de-
termined from the filter specifications, C can be 
chosen arbitrarily, and R and s can be found from  
Eqs. 15.22. From the specifications, vo = 5000 rad>s 
and Q = 5. Using Eqs. 15.22, we see that

 R =
1

voC
=

1

(5000)110-62 = 200 Ω,

 s = 1 -
1

4Q
= 1 -

1
4(5)

= 0.95.

Therefore, we need resistors with the values 200 Ω (R), 

100 Ω (R>2), 190 Ω (sR), and 10 Ω 311 - s2R4  . 
The final design is depicted in Fig. 15.31, and the Bode 
magnitude plot is shown in Fig. 15.32.

10 V

100 V

190 V

200 V 200 V

1 mF 1 mF

2 mF

1

2

svo

1

2

svo

vo

vi

2

1

1

2

1

2

Figure 15.31 ▲ The high-Q active bandreject filter designed in  
Example 15.14.
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Figure 15.32 ▲ The Bode magnitude plot for the high-Q active bandreject filter 
 designed in Example 15.14.

Objective 4—Be able to use design equations to calculate component values for prototype narrowband 
bandpass, and bandreject filters

 15.5 Design an active bandpass filter with Q = 8, 
K = 5, and vo = 1000 rad>s. Use 1 mF capaci-
tors, and specify the values of all resistors.

Answer: R1 = 1.6 kΩ, R2 = 65.04 Ω, R3 = 16 kΩ.

 15.6 Design an active unity-gain bandreject filter with 
vo = 1000 rad>s and Q = 4. Use 2 mF capacitors 
in your design, and specify the values of R and s.

Answer: R = 500 Ω, s = 0.9375.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 15.58 and 15.60. 

Practical Perspective
Bass Volume Control
We now look at an op amp circuit that can be used to control audio signal 
amplification in the bass range. Signals in the audio range have frequencies 
from 20 Hz to 20 kHz. The bass range includes frequencies up to 300 Hz.  
The volume control circuit and its frequency response are shown in  
Fig. 15.33. We can select a desired frequency response curve from the family  
of curves in Fig. 15.33(b) by adjusting the potentiometer in Fig. 15.33(a).

Study the frequency response curves in Fig. 15.33(b) and note the 
following.
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• The gain in dB can be either positive or negative. If the gain is posi-
tive, a signal in the bass range is amplified or boosted. If the gain is 
negative, the signal is attenuated or cut.

• It is possible to select a response curve that has unity gain (zero dB) 
for all frequencies in the bass range. As we shall see, if the potenti-
ometer is set at its midpoint, the circuit will have no effect on signals 
in the bass range.

• As the frequency increases, all frequency response curves approach zero 
dB or unity gain. Hence, the volume control circuit will have no effect on 
signals in the upper end, or treble range, of the audio frequencies.

We need to find the transfer function, Vo>Vs, for the circuit in  
Fig. 15.33(a) in order to analyze the circuit’s frequency response. To 
find the transfer function, we transform the circuit into the s domain as 
shown in Fig. 15.34. The node voltages Va and Vb have been labeled in 
the circuit to support node-voltage analysis. The position of the potenti-
ometer is determined by the numerical value of a, as noted in Fig. 15.34.

To find the transfer function, we write the three KCL equations at the 
nodes labeled Va and Vb, and at the inverting input of the op amp:

 
Va

11 - a2R2
+

Va - Vs

R1
+ 1Va - Vb2s C1 = 0;

 
Vb

aR2
+ 1Vb - Va2s C1 +

Vb - Vo

R1
= 0;

 
Va

11 - a2R2
+

Vb

aR2
= 0.

Solve the three node-voltage equations to find Vo as a function of Vs and 
hence the transfer function H(s):

H(s) =
Vo

Vs
=

- 1R1 + aR2 + R1R2C1s2
R1 + 11 - a2R2 + R1R2C1s

.

It follows directly that

H1 jv2 =
- 1R1 + aR2 + jvR1R2C12

3R1 + 11 - a2R2 + jvR1R2C14 .

Now let’s verify that this transfer function generates the family of fre-
quency response curves depicted in Fig. 15.33(b). First note that when 
a = 0.5 the magnitude of H1 jv2  is unity for all frequencies, that is,

0H(jv) 0 =
0R1 + 0.5R2 + jvR1R2C1 0
0R1 + 0.5R2 + jvR1R2C1 0 = 1.

When v = 0, we have

0H(j0) 0 =
R1 + aR2

R1 + 11 - a2R2
.

Observe that 0H1 j02 0  at a = 1 is the reciprocal of 0H1 j02 0  at a = 0; that is

0H1 j02 0 a = 1 =
R1 + R2

R1
=

1
0H1 j02 0 a = 0

.

C1

(a)

vo

R1 R1R2
vs

2

1

dB1

dB2

dB3

0

–dB3

–dB2

–dB1

(b)

dB
Vo

Vs

v

Figure 15.33 ▲ (a) Bass volume control circuit;  
(b) Bass volume control circuit frequency response.

R1 R1R2

(l2a)R2

1>sC1

Vs

Vo

VbVa aR2

2

1

Figure 15.34 ▲ The s-domain circuit for the bass 
volume control. Note that a determines the potenti-
ometer setting, so 0 … a … 1.



In fact, this reciprocal relationship holds for all frequencies, not just v = 0. 
For example, a = 0.4 and a = 0.6 are symmetric about a = 0.5 and

H1 jv2a = 0.4 =
- 1R1 + 0.4R22 + jvR1R2C1

1R1 + 0.6R22 + jvR1R2C1

while

H1 jv2a = 0.6 =
- 1R1 + 0.6R22 + jvR1R2C1

1R1 + 0.4R22 + jvR1R2C1
.

Hence

H1 jv2a = 0.4 =
1

H1 jv2a = 0.6
.

The volume control circuit can either amplify or attenuate its input signal, 
depending on the value of a.

The numerical values of R1, R2, and C1 are based on two design 
specifications. The first specification is the passband amplification or 
attenuation in the bass range (as v S 0). The second specification is 
the frequency at which this passband amplification or attenuation is 
changed by 3 dB. The component values that satisfy the specifications 
are calculated with a equal to either 1 or 0.

As we have already observed, the maximum gain will be 
1R1 + R22 >R1, and the maximum attenuation will be R1> 1R1 + R22 . If 
we assume 1R1 + R22 >R1 W 1, then the amplification (or attenuation) 
will differ by 3 dB from its maximum value when v = 1>R2C1. This can 
be seen by noting that

 ̀ Ha j
1

R2C1
b `

a = 1
=

0R1 + R2 + jR1 0
0R1 + jR1 0

 =
` R1 + R2

R1
 `

0 1 + j1 0  ≈
112

 aR1 + R2

R1
b

 and ` Ha j
1

R2C1
b `

a = 0
=

0R1 + jR1 0
0R1 + R2 + jR1 0

 =
0 1 + j1 0

` ` R1 + R2

R1
+ j1 ` `

 ≈ 12a R1

R1 + R2
b .

SELF-CHECK: Assess your understanding of this Practical Perspective 
by trying Chapter Problems 15.61 and 15.62.

 Practical Perspective 635
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Summary
• Active filters consist of op amps, resistors, and capac-

itors. They can be configured as low-pass, high-pass, 
bandpass, and bandreject filters. They overcome many 
of the disadvantages associated with passive filters.  
(See page 600.)

• A prototype low-pass filter has component values of 
R1 = R2 = 1 Ω and C = 1 F, and it produces a unity 
passband gain and a cutoff frequency of 1 rad>s. The 
prototype high-pass filter has the same component val-
ues and also produces a unity passband gain and a cutoff 
frequency of 1 rad>s. (See pages 603 and 604.)

• Magnitude scaling can be used to alter component val-
ues without changing the frequency response of a circuit. 
For a magnitude scale factor of km, the scaled (primed) 
values of resistance, capacitance, and inductance are

R′ = kmR, L′ = kmL, and C′ = C>km.

(See page 605.)

• Frequency scaling can be used to shift the frequency re-
sponse of a circuit to another frequency region without 
changing the overall shape of the frequency response. 
For a frequency scale factor of kf , the scaled (primed) 
values of resistance, capacitance, and inductance are

R′ = R, L′ = L>kf, and C′ = C>kf .

(See page 606.)

• Components can be scaled in both magnitude and fre-
quency, with the scaled (primed) component values giv-
en by

R′ = kmR, L′ = 1km>kf2L, and C′ = C> 1kmkf2 .

(See page 606.)

• The design of active low-pass and high-pass filters can 
begin with a prototype filter circuit. Scaling can then be 
applied to shift the frequency response to the desired 
cutoff frequency, using component values that are com-
mercially available. (See page 606.)

• An active broadband bandpass filter can be constructed 
using a cascade of a low-pass filter with the bandpass 
filter’s upper cutoff frequency, a high-pass filter with the 
bandpass filter’s lower cutoff frequency, and (optionally)  
an inverting amplifier gain stage to achieve nonunity 
gain in the passband. Bandpass filters implemented in 
this fashion must be broadband filters1vc2 W vc12 , so 
that each op amp circuit in the cascade can be specified 
independently. (See page 607.)

• An active broadband bandreject filter can be constructed  
using a parallel combination of a low-pass filter with 
the bandreject filter’s lower cutoff frequency and a 
 high-pass filter with the bandreject filter’s upper cut-
off frequency. The outputs are then fed into a summing 
amplifier, which can produce nonunity gain in the pass-
band.  Bandreject filters implemented in this way must be 
broadband filters1vc2 W vc12 , so that the low-pass and 
high-pass filter circuits can be designed independently. 
(See page 613.)

• Higher-order active filters have multiple poles in their 
transfer functions, resulting in a sharper transition from 
the passband to the stopband and thus a more nearly 
ideal frequency response. (See page 616.)

• The transfer function of an nth-order Butterworth low-
pass filter with a cutoff frequency of 1 rad>s can be de-
termined from the equation

H(s)H1 -s2 =
1

1 + 1 -12 ns2n

by

• finding the roots of the denominator polynomial

• assigning the left-half plane roots to H(s)

• writing the denominator of H(s) as a product of first- 
and second-order factors

(See pages 619–620.)

• The fundamental problem in the design of a Butterworth 
filter is to determine the order of the filter. The filter speci-
fication usually defines the sharpness of the transition band 
in terms of the quantities Ap, vp, As, and vs. From these 
quantities, we calculate the smallest integer larger than the 
solution to either Eq. 15.15 or Eq. 15.16. (See page 624.)

• A cascade of second-order low-pass op amp filters  
(Fig. 15.21) with 1 Ω resistors and capacitor values cho-
sen to produce each factor in the Butterworth polynomial 
will produce an even-order Butterworth low-pass filter. 
Adding a prototype low-pass op amp filter will produce 
an odd-order Butterworth low-pass filter. (See page 621.)

• A cascade of second-order high-pass op amp filters  
(Fig. 15.25) with 1 F capacitors and resistor values chosen 
to produce each factor in the Butterworth polynomial will 
produce an even-order Butterworth high-pass filter. Add-
ing a prototype high-pass op amp filter will produce an 
odd-order Butterworth high-pass filter. (See page 626.)

• For both high- and low-pass Butterworth filters, fre-
quency and magnitude scaling can be used to shift the 



cutoff frequency from 1 rad>s and to include realistic 
component values in the design. Cascading an invert-
ing amplifier will produce a nonunity passband gain. 
(See page 626.)

• Butterworth low-pass and high-pass filters can be cas-
caded to produce Butterworth bandpass filters of any 
order n. Butterworth low-pass and high-pass filters can 
be combined in parallel with a summing amplifier to 

produce a Butterworth bandreject filter of any order n. 
(See page 627.)

• If a high-Q, or narrowband, bandpass, or bandreject fil-
ter is needed, the cascade or parallel combination will 
not work. Instead, the circuits shown in Figs. 15.27 and 
15.30 are used with the appropriate design equations. 
Typically, capacitor values are chosen from those com-
mercially available, and the design equations are used 
to specify the resistor values. (See pages 628 and 631.)

Problems

Section 15.1

 15.1 a) Using the circuit in Fig. 15.1, design a low-pass 
filter with a passband gain of 10 dB and a cutoff 
frequency of 1 kHz. Assume a 750 nF capacitor 
is available.

b) Draw the circuit diagram and label all components.

 15.2 a) Using only three components from Appendix H, 
design a low-pass filter with a cutoff  frequency 
and passband gain as close as possible to 
the specifications in Problem 15.1(a). Draw 
the circuit diagram and label all component 
 values.

b) Calculate the percent error in this new  
filter’s cutoff frequency and passband gain 
when compared to the values specified in 
Problem 15.1(a).

 15.3 Design an op amp-based low-pass filter with a cut-
off frequency of 3500 Hz and a passband gain of 6 
using a 10 nF capacitor.

a) Draw the circuit, labeling the component values 
and output voltage.

b) If the value of the feedback resistor in the filter 
is changed but the value of the resistor in the for-
ward path is unchanged, what characteristic of 
the filter is changed?

 15.4 The input to the low-pass filter designed in 
Problem 15.3 is 4.5 cos vt V.

a) Suppose the power supplies are {Vcc , what is the 
smallest value of Vcc that will still cause the op 
amp to operate in its linear region?

b) Find the output voltage when v = vc.

c) Find the output voltage when v = 0.2vc.

d) Find the output voltage when v = 10vc.

DESIGN
PROBLEM

 15.5 Find the transfer function Vo>Vi for the circuit shown 
in Fig. P15.5 if Zf is the equivalent impedance of the 
feedback circuit, Zi is the equivalent impedance of the 
input circuit, and the operational amplifier is ideal.

 Problems 637

Figure P15.5

Vi Vo

1

2

1

2

Zi

Zf

2

1

 15.6 a) Use the results of Problem 15.5 to find the trans-
fer function of the circuit shown in Fig. P15.6.

b) What is the gain of the circuit as v S 0?

c) What is the gain of the circuit as v S ∞?

d) Do your answers to (b) and (c) make sense in 
terms of known circuit behavior?

Figure P15.6

vi
vo
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2

1

2

R1

C1

R2

C2

2

1

 15.7 Repeat Problem 15.6, using the circuit shown in  
Fig. P15.7.
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Figure P15.7
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 15.8 a) Using the circuit in Fig. 15.4, design a high-pass 
filter with a passband gain of 15 dB and a cutoff 
frequency of 10 kHz. Use a 3.9 nF capacitor in 
the design.

b) Draw the circuit diagram of the filter and label 
all the components.

 15.9 Using only three components from Appendix H, 
design a high-pass filter with a cutoff frequency and 
passband gain as close as possible to the specifica-
tions in Problem 15.8.

a) Draw the circuit diagram and label all compo-
nent values.

b) Calculate the percent error in this new filter’s 
cutoff frequency and passband gain when com-
pared to the values specified in Problem 15.8(a).

 15.10 Design an op amp-based high-pass filter with a cut-
off frequency of 6 kHz and a passband gain of 10 
using a 250 nF capacitor.

a) Draw the circuit, labeling the component values 
and output voltage.

b) If the value of the feedback resistor in the filter 
is changed but the value of the resistor in the for-
ward path is unchanged, what characteristic of 
the filter is changed?

 15.11 The input to the high-pass filter designed in 
Problem 15.10 is 3.5 cos vt V.

a) Suppose the power supplies are {Vcc , what is 
the smallest value of Vcc that will still cause the 
op amp to operate in its linear region?

b) Find the output voltage when v = vc.

c) Find the output voltage when v = 0.3vc.

d) Find the output voltage when v = 10vc.

Section 15.2

 15.12 The voltage transfer function for either high-pass 
prototype filter shown in Fig. P15.12 is

H(s) =
s

s + 1
 .

DESIGN
PROBLEM

Figure P15.12

C 5 2 F

L 5 2 H

R 5 2 V
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vi

R 5 2 V

(a)

(b)

Show that if either circuit is scaled in both magni-
tude and frequency, the scaled transfer function is

H′(s) =
(s>kf)

(s>kf) + 1
 .

 15.13 The voltage transfer function of either low-pass 
prototype filter shown in Fig. P15.13 is

H(s) =
1

s + 1
 .

Show that if either circuit is scaled in both magni-
tude and frequency, the scaled transfer function is

H′(s) =
1

(s>kf) + 1
 .

Figure P15.13
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L 5 2 H
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C 5 1.5 F

R 5 3 V

 15.14 The voltage transfer function of the prototype 
bandpass filter shown in Fig. P15.14 is

H(s) =
a 1

Q
bs

s2 + a 1
Q
bs + 1

.
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 15.18 The passive bandreject filter illustrated in  
Fig. 14.28(a) has the two prototype circuits shown 
in Fig. P15.18.

a) Show that for both circuits, the transfer func-
tion is

H(s) =
s2 + 1

s2 + a 1
Q
bs + 1

 .

b) Write the transfer function for a bandreject filter 
that has a center frequency of 8000 rad>s and a 
quality factor of 10.

 15.15 a) Specify the component values for the prototype 
passive bandpass filter described in Problem 15.14 
if the quality factor of the filter is 20.

b) Specify the component values for the scaled 
bandpass filter described in Problem 15.14 if 
the quality factor is 20; the center, or resonant,  
frequency is 40 krad>s; and the impedance at 
resonance is 5 kΩ.

c) Draw a circuit diagram of the scaled filter and 
label all the components.

 15.16 An alternative to the prototype bandpass filter 
 illustrated in Fig. P15.14 is to make vo = 1 rad>s, 
R = 1 Ω, and L = Q henrys.

a) What is the value of C in the prototype  filter 
circuit?

b) What is the transfer function of the  prototype 
filter?

c) Use the alternative prototype circuit just described 
to design a passive bandpass filter that has a qual-
ity factor of 16, a center frequency of 25 krad>s, 
and an impedance of 10 kΩ at resonance.

d) Draw a diagram of the scaled filter and label all 
the components.

e) Use the results obtained in Problem 15.14 to 
write the transfer function of the scaled circuit.

 15.17 The passive bandpass filter illustrated in Fig. 14.22 has 
two prototype circuits. In the first prototype circuit, 
vo = 1 rad>s, C = 1 F, L = 1 H, and R = Q ohms. 
In the second prototype circuit, vo = 1 rad>s, 
R = 1 Ω, C = Q farads, and L = (1>Q) henrys.

a) Use one of these prototype circuits (your choice) 
to design a passive bandpass filter that has a 
quality factor of 25 and a center frequency of 
50 krad>s. The resistor R is 40 kΩ.

b) Draw a circuit diagram of the scaled filter and 
label all components.

DESIGN
PROBLEM

Figure P15.14
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Show that if the circuit is scaled in both magnitude 
and frequency, the scaled transfer function is
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Figure P15.18
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 15.19 The transfer function for the bandreject filter shown 
in Fig. 14.28(a) is

H(s) =
s2 + a 1

LC
b

s2 + aR
L
bs + a 1

LC
b

.

Show that if the circuit is scaled in both magnitude 
and frequency, the transfer function of the scaled 
circuit is equal to the transfer function of the un-
scaled circuit with s replaced by (s>kf), where kf is 
the frequency scale factor.

 15.20 Show that the observation made in Problem 15.19 
with respect to the transfer function for the circuit 
in Fig. 14.28(a) also applies to the bandreject filter 
circuit (lower one) in Fig. 14.31.

 15.21 The two prototype versions of the passive band-
reject filter shown in Fig. 14.31 (lower circuit) are 
shown in Fig. P15.21(a) and (b).

Show that the transfer function for either 
 version is

H(s) =
s2 + 1

s2 + a 1
Q
bs + 1

.
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Eq. 15.4 with s replaced by s>kf , where kf is the 
frequency scale factor.

b) In the prototype version of the high-pass fil-
ter circuit in Fig. 15.4, vc = 1 rad>s, R1 = 1 Ω, 
C = 1 F, and R2 = K ohms. What is the transfer 
function of the prototype circuit?

c) Using the result in (a), derive the transfer func-
tion of the scaled filter.

Section 15.3

 15.28  a) Using 100 nF capacitors, design an active 
broadband first-order bandpass filter that has 
a lower cutoff frequency of 1000 Hz, an upper 
cutoff frequency of 5000 Hz, and a passband 
gain of 0 dB. Use prototype versions of the 
low-pass and high-pass filters in the design 
process (see Problems 15.26 and 15.27).

b) Write the transfer function for the scaled filter.

c) Use the transfer function derived in part (b) to 
find H(jvo), where vo is the center frequency of 
the filter.

d) What is the passband gain (in decibels) of the 
filter at vo?

e) Using a computer program of your choice, make 
a Bode magnitude plot of the filter.

 15.29  a) Using 10 nF capacitors, design an active broad-
band first-order bandreject filter with a lower 
cutoff frequency of 400 Hz, an upper cutoff fre-
quency of 4000 Hz, and a passband gain of 0 dB. 
Use the prototype filter circuits introduced in 
Problems 15.26 and 15.27 in the design process.

b) Draw the circuit diagram of the filter and label 
all of the components.

c) What is the transfer function of the scaled filter?

d) Evaluate the transfer function derived in (c) at 
the center frequency of the filter.

e) What is the gain (in decibels) at the center  
frequency?

f) Using a computer program of your choice, make 
a Bode magnitude plot of the filter transfer 
function.

 15.30 Design a unity-gain bandpass filter, using a cascade 
connection, to give a center frequency of 300 Hz 
and a bandwidth of 1.5 kHz. Use 5 mF capacitors. 
Specify fc1, fc2, RL, and RH.

 15.31 Design a parallel bandreject filter with a centre fre-
quency of 2000 rad>s, a bandwidth of 5000 rad>s, 
and a passband gain of 5. Use 0.2 mF capacitors, and 
specify all resistor values.

 15.32 Show that the circuit in Fig. P15.32 behaves as a 
bandpass filter. (Hint: Find the transfer function for 
this circuit and show that it has the same form as the 
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 15.22 The circuit in Fig. P9.24 is scaled so that the 200 Ω 
resistor is replaced by 80 Ω resistor and the 400 mH 
inductor is replaced by a 20 mH inductor.

a) What is the scaled value of the capacitor?

b) Find the frequency for which the impedance Zab 
is purely resistive for the scaled circuit.

c) How is the frequency you found in part (b) relat-
ed to the frequency for which the impedance Zab 
is purely resistive in the un-scaled circuit?

 15.23 Scale the inductor and capacitor in Fig. P9.66 so that 
the magnitude and the phase angle of the output 
current do not change when the input frequency is 
changed from 250 rad/sec to 10,000 rad/sec.

a) What are the scaled values of the inductor and 
capacitor?

b) What is the steady-state value of the out-
put current, io, when the input current is 
60 cos 10,000t mA?

 15.24 Scale the bandpass filter in Problem 14.18 so that 
the center frequency is 200 kHz and the quality fac-
tor is still 8, using a 2.5 nF capacitor. Determine the 
values of the resistor and the inductor, and the two 
cutoff frequencies of the scaled filter.

 15.25 Scale the bandreject filter in Problem 14.38 to get 
a center frequency of 50 krad>s, using a 200 mH 
 inductor. Determine the values of the resistor, the 
capacitor, and the bandwidth of the scaled filter.

 15.26 a) Show that if the low-pass filter circuit illustrated 
in Fig. 15.1 is scaled in both magnitude and fre-
quency, the transfer function of the scaled circuit 
is the same as Eq. 15.1 with s replaced by s>kf , 
where kf is the frequency scale factor.

b) In the prototype version of the low-pass fil-
ter circuit in Fig. 15.1, vc = 1 rad>s, C = 1 F, 
R2 = 1 Ω, and R1 = 1>K ohms. What is the 
transfer function of the prototype circuit?

c) Using the result obtained in (a), derive the trans-
fer function of the scaled filter.

 15.27 a) Show that if the high-pass filter illustrated in 
Fig. 15.4 is scaled in both magnitude and fre-
quency, the transfer function is the same as  

Figure P15.21
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Section 15.4

 15.34 a) Determine the order of a low-pass Butterworth 
filter that has a cutoff frequency of 2000 Hz and 
a gain of no more than -30 dB at 7000 Hz.

b) What is the actual gain, in decibels, at  
7000 Hz?

 15.35 The circuit in Fig. 15.21 has the transfer function

H(s) =

1
R2C1C2

 

s2 +
2

RC1
 s +

1
R2C1C2

 
.

Show that if the circuit in Fig. 15.21 is scaled in both 
magnitude and frequency, the transfer function of 
the scaled circuit is

H′(s) =

1
R2C1C2

 

a s
kf
b

2

+
2

RC1
 a s

kf
b +

1
R2C1C2

 .

 15.36 a) Write the transfer function for the proto-
type low-pass Butterworth filter obtained in  
Problem 15.34(a).

b) Write the transfer function for the scaled filter 
in (a) (see Problem 15.35).

c) Check the expression derived in part (b) by 
 using  it to calculate the gain (in decibels) at 
7000 Hz. Compare your result with that found in 
Problem 15.34(b).

 15.37 a) Using 1 kΩ resistors and ideal op amps, design a 
circuit that will implement the low-pass Butter-
worth filter specified in Problem 15.34. The gain 
in the passband is one.

b) Construct the circuit diagram and label all com-
ponent values.

 15.38 The purpose of this problem is to illustrate the 
advantage of an nth-order low-pass Butterworth 
filter over the cascade of n identical low-pass 
sections by calculating the slope (in decibels per 
decade) of each magnitude plot at the corner 
frequency vc. To facilitate the calculation, let y 
represent the magnitude of the plot (in decibels), 
and let x =  log10v. Then calculate dy>dx at vc for 
each plot.

a) Show that at the corner frequency (vc = 1 rad>s) 
of an nth-order low-pass prototype Butterworth 
filter,

dy

dx
= -10n dB>dec.
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transfer function for a bandpass filter. Use the result 
from Problem 15.1.)

a) Find the center frequency, bandwidth and gain 
for this bandpass filter.

b) Find the cutoff frequencies and the quality fac-
tor for this bandpass filter.

Figure P15.32
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 15.33 For circuits consisting of resistors, capacitors, induc-
tors, and op amps, 0H(jv) 0 2 involves only even pow-
ers of v. To illustrate this, compute 0H(jv) 0 2 for the 
three circuits in Fig. P15.33 when

H(s) =
Vo

Vi
.

Figure P15.33
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 15.44 a) Design a broadband Butterworth bandpass fil-
ter with a lower cutoff frequency of 200 Hz and 
an upper cutoff frequency of 2500 Hz. The pass-
band gain of the filter is 40 dB. The gain should 
be down at least 40 dB at 40 Hz and 12.5 kHz. 
Use 1 mF capacitors in the high-pass circuit and 
2.5 kΩ resistors in the low-pass circuit.

b) Draw a circuit diagram of the filter and label all 
the components.

 15.45 a) Derive the expression for the scaled transfer 
function for the filter designed in Problem 15.44.

b) Using the expression derived in (a), find the gain 
(in decibels) at 40 Hz and 1000 Hz.

c) Do the values obtained in part (b) satisfy the fil-
tering specifications given in Problem 15.44?

 15.46 Derive the prototype transfer function for a fifth- 
order high-pass Butterworth filter by first writing 
the transfer function for a fifth-order prototype low-
pass Butterworth filter and then replacing s by 1>s 
in the low-pass expression.

 15.47 The fifth-order Butterworth filter in Problem 15.46 
is used in a system where the cutoff frequency is 
800 rad>s.

a) What is the scaled transfer function for the  
filter?

b) Test your expression by finding the gain (in deci-
bels) at the cutoff frequency.

 15.48 The purpose of this problem is to guide you through 
the analysis necessary to establish a design proce-
dure for determining the circuit components in a 
filter circuit. The circuit to be analyzed is shown in 
Fig. P15.48.

a) Analyze the circuit qualitatively and convince 
yourself that the circuit is a low-pass filter with a 
passband gain of R2>R1.

b) Support your qualitative analysis by deriving the 
transfer function Vo>Vi. (Hint: In deriving the 
transfer function, represent the resistors with their 
equivalent conductances, that is, G1 = 1>R1, and 
so forth.) To make the transfer function useful in 
terms of the entries in Table 15.1, put it in the form

H(s) =
-Kbo

s2 + b1s + bo
.

c) Now observe that we have five circuit 
 components—R1, R2, R3, C1, and C2—and three 
transfer function constraints—K, b1, and bo. At 
first glance, it appears we have two free choices 
among the five components. However, when we 
investigate the relationships between the circuit 
components and the transfer function constraints, 
we see that if C2 is chosen, there is an upper limit 
on C1 in order for R2(G2) to be realizable. With 
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b) Show that for a cascade of n identical low-pass 
prototype sections, the slope at vc is

dy

dx
=

-20n(21>n - 1)

21>n  dB>dec.

c) Compute dy>dx for each type of filter for 
n = 1, 2, 3, 4, and ∞ .

d) Discuss the significance of the results obtained 
in part (c).

 15.39 Verify the entries in Table 15.1 for n = 5 and n = 6.

 15.40 The circuit in Fig. 15.25 has the transfer function

H(s) =
s2

s2 +
2

R2C
 s +

1
R1R2C

2 
.

Show that if the circuit is scaled in both magnitude 
and frequency, the transfer function of the scaled 
circuit is

H′(s) =

a s
kf
b

2

a s
kf
b

2

+
2

R2C
 a s

kf
b +

1
R1R2C

2 
.

Hence the transfer function of a scaled circuit is 
obtained from the transfer function of an unscaled 
circuit by simply replacing s in the unscaled trans-
fer function by s>kf , where kf is the frequency scal-
ing factor.

 15.41 a) Using 8 kΩ resistors and ideal op amps, design a 
high-pass unity-gain Butterworth filter that has a 
cutoff frequency of 2.5 kHz and has a gain of no 
more than -55 dB at 500 Hz.

b) Draw a circuit diagram of the filter and label all 
the components.

 15.42 a) Using 250 nF capacitors and ideal op amps, 
 design a low-pass unity-gain Butterworth filter 
with a cutoff frequency of 40 kHz and is down at 
least -55 dB at 200 kHz.

b) Draw a circuit diagram of the filter and label all 
component values.

 15.43 The high-pass filter designed in Problem 15.41 
is  cascaded with the low-pass filter designed in 
 Problem 15.42.

a) Describe the type of filter formed by this inter-
connection.

b) Specify the cutoff frequencies, the midfrequency, 
and the quality factor of the filter.

c) Use the results of Problems 15.35 and 15.40 to 
derive the scaled transfer function of the filter.

d) Check the derivation of (c) by using it to calculate 
H(jvo), where vo is the midfrequency of the filter.
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b) Confirm the filter type described in (a) by deriv-
ing the transfer function Vo>Vi. Write the trans-
fer function in a form that makes it compatible 
with Table 15.1.

c) Set C2 = C3 = 1 F and derive the expressions 
for C1, R1, and R2 in terms of K, b1, and bo. 
(See Problem 15.48 for the definition of b1 
and bo.)

d) Assume the filter described in (a) is used in a 
third-order Butterworth filter that has a pass-
band gain of 8. With C2 = C3 = 1 F, calculate 
the prototype values of C1, R1, and R2 in the sec-
ond-order section of the filter.

 15.51 a) Use the circuits analyzed in Problems 15.48 and 
15.50 to implement a broadband bandreject filter 
having a passband gain of 0 dB, a lower corner 
frequency of 400 Hz, an upper corner frequency 
of 6400 Hz, and an attenuation of at least 30 dB 
at both 1000 Hz and 2560 Hz. Use 10 nF capaci-
tors whenever possible.

b) Draw a circuit diagram of the filter and label all 
the components.

 15.52 a) Derive the transfer function for the bandreject 
filter described in Problem 15.51.

b) Use the transfer function derived in part (a) to 
find the attenuation (in decibels) at the center 
frequency of the filter.

 15.53 The purpose of this problem is to develop the de-
sign equations for the circuit in Fig. P15.53. (See 
Problem 15.48 for suggestions on the develop-
ment of design equations.)

a) Based on a qualitative analysis, describe the type 
of filter implemented by the circuit.

b) Verify the conclusion reached in (a) by deriving 
the transfer function Vo>Vi. Write the transfer 
function in a form that makes it compatible with 
the entries in Table 15.1.

c) How many free choices are there in the selection 
of the circuit components?

d) Derive the expressions for the conductances 
G1 = 1>R1 and G1 = 1>R2 in terms of C1, C2, 
and the coefficients bo and b1. (See Problem 
15.48 for the definition of bo and b1.)

e) Are there any restrictions on C1 or C2?

f) Assume the circuit in Fig. P15.53 is used to  
design a fourth-order low-pass unity-gain  
Butterworth filter. Specify the prototype val-
ues of R1 and R2 in each second-order section 
if 1 F capacitors are used in the prototype  
circuit.

DESIGN
PROBLEM

DESIGN
PROBLEM

this in mind, show that if C2 = 1 F, the three 
 conductances are given by the expressions

G1 = KG2;

G3 = a bo

G2
bC1;

G2 =
b1 { 2b1

2 - 4bo(1 + K)C1

2(1 + K)
.

For G2 to be realizable,

C1 …
b1

2

4bo(1 + K)
.

d) Based on the results obtained in (c), outline the 
design procedure for selecting the circuit com-
ponents once K, bo, and b1 are known.

Figure P15.48
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 15.49 Assume the circuit analyzed in Problem 15.48 is 
part of a third-order low-pass Butterworth filter 
having a passband gain of 4. (Hint: implement 
the gain of 4 in the second-order section of the 
filter.)

a) If C2 = 1 F in the prototype second-order sec-
tion, what is the upper limit on C1?

b) If the limiting value of C1 is chosen, what are the 
prototype values of R1, R2, and R3?

c) If the corner frequency of the filter is 2.5 kHz 
and C2 is chosen to be 10 nF, calculate the scaled 
values of C1, R1, R2, and R3.

d) Specify the scaled values of the resistors and 
the capacitor in the first-order section of the 
filter.

e) Construct a circuit diagram of the filter and label 
all the component values on the diagram.

 15.50 Interchange the Rs and Cs in the circuit in 
Fig. P15.48; that is, replace R1 with C1, R2 with C2, R3 
with C3, C1 with R1, and C2 with R2.

a) Describe the type of filter implemented as a re-
sult of the interchange.
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Section 15.5

 15.57 Show that if vo = 1 rad>s and C = 1 F in the cir-
cuit in Fig. 15.27, the prototype values of R1, R2, and 
R3 are

R1 =
Q

K
,

R2 =
Q

2Q2 - K
 ,

R3 = 2Q.

 15.58 a) Use 10 nF capacitors in the circuit in Fig. 15.27 to 
design a bandpass filter with a quality factor of 
20, a center frequency of 10 kHz, and a passband 
gain of 20 dB.

b) Draw the circuit diagram of the filter and label 
all the components.

 15.59 a) Show that the transfer function for a prototype 
narrow band bandreject filter is

H(s) =
s2 + 1

s2 + (1>Q)s + 1
.

b) Use the result found in (a) to find the transfer 
function of the filter designed in Example 15.14.

 15.60 a) Using the circuit shown in Fig. 15.29, design a 
narrow-band bandreject filter having a center 
frequency of 4 kHz and a quality factor of 10. 
Base the design on C = 0.5  mF.

b) Draw the circuit diagram of the filter and label 
all component values on the diagram.

c) What is the scaled transfer function of the filter?

Sections 15.1–15.5

 15.61 Using the circuit in Fig. 15.32(a) design a volume 
control circuit to give a maximum gain of 14 dB and 
a gain of 11 dB at a frequency of 50 Hz. Use a 10 kΩ 
resistor and a 50 kΩ potentiometer. Test your  design 
by calculating the maximum gain at v = 0 and the 
gain at v = 1>R2C1 using the selected values of R1, 
R2, and C1.

 15.62 Use the circuit in Fig. 15.32(a) to design a bass vol-
ume control circuit that has a maximum gain of 
20 dB that drops off 3 dB at 75 Hz.

 15.63 Plot the maximum gain in decibels versus a when 
v = 0 for the circuit designed in Problem 15.61. Let 
a vary from 0 to 1 in increments of 0.1.

 15.64 a) Show that the circuits in Fig. P15.64(a) and (b) 
are equivalent.

b) Show that the points labeled x and y in 
Fig. P15.64(b) are always at the same potential.
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 15.54 The fourth-order low-pass unity-gain Butterworth 
filter in Problem 15.53 is used in a system where 
the cutoff frequency is 3 kHz. The filter has 4.7 nF 
 capacitors.

a) Specify the numerical values of R1 and R2 in 
each section of the filter.

b) Draw a circuit diagram of the filter and label all 
the components.

 15.55 Interchange the Rs and Cs in the circuit in  
Fig. P15.53, that is, replace R1 with C1, R2 with C2, 
and vice versa.

a) Analyze the circuit qualitatively and predict the 
type of filter implemented by the circuit.

b) Verify the conclusion reached in (a) by deriving 
the transfer function Vo>Vi. Write the transfer 
function in a form that makes it compatible with 
the entries in Table 15.1.

c) How many free choices are there in the selection 
of the circuit components?

d) Find R1 and R2 as functions of bo, b1, C1, and C2.

e) Are there any restrictions on C1 and C2?

f) Assume the circuit is used in a third-order Butter-
worth filter of the type found in (a). Specify the 
prototype values of R1 and R2 in the  second-order 
section of the filter if C1 = C2 = 1 F.

 15.56 a) The circuit in Problem 15.55 is used in a third- 
order high-pass unity-gain Butterworth filter 
that has a cutoff frequency of 10 kHz. Specify 
the values of R1 and R2 if 100 nF capacitors are 
available to construct the filter.

b) Specify the values of resistance and capacitance 
in the first-order section of the filter.

c) Draw the circuit diagram and label all the 
 components.

d) Give the numerical expression for the scaled 
transfer function of the filter.

e) Use the scaled transfer function derived in (d) to 
find the gain in dB at the cutoff frequency.
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c) Using the information in (a) and (b), show that 
the circuit in Fig. 15.34 can be drawn as shown in 
Fig. P15.64(c).

d) Show that the circuit in Fig. P15.64(c) is in the 
form of the circuit in Fig. 15.2, where

Zi =
R1 + (1 - a)R2 + R1R2C1s

1 + R2C1s
 ,

Zf =
R1 + aR2 + R1R2C1s

1 + R2C1s
.

 15.66 In the circuit of Fig. P15.65 the component values 
are R1 = R2 = 20 kΩ, R3 = 5.9 kΩ, R4 = 500 kΩ, 
and C2 = 2.7 nF.

a) Calculate the maximum boost in decibels.

b) Calculate the maximum cut in decibels.

c) Is R4 significantly greater than Ro?

d) When b = 1, what is the boost in decibels when 
v = 1>R3C2?

e) When b = 0, what is the cut in decibels when 
v = 1>R3C2?

f) Based on the results obtained in (d) and (e), 
what is the significance of the frequency 1>R3C2 
when R4 W R0?

 15.67 Using the component values given in Problem 
15.66, plot the maximum gain in decibels versus b 
when v is infinite. Let b vary from 0 to 1 in incre-
ments of 0.1.
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Figure P15.64
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 15.65 An engineering project manager has received a 
proposal from a subordinate who claims the circuit 
shown in Fig. P15.65 could be used as a treble vol-
ume control circuit if R4 W R1 + R3 + 2R2. The 
subordinate further claims that the voltage transfer 
function for the circuit is

H(s) =
Vo

Vs

=
-{(2R3 + R4) + [(1 - b)R4 + Ro](bR4 + R3)C2s}

{(2R3 + R4) + [(1 - b)R4 + R3](bR4 + Ro)C2s}

PRACTICAL
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Figure P15.65
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where Ro = R1 + R3 + 2R2. Fortunately the proj-
ect engineer has an electrical engineering under-
graduate student as an intern and therefore asks 
the student to check the subordinate’s claim.

The student is asked to check the behavior of 
the transfer function as v S 0; as v S ∞ ; and the 
behavior when v = ∞  and b varies between 0 and 
1. Based on your testing of the transfer function do 
you think the circuit could be used as a treble vol-
ume control? Explain.
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16
CHAPTER 

Fourier Series
In this chapter, we find the steady-state response of circuits to 
periodic, nonsinusoidal, inputs. A periodic function repeats itself 
every T seconds, so T is the period of the function. For example, 
the function plotted in Fig. 16.1 on page 648 is a periodic wave-
form that is not a sinusoid.

A periodic function satisfies the relationship

 f(t) = f(t { nT), (16.1)

where n is an integer 11, 2, 3, c2  and T is the period. The func-
tion shown in Fig. 16.1 is periodic because

f1 t02 = f1 t0 - T2 = f1 t0 + T2 = f1 t0 + 2T2 = g

for any arbitrarily chosen value of t0. Note that T is the smallest 
time interval that a periodic function may be shifted (either left 
or right) to produce a function that is identical to itself.

Why are we interested in the response of circuits to inputs 
that are periodic but not sinusoids? One reason is that many elec-
trical sources of practical value generate such waveforms. Here 
are a few examples.

• A nonfiltered electronic rectifier driven from a sinusoidal 
source produces a rectified sine wave that is not sinusoidal 
but is periodic. Figures 16.2(a) and (b) on page 648 show 
the waveforms of the full-wave and half-wave sinusoidal 
rectifiers, respectively.

• The sweep generator used to control the electron beam of 
a cathode-ray oscilloscope produces a periodic triangular 
wave like the one shown in Fig. 16.3 on page 648.

• Function generators, which are used to test equipment in 
a laboratory, are designed to produce nonsinusoidal peri-
odic waveforms, including square waves, triangular waves, 
and rectangular waves. Figure 16.4 on page 648 illustrates 
 typical waveforms output by a function generator.

• A power generator is designed to produce a sinusoidal 
waveform but cannot produce a pure sine wave. Instead, it 

16.1  Fourier Series Analysis: An Overview  
p. 649

16.2 The Fourier Coefficients p. 650

16.3  The Effect of Symmetry on the  
Fourier Coefficients p. 653

16.4  An Alternative Trigonometric Form of 
the Fourier Series p. 659

16.5 An Application p. 661

16.6  Average-Power Calculations with  
Periodic Functions p. 667

16.7  The rms Value of a Periodic Function  
p. 669

16.8  The Exponential Form of the Fourier 
Series p. 670

16.9 Amplitude and Phase Spectra p. 673

1 Be able to calculate the trigonometric  
form of the Fourier coefficients for a  
periodic waveform using the definition  
of the coefficients and the simplifications 
possible if the waveform exhibits one or 
more types of symmetry.

2 Know how to analyze a circuit’s response 
to a periodic waveform using Fourier  
coefficients and superposition.

3 Be able to estimate the average power  
delivered to a resistor using a small  
number of Fourier coefficients.

4 Be able to calculate the exponential  
form of the Fourier coefficients for a  
periodic waveform and use them to  
generate magnitude and phase  
spectrum plots for that waveform.

CHAPTER OBJECTIVES



Practical Perspective
Active High-Q Filters
An important characteristic of bandpass and bandreject 
 filters is the quality factor, Q, as we discovered in Chapters 
14 and 15. The quality factor provides a measure of how 
 selective the filter is at and near its center frequency. For 
example, an active bandpass filter with a large value of Q 
will  amplify signals at or near its center frequency and will 
attenuate signals at all other frequencies. In contrast, a ban-
dreject filter with a small value of Q will not effectively distin-
guish between signals at the center frequency and signals 
at frequencies quite different from the center frequency.

We can test the quality factor of a bandpass or ban-
dreject filter using a periodic signal. For example, to test 
the quality factor of a bandpass filter, input a square wave 
whose frequency is the same as the center frequency of 

the bandpass filter and analyze the output. In this chapter,  
we learn that any periodic signal can be represented as 
a sum of sinusoids. The frequencies of the sinusoids 
include the frequency of the periodic signal and integer 
multiples of that frequency. So the input square wave, 
whose frequency is v, consists of a sum of sinusoids at 
the frequencies v, 2v, 3v, and so on. If the bandpass  filter 
has a high-quality factor, its output will be nearly sinusoi-
dal because it filtered out all of the sinusoids that make 
up the square wave except the one at v. If the filter has 
a low-quality factor, its output will still look like a square 
wave because the filter passed many of the sinusoids 
that make up the input square wave to the output. We 
present an example at the end of this chapter.

High-Q
Bandpass

Filter

The sum of sinusoids
whose frequencies are
integer multiples of the 
fundamental frequency

The sum is a square wave 
at the fundamental frequency

The center frequency of
the �lter is the fundamental
frequency

The �lter extracts the sinusoid
at the fundamental frequency 
from the square wave

1

5

1 1 1 ???
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Figure 16.1 ▲ A periodic waveform.

T

v(t)

Vm

2T0
t

T

v(t)

Vm

T>20
t

(a) (b)

Figure 16.2 ▲ Output waveforms of a nonfiltered 
sinusoidal rectifier. (a) Full-wave rectification.  
(b) Half-wave rectification.
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T 2T 3T
t

0

Figure 16.3 ▲ The triangular waveform of a 
 cathode-ray oscilloscope sweep generator.
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t
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0
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Figure 16.4 ▲ Waveforms produced by function generators used in laboratory testing. (a) Square wave. (b) Triangular wave.  
(c) Rectangular pulse.

produces a distorted sinusoidal wave that is still periodic. We 
can use the analysis techniques in this chapter to determine 
the consequences of a circuit with a slightly distorted sinusoi-
dal voltage.

• Any nonlinearity in an otherwise linear circuit creates a non-
sinusoidal periodic function. The rectifier circuit mentioned 
earlier is one example of this phenomenon. Magnetic satu-
ration, which occurs in both machines and transformers, is 
another example of a nonlinearity that generates a nonsinu-
soidal periodic function. An electronic clipping circuit, which 
uses transistor saturation, is yet another example.

Nonsinusoidal periodic functions are also important when ana-
lyzing nonelectrical systems. Problems involving mechanical vibra-
tion, fluid flow, and heat flow all make use of periodic functions. 
In fact, the study and analysis of heat flow in a metal rod led the 
French mathematician Jean Baptiste Joseph Fourier (1768–1830) 
to the trigonometric series representation of a periodic function. 
This series bears his name and is the starting point for finding the 
steady-state response of a circuit to a periodic input.
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16.1 Fourier Series Analysis:  
An Overview

A periodic function can be represented by an infinite sum of sine and 
 cosine functions that are harmonically related, as Fourier discovered while 
investigating heat-flow problems. Specifically, the frequency of every trig-
onometric term in the infinite series is an integer multiple, or harmonic, 
of the fundamental frequency, v0, of the periodic function. Thus, if f(t) is 
periodic, Fourier showed that it can be expressed as

FOURIER SERIES REPRESENTATION OF  
A PERIODIC FUNCTION

 f(t) = a
v

+ a
∞

n = 1
an cos nv0t + bn sin nv0t, (16.2)

where n is the integer sequence 1, 2, 3, ….
In Eq. 16.2, a

v
, an, and bn are known as the Fourier coefficients and are 

calculated from f(t). We discuss these calculations in Section 16.2. The term 
v0 (which equals 2p>T) represents the fundamental frequency of the peri-
odic function f(t). The integer multiples of v0—that is, 2v0, 3v0, 4v0, and so 
on—are known as the harmonic frequencies of f(t). Thus, 2v0 is the second 
harmonic, 3v0 is the third harmonic, and nv0 is the nth harmonic of f(t).

Before learning how to find a circuit’s response to a periodic input 
using a Fourier series representation of that input, we first look at the pro-
cess in general terms. We can express all the periodic functions of interest 
in circuit analysis using a Fourier series. But not every periodic function 
has a Fourier series representation. The conditions on a periodic function 
f(t) that ensure it can be expressed as a convergent Fourier series (known 
as Dirichlet’s conditions) are as follows.

1. f(t) is single-valued.

2. f(t) has a finite number of discontinuities in the periodic interval.

3. f(t)  has a finite number of maxima and minima in the periodic 
 interval.

4. The integral

L
t0 + T

t0

0 f(t) 0  dt

exists.

All periodic functions encountered in circuit analysis satisfy Dirichlet’s condi-
tions. These are sufficient, not necessary conditions. Thus, if f(t) meets these 
requirements, we know that we can express it as a Fourier series. However, if 
f(t) does not meet these requirements, we still may be able to express it as a 
Fourier series. The necessary conditions on f(t) are not known.

After we have determined f(t) and calculated the Fourier coefficients 
(a

v
, an, and bn), we replace the periodic source with a dc source (a

v
) and si-

nusoidal sources, all connected in series. Each source represents a term in the 
Fourier series representation of the periodic input. Then, we use superposition 
to calculate the response to each source. The sum of the individual responses 
gives us the total steady-state response. The steady-state response to each si-
nusoidal source is most easily found using the phasor methods of Chapter 9.

The procedure just outlined involves no new circuit analysis tech-
niques. It produces the Fourier series representation of the steady-state 
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response; consequently, the functional form of the response is unknown. 
Furthermore, the output waveform is expressed as an infinite sum, so 
we can only estimate its shape by adding a sufficient number of its terms 
 together. While the Fourier series method for finding the steady-state 
 response of a circuit to a periodic input does have some drawbacks, it in-
troduces a way of thinking about a problem that is as important as getting 
quantitative results. In fact, the conceptual picture is even more import-
ant, in some respects, than the quantitative one.

16.2 The Fourier Coefficients
Using the definition of a periodic function over its fundamental period, 
we determine the Fourier coefficients from the relationships

FOURIER COEFFICIENTS

  a
v

=
1
T

 L
t0 + T

t0

f(t) dt,  (16.3)

  ak =
2
T

 L
t0 + T

t0

f(t) cos kv0t dt, (16.4)

  bk =
2
T

 L
t0 + T

t0

f(t) sin kv0t dt.  (16.5)

In Eqs. 16.4 and 16.5, the subscript k indicates the kth coefficient in the 
integer sequence 1, 2, 3, …. Note that a

v
 is the average value of f(t), ak is 

twice the average value of f(t) cos kv0t, and bk is twice the average value 
of f(t) sin kv0t.

We derive Eqs. 16.3–16.5 from Eq. 16.2 by recalling the following in-
tegral relationships, which hold when m and n are integers:

 L
t0 + T

t0

 sin mv0t dt = 0, for all m,

 L
t0 + T

t0

 cos mv0t dt = 0, for all m,

 L
t0 + T

t0

 cos mv0t sin nv0t dt = 0, for all m and n,

 L
t0 + T

t0

 sin mv0t sin nv0t dt = 0, for all m ≠ n,

 =
T
2

, for m = n,

 L
t0 + T

t0

 cos mv0t cos nv0t dt = 0, for all m ≠ n,

 =
T
2

, for m = n.
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We leave you to verify these equations in Problem 16.5.
To derive Eq. 16.3, integrate both sides of Eq. 16.2 over one period:

 L
t0+T

t0

f(t) dt = L
t0+T

t0

aa
v

+ a
∞

n = 1
an cos nv0t + bn sin nv0tb  dt

 = L
t0+T

t0

a
v
dt + a

∞

n = 1L
t0+T

t0

(an cos nv0t + bn sin nv0t) dt

 = a
v
T + 0.

Solving for a
v
 gives us Eq. 16.3.

To derive the expression for the kth value of an, we first multiply  
Eq. 16.2 by cos kv0t and then integrate both sides over one period of f(t):

 L
t0 + T

t0

f(t) cos kv0t dt = L
t0 + T

t0

a
v
 cos kv0t dt

 + a
∞

n = 1L
t0 + T

t0

1an cos nv0t cos kv0t + bn sin nv0t cos kv0t2  dt

 = 0 + akaT
2
b + 0.

Solving for ak yields the expression in Eq. 16.4.
We obtain the expression for the kth value of bn by first multiplying 

both sides of Eq. 16.2 by sin kv0t and then integrating each side over 
one period of f(t). You should complete the derivation of Eq. 16.5 in 
Problem 16.6. In Example 16.1 we use Eqs. 16.3–16.5 to find the Fourier 
coefficients for a specific periodic function.

EXAMPLE 16.1  Finding the Fourier Series of a Triangular Waveform

Find the Fourier series for the periodic voltage 
shown in Fig. 16.5.

v(t)

Vm

T 2T2T 0

Figure 16.5 ▲ The periodic voltage for Example 16.1.

Solution
To find a

v
, ak, and bk using Eqs. 16.3–16.5, we must 

choose the starting time t0. For the periodic voltage 
of Fig. 16.5, the best choice for t0 is zero. Any other 
choice makes the required integrations more cum-
bersome. The expression for v(t) between 0 and T is

v(t) = aVm

T
b t.

The equation for a
v
 is

a
v

=
1
T

 L
T

0
aVm

T
b t dt =

1
2

 Vm.

This is clearly the average value of the waveform in 
Fig. 16.5.

The equation for the kth value of an is

 ak =
2
T

 L
T

0
aVm

T
b t cos kv0t dt

 =
2Vm

T 2  a 1
k2v0

2 cos kv0t +
t

kv0
 sin kv0tb `

0

T

 =
2Vm

T 2  c 1
k2v0

2 1cos 2pk - 12 d = 0 for all k.
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Notice that we used the relationship between T and 
v0, T = 2p>v0, when evaluating the integral at its 
upper limit.

The equation for the kth value of bn is

 bk =
2
T

 L
T

0
aVm

T
b  t sin kv0t dt

 =
2Vm

T 2  a 1
k2v0

2  sin kv0t -
t

kv0
 cos kv0tb `

0

T

 =
2Vm

T 2   a0 -
T

kv0
  cos 2pkb

 =
-Vm

pk
.

The Fourier series for v(t) is

 v(t) =
Vm

2
-

Vm

p
 a

∞

n = 1
 
1
n

 sin nv0t

 =
Vm

2
-

Vm

p
 sin v0t -

Vm

2p
 sin 2v0t -

Vm

3p
 sin 3v0t - g.

Objective 1—Be able to calculate the trigonometric form of the Fourier coefficients for a periodic waveform

 16.1 Derive the expressions for a
v
, ak, and bk for the 

periodic voltage function shown if Vm = 9p V.

Vm

t

Vm

3

T
3

2T
3

4T
3

5T
3

T 2T

Answer: a
v

= 21.99 V,

ak =
6
k

 sin 
4kp

3
 V,

bk =
6
k
a1 - cos 

4kp
3

bV.

 16.2 Refer to Assessment Problem 16.1.
a) What is the average value of the periodic voltage?
b) Compute the numerical values of a1 - a5  

and b1 - b5.
c) If T = 125.66 ms, what is the fundamental 

frequency in radians per second?
d) What is the frequency of the third harmonic in 

hertz?
e) Write the Fourier series up to and including the 

fifth harmonic.

Answer: (a) 21.99 V;
(b) -5.2 V, 2.6 V, 0 V, -1.3, and 1.04 V;  

9 V, 4.5 V, 0 V, 2.25 V, and 1.8 V;
(c) 50 rad>s;
(d) 23.87 Hz;
(e) v(t) = 21.99 - 5.2 cos 50t + 9 sin 50t

+ 2.6 cos 100t + 4.5 sin 100t
- 1.3 cos 200t + 2.25 sin 200t
+ 1.04 cos 250t + 1.8 sin 250t V.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 16.1–16.3.

Finding the Fourier coefficients, in general, is tedious. Therefore, 
anything that simplifies the task is beneficial. Fortunately, when a periodic 
function possesses certain types of symmetry, we can find its Fourier coef-
ficients with fewer computations. In Section 16.3, we discuss how symme-
try affects the coefficients in a Fourier series.
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16.3 The Effect of Symmetry  
on the Fourier Coefficients

Four types of symmetry make the task of evaluating the Fourier coeffi-
cients easier:

• even-function symmetry,
• odd-function symmetry,
• half-wave symmetry,
• quarter-wave symmetry.

The effect of each type of symmetry on the Fourier coefficients is dis-
cussed in the following sections.

Even-Function Symmetry
A function is defined as even if

EVEN FUNCTION

 f(t) = f(- t). (16.6)

Figure 16.6 illustrates an even periodic function. Functions that satisfy  
Eq. 16.6 are said to be even because polynomial functions with only even 
exponents possess this characteristic.

For even periodic functions, the equations for the Fourier coefficients 
reduce to

  a
v

=
2
T

 L
T>2

0
f(t) dt,  (16.7)

  ak =
4
T

 L
T>2

0
f(t) cos kv0t dt, (16.8)

  bk = 0, for all k.  (16.9)

Note that all the b coefficients are zero if the periodic function is even. 
This means that the Fourier series representation of an even periodic 
function consists only of the constant term and cosine terms—there are no 
sine terms. This is not surprising because the cosine function is even, but 
the sine function is not.

The derivations of Eqs. 16.7–16.9 follow directly from Eqs. 16.3–16.5. 
In each derivation, we select t0 = -T>2 and then break the interval of 
integration into the range from -T>2 to 0 and 0 to T>2. For example,

 a
v

=
1
T

 L
T>2

-T>2
f(t) dt

 =
1
T

 L
0

-T>2
f(t) dt +

1
T

 L
T>2

0
f(t) dt.

Now we change the variable of integration in the first integral on the 
right-hand side of the equation for a

v
. We let t = -x and note that 

f(t) = f1 -x2 = f(x) because the function is even. Note that x = T>2 
when t = -T>2 and dt = -dx. Then

L
0

-T>2
f(t) dt = L

0

T>2
f(x) (-dx) = L

T>2

0
f(x) dx,

f(t)

0
t

2T T

Figure 16.6 ▲ An even periodic function, 
f(t) = f(- t).
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which shows that the integral from -T>2 to 0 is identical to the integral 
from 0 to T>2. This completes the derivation of Eq. 16.7.

The derivation of Eq. 16.8 proceeds along similar lines. Here,

 ak =
2
T

 L
0

-T>2
f(t) cos kv0t dt +  

2
T

 L
T>2

0
f(t) cos kv0t dt,

but

 L
0

-T>2
f(t) cos kv0t dt = L

0

T>2
f(x) cos (-kv0x)(-dx)

 = L
T>2

0
f(x) cos kv0x dx.

As before, the integral from -T>2 to 0 is the same as the integral from 0  
to T>2. Replacing the first integral in the equation for ak with a copy of 
the second integral and simplifying yields Eq. 16.8.

All the b coefficients are zero when f(t) is an even periodic function 
because the integral from -T>2 to 0 is the negative of the integral from 0 
to T>2; that is,

 L
0

-T>2
f(t) sin kv0t dt = L

0

T>2
f(x) sin (-kv0x)(-dx)

 = -L
T>2

0
f(x) sin kv0x dx.

When we use Eqs. 16.7 and 16.8 to find the Fourier coefficients, the inter-
val of integration must be between 0 and T>2.

Odd-Function Symmetry
A function is defined as odd if

ODD FUNCTION

 f(t) = - f(- t). (16.10)

Functions that satisfy Eq. 16.10 are said to be odd because polynomial 
functions with only odd exponents have this characteristic. Figure 16.7 
shows an odd periodic function.

The expressions for the Fourier coefficients are

 a
v

= 0;  (16.11)

 ak = 0, for all k;  (16.12)

 bk =
4
T

 L
T>2

0
f(t) sin kv0t dt. (16.13)

Note that all the a coefficients are zero if the periodic function is odd. This 
means that the Fourier series representation of an odd periodic function 
consists only of sine terms; there are no cosine terms. This is not surprising 
because the sine function is odd, but the cosine function is even. It also 

2T 2T>2 T>2 T

f(t)

A

2A

0
t

Figure 16.7 ▲ An odd periodic function 
f(t) = - f(- t).
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means that the average value of an odd function is always zero because 
the constant term, a

v
, is always zero.

We use the same process to derive Eqs. 16.11–16.13 that we used to 
derive Eqs. 16.7–16.9. We leave the derivations to you in Problem 16.7.

If a periodic function has even or odd symmetry, the symmetry can 
be destroyed by shifting the function along the time axis. This also means 
that if a periodic function lacks even or odd symmetry, it may be possible 
to shift the function along the time axis to create this symmetry. For exam-
ple, the triangular function shown in Fig. 16.8(a) is neither even nor odd. 
However, we can make the function even by shifting it left, as shown in 
Fig. 16.8(b), or odd by shifting it right, as shown in Fig. 16.8(c).

Half-Wave Symmetry
A periodic function possesses half-wave symmetry if it satisfies the constraint

(a)

2T T2T>2 T>20
t

A

2A

f(t)

(b)

2T T2T>2 T>20
t

A

2A

f(t)

(c)

2T T2T>2 T>20
t

A

2A

f(t)

Figure 16.8 ▲ How the choice of where t = 0 can 
make a periodic function even, odd, or neither. (a) 
A periodic triangular wave that is neither even nor 
odd. (b) The triangular wave of (a) made even by 
shifting the function along the t axis. (c) The trian-
gular wave of (a) made odd by shifting the function 
along the t axis.

HALF-WAVE SYMMETRY

 f(t) = - f(t - T>2). (16.14)

Equation 16.14 states that a periodic function has half-wave symmetry if, 
after it is shifted one-half period and inverted, it is identical to the origi-
nal function. For example, the functions shown in Figs. 16.7 and 16.8 have 
half-wave symmetry, whereas those in Figs. 16.5 and 16.6 do not. Note that 
half-wave symmetry is not determined by where t = 0, as seen in Fig. 16.8.

If a periodic function has half-wave symmetry, both ak and bk are zero 
for even values of k. Moreover, a

v
 also is zero because the average value 

of a function with half-wave symmetry is zero. The expressions for the 
Fourier coefficients are

 a
v

= 0;  (16.15)

 ak = 0,  for k even; 

(16.16)

ak =
4
T L

T>2

0
f(t) cos kv0t dt,  for k odd;

 bk = 0,  for k even; 

(16.17)

bk =
4
T L

T>2

0
f(t) sin kv0t dt,  for k odd.

We derive Eqs. 16.15–16.17 by starting with Eqs. 16.3–16.5 and choosing 
the interval of integration as -T>2 to T>2. We then divide this range into the 
intervals -T>2 to 0 and 0 to T>2. For example, the derivation for ak is

 ak =
2
T

 L
t0 + T

t0

f(t) cos kv0t dt

 =
2
T

 L
T>2

-T>2
f(t) cos kv0t dt

 =
2
T

 L
0

-T>2
f(t) cos kv0t dt

 +
2
T

 L
T>2

0
f(t) cos kv0t dt.
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Now we change a variable in the first integral on the right-hand side of the 
equation for ak. Specifically, we let

t = x - T>2.

Then

 x = T>2,    when t = 0;

 x = 0,    when t = -T>2;

 dt = dx.

We rewrite the first integral as

L
0

-T>2
f(t) cos kv0t dt = L

T>2

0
f1x - T>22  cos kv01x - T>22  dx.

Note that

cos kv01x - T>22 = cos 1kv0x - kp2 = cos kp cos kv0x

and that, by hypothesis,

f1x - T>22 = -f(x).

Therefore,

L
0

-T>2
f(t) cos kv0t dt = L

T>2

0
[-f(x)] cos kp cos kv0x dx.

Incorporating this integral into the equation for ak gives

ak =
2
T

 (1 - cos kp)L
T>2

0
f(t) cos kv0t dt.

But cos kp is 1 when k is even and -1 when k is odd. Therefore, we get 
the expressions for ak given in Eqs. 16.16.

We leave it to you to verify that this same process can be used to 
 derive Eqs. 16.17 (see Problem 16.8).

We summarize our observations by noting that the Fourier series 
 representation of a periodic function with half-wave symmetry has zero 
average value and contains only odd harmonics.

Quarter-Wave Symmetry
The term quarter-wave symmetry describes a periodic function that has 
half-wave symmetry and, in addition, symmetry about the midpoint of the 
positive and negative half-cycles. The function illustrated in Fig. 16.9(a) 

0

A

2A

T>4 3T>4T>2 T

0 T>4 3T>4T>2 T

t

t

(a)

2A

(b)

f(t)

A

f(t)

Figure 16.9 ▲ (a) A function that has quarter- 
wave symmetry. (b) A function that does not have 
quarterwave symmetry.



 16.3 The Effect of Symmetry on the Fourier Coefficients  657

has quarter-wave symmetry about the midpoint of the positive and neg-
ative half-cycles. The function in Fig. 16.9(b) does not have quarter-wave 
symmetry, although it does have half-wave symmetry.

A periodic function that has quarter-wave symmetry can always be 
made either even or odd by the proper choice of the point where t = 0. 
For example, the function shown in Fig. 16.9(a) is odd and can be made 
even by shifting the function T>4 units either right or left along the t 
axis. However, the function in Fig. 16.9(b) can never be made either 
even or odd.

To take advantage of quarter-wave symmetry when calculating the 
Fourier coefficients, you must choose the point where t = 0 to make the 
function either even or odd. If the function is made even, then

 a
v

= 0, because of half@wave symmetry;

 ak = 0, for k even, because of half@wave symmetry;

 ak =
8
T

 L
T>4

0
f(t) cos kv0t dt, for k odd;

  bk = 0, for all k, because the function is even.  

(16.18)

Equations 16.18 result from the function’s quarter-wave symmetry in ad-
dition to its being even. Remember that if a function has quarter-wave 
symmetry, it also has half-wave symmetry, so we can eliminate a

v
 and ak 

for k even. Comparing the expression for ak, k odd, in Eqs. 16.18 with 
Eqs. 16.16, shows that when an even function also has quarter-wave 
symmetry, we can shorten the range of integration from 0 to T>2 to 0 to 
T>4. We leave the derivation of Eqs. 16.18 to you in Problem 16.9.

If the quarter-wave symmetric function is made odd,

 a
v

= 0, because the function is odd;

 ak = 0, for all k, because the function is odd;

  bk = 0, for k even, because of half@wave symmetry; 

(16.19)

 bk =
8
T

 L
T>4

0
f(t) sin kv0t dt,   for k odd.

Equations 16.19 are a direct consequence of the function being both odd 
and quarter-wave symmetric. Again, quarter-wave symmetry allows us to 
shorten the interval of integration from 0 to T>2 to 0 to T>4. We leave the 
derivation of Eqs. 16.19 to you in Problem 16.10.

Example 16.2 shows how symmetry simplifies the task of finding the 
Fourier coefficients.
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EXAMPLE 16.2 Finding the Fourier Series of a Periodic Function with Symmetry

Find the Fourier series representation for the cur-
rent waveform shown in Fig. 16.10.

2Im

Im

i(t)

2T>2 T>2 T 2T 5T>2 3T3T>20
t

Figure 16.10 ▲ The periodic waveform for Example 16.2.

Solution
We begin by looking for symmetry in the wave-
form. We find that the function is odd and has half-
wave and quarter-wave symmetry. Because the 
function is odd, all the a coefficients are zero; that 
is, a

v
= 0 and ak = 0 for all k. Because the function 

has half-wave symmetry, bk = 0 for even values of 
k. Because the function has quarter-wave symme-
try, the expression for bk for odd values of k is

bk =
8
T

 L
T>4

0
i(t) sin kv0t dt.

In the interval 0 … t … T>4, the expression for 
i(t) is

i(t) =
4Im

T
 t.

Thus

 bk =
8
T

 L
T>4

0

4Im

T
 t sin kv0t dt

 =
32Im

T 2  a  sin kv0t

k2v0
2 -

t cos kv0t

kv0
`
0

T>4
b

 =
8Im

p2k2 sin 
kp
2

  1k is odd2 .

The Fourier series representation of i(t) is

 i(t) =
8Im

p2  a
∞

n = 1,3,5,c

1
n2 sin 

np
2

 sin nv0t

 =
8Im

p2  asin v0t -
1
9

 sin 3v0t

 +
1
25

 sin 5v0t -
1
49

 sin 7v0t + gb .

Objective 1—Be able to calculate the trigonometric form of the Fourier coefficients for a periodic waveform

 16.3 Derive the Fourier series for the periodic volt-
age shown.

Answer: vg(t) =
12Vm

p2   a
∞

n = 1,3,5, c

sin1np>32
n2   sin nv0t.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 16.11 and 16.12.

vg(t)

Vm

2Vm

T>60 T5T>62T>3T>2T>3 t
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16.4 An Alternative Trigonometric 
Form of the Fourier Series

When analyzing a circuit with a periodic input voltage, we could replace 
the input voltage with a collection of series-connected voltage sources, 
where each source corresponds to a term in the Fourier series represen-
tation of the periodic voltage. This would mean that for every harmonic 
frequency, there is a source for the sine term and a source for the cosine 
term at that frequency.

Instead, to simplify the circuit and our analysis of it, we combine the 
sine and cosine terms at the same harmonic frequency into a single term. 
Then, we can transform the circuit into the phasor domain for each har-
monic frequency, where the combined source is represented as a single 
phasor quantity. Thus, we write the Fourier series in Eq. 16.2 as

 f(t) = a
v

+ a
∞

n = 1
An cos (nv0t - un), (16.20)

where An and un are defined as

 an - jbn = 2an
2 + bn

2 l-un = An l-un. (16.21)

We derive Eqs. 16.20 and 16.21 using the phasor method to add the 
cosine and sine terms in Eq. 16.2. We begin by expressing the sine func-
tions as cosine functions; that is, we rewrite Eq. 16.2 as

f(t) = a
v

+ a
∞

n = 1
an cos nv0t + bn cos (nv0t - 90°).

Adding the terms under the summation sign by using phasors gives

�5an cos nv0t6 = an l0°

and

�5bn cos (nv0t - 90°)6 = bn l-90° = - jbn.

Then

 �5an cos (nv0t + bn cos (nv0t - 90°)6 = an - jbn

 = 2an
2 + bn

2 l-un

 = An
l-un.

The right-hand sides of this expression correspond to Eq. 16.21. When we 
inverse phasor-transform both sides of this expression, we get

 an cos nv0t + bn cos (nv0t - 90°) = �-15An
l-un6

 = An cos (nv0t - un).

After substituting the right-hand side for the argument of the summation 
in the expression for f(t), we get Eq. 16.20. If the periodic function is ei-
ther even or odd, An reduces to either an (even) or bn (odd), and un is 
either 0° (even) or 90° (odd).

Example 16.3 calculates the alternative form of the Fourier series for 
a specific periodic function.
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EXAMPLE 16.3  Calculating Forms of the Trigonometric Fourier Series for 
Periodic Voltage

a) Derive the expressions for ak and bk for the peri-
odic function shown in Fig. 16.11.

b) Write the first four terms of the Fourier se-
ries representation of v(t) using the format of  
Eq. 16.20.

and

 bk =
2
T

 L
T>4

0
Vm sin kv0t dt

 =
2Vm

T
 a -cos kv0t

kv0
`
0

T>4
b

 =
Vm

kp
  a1 - cos

kp
2

b .

b) The average value of v(t) is

a
v

=
Vm1T>42

T
=

Vm

4
.

The values of ak - jbk for k = 1, 2, and 3 are

 a1 - jb1 =
Vm

p
- j

Vm

p
=

12Vm

p
 l-45°,

 a2 - jb2 = 0 - j
Vm

p
=

Vm

p
 l-90°,

 a3 - jb3 =
-Vm

3p
- j

Vm

3p
=

12Vm

3p
 l-135°.

Thus, the first four terms in the Fourier series 
representation of v(t) are

 v(t) =
Vm

4
+

12Vm

p
 cos1v0t - 45°2

+
Vm

p
 cos12v0t - 90°2

 +
12Vm

3p
 cos13v0t - 135°2 + g .

v(t)

Vm

0
t

T
4

T
2

3T
4

3T
2

5T
4

7T
4

T 2T

Figure 16.11 ▲ The periodic function for  
Example 16.3.

Solution

a) The voltage v(t) is neither even nor odd, nor does it 
have half-wave symmetry. Therefore, we use Eqs. 16.4 
and 16.5 to find ak and bk. Choosing t0 as zero, we ob-
tain

 ak =
2
T

 c L
T>4

0
Vm cos kv0t dt + L

T

T>4
(0) cos kv0t dt d

 =
2Vm

T
 
sin kv0t

kv0
`
0

T>4
=

Vm

kp
 sin 

kp
2

Objective 1—Be able to calculate the trigonometric form of the Fourier coefficients for a periodic waveform

 16.4 a) Compute A1 - A5 and u1 - u5 for the periodic 
function shown if Vm = 9p V.

b) Using the format of Eq. 16.20, write the Fou-
rier series for v(t) up to and including the fifth 
harmonic assuming T = 125.66 ms.

Answer: (a) 10.4, 5.2, 0, 2.6, 2.1 V, and -120°, -60°, not 
defined, -120°, -60°;

(b) v(t) = 21.99 + 10.4 cos150t - 120°2
+ 5.2 cos1100t - 60°2
+ 2.6 cos1200t - 120°2
+ 2.1 cos1250t - 60°2  V.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 16.22.

Vm

Vm

3

T
3

2T
3

4T
3

5T
3

2TT

t
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16.5 An Application
Let’s use a Fourier series representation of a periodic input voltage to find 
the steady-state output voltage of a linear circuit, which is the RC circuit 
shown in Fig. 16.12(a). The circuit’s input voltage is the periodic square wave 
shown in Fig. 16.12(b). The output voltage is defined across the capacitor.

First, we represent the periodic voltage with its Fourier series. The 
waveform in Fig. 16.12(b) has odd, half-wave, and quarter-wave symme-
try, so the only nonzero Fourier coefficients are the bk coefficients for odd 
values of k:

 bk =
8
T

 L
T>4

0
Vm sin kv0t dt

 =
4Vm

pk
  (k is odd).

Then the Fourier series representation of vg is

vg =
4Vm

p
 a

∞

n = 1,3,5,c

1
n

 sin nv0t.

Writing the series in expanded form, we have

 vg =
4Vm

p
 sin v0t +

4Vm

3p
 sin 3v0t

 +
4Vm

5p
 sin 5v0t +

4Vm

7p
 sin 7v0t + g .

The voltage source, vg, in Fig. 16.12(a) can be replaced by infinitely 
many series-connected sinusoidal sources. Each source is a sine function 
whose frequency is an odd multiple of the square wave’s frequency. We 
use the principle of superposition to find the contribution of each source 
to the output voltage.

For each sinusoidal source, the phasor-domain expression for the out-
put voltage is

Vo =
Vg

1 + jvRC
.

Since all of the voltage sources are expressed as sine functions, we inter-
pret a phasor using the sine instead of the cosine. In other words, when we 
go from the phasor domain back to the time domain, we simply write the 
time-domain expressions as sin1vt + u2  instead of cos1vt + u2 .

The phasor output voltage due to the sinusoidal source at the funda-
mental frequency is

Vo1 =
(4Vm>p)l0°
1 + jv0RC

.

Writing Vo1 in polar form gives

Vo1 =
(4Vm)

p21 + v0
2R2C 2

 l-b1,

where

b1 =  tan -1 v0RC.

vg

Vm

2Vm

T

(b)

2T 3T
t

(a)

vg

1

2

vo
1

2

R

C

Figure 16.12 ▲ An RC circuit excited by a periodic 
voltage. (a) The RC circuit. (b) The square-wave 
voltage.
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Inverse-phasor-transform Vo1 to get the time-domain expression for the 
fundamental frequency component of vo:

vo1 =
4Vm

p21 + v0
2R2C 2

  sin (v0t - b1).

We derive the third-harmonic component of the output voltage in a 
similar manner. The third-harmonic phasor output voltage is

 Vo3 =
(4Vm>3p)l0°
1 + j3v0RC

 =
4Vm

3p21 + 9v0
2R2C 2

 l-b3,

where

b3 =  tan-13v0 RC.

The time-domain expression for the third-harmonic output voltage is

vo3 =
4Vm

3p21 + 9v0
2R2C 2

  sin (3v0t - b3).

Hence, the expression for the kth-harmonic component of the output 
voltage is

vok =
4Vm

kp21 + k2v0
2R2C 2

  sin (kv0t - bk) (k is odd),

where

bk =  tan-1kv0 RC (k is odd).

We now write down the Fourier series representation of the output 
voltage:

 vo(t) =
4Vm

p
 a

∞

n = 1,3,5,c

sin (nv0t - bn)

n21 + (nv0RC)2
. (16.22)

We derived an analytic expression for the steady-state output, but the shape 
of vo(t), and its functional form, are not apparent from the equation. As we 
mentioned earlier, this is a disadvantage of the Fourier series approach.

The Fourier series representation of vo(t) in Eq. 16.22 does provide 
some information about the steady-state output voltage, if we focus on the 
frequency response of the circuit. For example, if C is large, 1>nv0C is small 
for the higher-order harmonics. Thus, the capacitor short circuits the high- 
frequency components of the input waveform, and the higher-order har-
monics in the Fourier series representation of vo(t) are negligible compared 
to the lower-order harmonics. For large C, we can approximate vo(t) as

  vo ≈
4Vm

pv0RC
 a

∞

n = 1,3,5,c

1
n2 sin (nv0t - 90°)

  ≈
-4Vm

pv0RC
 a

∞

n = 1,3,5,c

1
n2 cos nv0t.  (16.23)

Equation 16.23 shows that the amplitude of the harmonic in the output 
voltage is decreasing by 1>n2, while the amplitude of the harmonic in the 
input voltage decreases by 1>n. If C is so large that only the fundamental 
component is significant, then to a first approximation

vo(t) ≈
-4Vm

pv0RC
 cos v0t,
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and Fourier analysis tells us that the square-wave input is deformed into 
a sinusoidal output.

Now let’s see what happens as C S 0. The circuit shows that vo and 
vg are the same when C = 0 because the capacitive branch looks like an 
open circuit at all frequencies. Equation 16.22 predicts the same result 
because, as C S 0,

vo =
4Vm

p
 a

∞

n = 1,3,5,c

1
n

 sin nv0t.

Therefore vo S vg as C S 0.
Thus, Fourier series representation for vo(t) predicts that the output 

will be a highly distorted replica of the input waveform if C is large, and a 
reasonable replica if C is small. In Chapter 13, we looked at the distortion 
between the input and output in terms of how much memory the system 
weighting function had. In the frequency domain, we look at the distortion 
between the steady-state input and output in terms of how the amplitude 
and phase of each harmonic component are altered as it is transmitted 
through the circuit. When the circuit significantly alters the amplitude and 
phase relationships among the harmonics at the output relative to that 
at the input, the output is a distorted version of the input. Thus, in the 
frequency domain, we speak of amplitude distortion and phase distortion.

For the RC circuit in Fig. 16.12(a), amplitude distortion is present be-
cause the amplitudes of the input harmonics decrease as 1>n, whereas the 
amplitudes of the output harmonics decrease as

1
n

 
121 + 1nv0RC2 2

.

This circuit also exhibits phase distortion because the phase angle of each 
input harmonic is zero, whereas that of the nth harmonic in the output 
signal is -  tan-1nv0RC.

An Application of the Direct Approach to the Steady-
State Response
For the simple RC circuit shown in Fig. 16.12(a), we can find the steady-
state response without using the Fourier series representation of the peri-
odic input voltage. Doing this extra analysis here adds to our understanding 
of the Fourier series approach.

To find the steady-state expression for vo, we reason as follows. The 
square-wave input voltage alternates between charging the capacitor toward 
+Vm and -Vm. After the circuit reaches steady-state operation, this alter-
nate charging becomes periodic. From our analysis of the first-order RC cir-
cuit in Chapter 7, we know that an abrupt change in the input voltage results 
in an output voltage that is exponential. Thus, the steady-state waveform of 
the capacitor voltage for the RC circuit shown in Fig. 16.12(a) looks like the 
waveform shown in Fig. 16.13.

The analytic expressions for vo(t) in the time intervals 0 … t … T>2 
and T>2 … t … T are

 vo = Vm + (V1 - Vm)e-t>RC,  0 … t … T>2;

 vo = -Vm + (V2 + Vm)e-[t - (T>2)]>RC,  T>2 … t … T.

We derive these equations by using the methods of Chapter 7, as sum-
marized by Eq. 7.23. The value of V2 is the value of vo(t) at the end of the 
interval 0 … t … T>2:

vo1T>22 = V2 = Vm + (V1 - Vm)e-T>2RC,

vo

V2

0

Toward 1Vm

Toward 2Vm Toward 2Vm

Toward 1Vm

V1

T>2 T 2T3T>2 t

Figure 16.13 ▲ The steady-state waveform of vo for 
the circuit in Fig. 16.12(a).
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and the value of V1 is the value of vo(t) at the end of the interval 
T>2 … t … T:

vo(T) = V1 = -Vm + (V2 + Vm)e-T>2RC.

Solving these equations for V1 and V2 yields

V2 = -V1 =
Vm(1 - e-T>2RC)

1 + e-T>2RC
.

Substituting the expressions for V1 and V2 into the equations for vo(t) gives

 vo = Vm -
2Vm

1 + e-T>2RC
 e-t>RC, 0 … t … T>2, (16.24)

and

 vo = -Vm +
2Vm

1 + e-T>2RC
 e-[t - (T>2)]>RC, T>2 … t … T. (16.25)

Equations 16.24 and 16.25 indicate that vo(t) has half-wave symme-
try, so the average value of vo is zero. This result agrees with the Fourier 
series solution for the steady-state response—namely, that because the 
input voltage has no dc component, the output voltage cannot have a dc 
component. Equations 16.24 and 16.25 also show the effect of changing 
the size of the capacitor. If C is small, the exponential functions quickly 
vanish, vo = Vm between 0 and T>2, and vo = -Vm between T>2 and T.  
In other words, vo S vg as C S 0. If C is large, the output waveform 
becomes triangular in shape, as Fig. 16.14 shows. Note that for large C, 
we may approximate the exponential terms e-t>RC and e-[t - (T>2)]>RC by 
the linear terms 1 - (t>RC) and 1 - 5 [t - (T>2)]>RC6 , respectively. 
Equation 16.23 gives the Fourier series of this triangular waveform.

Figure 16.14 summarizes the results. The dashed line in Fig. 16.14 is 
the input voltage, the solid colored line depicts the output voltage when C 
is small, and the solid black line depicts the output voltage when C is large.

Finally, we verify that the steady-state response of Eqs. 16.24 and 
16.25 is equivalent to the Fourier series solution in Eq. 16.22. To do so, we 
derive the Fourier series representation of the periodic function described 
by Eqs. 16.24 and 16.25. We have already noted that the periodic voltage 
response has half-wave symmetry. Therefore, the Fourier series contains 
only odd harmonics. For k odd,

  ak =
4
T

 L
T>2

0
aVm -

2Vme-t>RC

1 + e-T>2RC
bcos kv0t dt 

(16.26) =
-8RCVm

T[1 + (kv0RC)2]
  (k is odd),

  bk =
4
T

 L
T>2

0
aVm -

2Vme-t>RC

1 + e-T>2RC
bsin kv0t dt  

(16.27) =
4Vm

kp
-

8kv0VmR2C 2

T[1 + (kv0RC)2]
  (k is odd).

To show that Eqs. 16.26 and 16.27 are consistent with Eq. 16.22, we must 
prove that

 2ak
2 + bk

2 =
4Vm

kp
 

121 + (kv0RC)2
, (16.28)

vo

Vm

2Vm

V2

0

Small C

Large C
V1

T>2 T 2T
t

3T>2

Figure 16.14 ▲ The effect of capacitor size on the 
steady-state response.
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and that

 
ak

bk
= -kv0RC. (16.29)

You can verify Eqs. 16.26–16.29 in Problems 16.23 and 16.24. 
Equations 16.28 and 16.29 are used with Eqs. 16.20 and 16.21 to derive 
the Fourier series expression in Eq. 16.22; we leave the details to you 
in Problem 16.25.

With this illustrative circuit, we showed how to use the Fourier series 
in conjunction with the principle of superposition to find the steady-state 
response to a periodic input voltage. Again, the principal shortcoming 
of the Fourier series approach is the difficulty of ascertaining the out-
put waveform. However, by considering a circuit’s frequency response, 
we can deduce a reasonable approximation of the steady-state response, 
using a finite number of terms in the Fourier series representation. (See 
Problems 16.29 and 16.30.) Example 16.4 provides another example of 
the Fourier series circuit analysis method.

EXAMPLE 16.4  Finding the Response of an RLC Circuit to a  
Square-Wave Voltage

The square wave in Fig. 16.12(b) has a magnitude 
of 4p V and a frequency of 100 rad>s. This periodic 
voltage is input to the circuit in Fig. 16.15.

a) Find the first five nonzero terms in the Fourier 
series representation of the square-wave input 
voltage.

b) Find the output voltage, vo, for the circuit in 
Fig. 16.15, using the five terms calculated in 
part (a).

c) Use the frequency response of the circuit in  
Fig. 16.15 to explain the output voltage terms you 
calculated in part (b).

Solution

a) The Fourier series representation of vg is

 vg =
4Vm

p
 a

∞

n = 1,3,5,c

1
n

  sin nvot

 = 16 sin 100t + 5.33 sin 300t + 3.2 sin 500t

        + 2.29 sin 700t + 1.78 sin 900t + c V.

b) The circuit in Fig. 16.15 is a parallel RLC bandre-
ject filter. From Fig. 14.31, the transfer function is

 H(s) =
s2 + 1>LC

s2 + s>RC + 1>LC

 =
s2 + 25 * 104

s2 + 100s + 25 * 104.

To find the terms in the Fourier series represen-
tation of vo, evaluate H(s) for s = jv, where v is 
the frequency of the term in vg. Then, multiply by 
the phasor representation of that term in vg, and 
inverse-phasor-transform the result to find the 
corresponding term in vo. Note that we are using 
the sine function, instead of the cosine function 
for the phasor transform and its inverse.
For v = 100 rad>s:

 H1 j1002 =
1 j1002 2 + 25 * 104

1 j1002 2 + 1001 j1002 + 25 * 104

 = 0.999l-2.4°,

 Vo1 j1002 = 10.998l-2.4°2(16) = 15.99l-2.4°.

For v = 300 rad>s:

 H1 j3002 =
1 j3002 2 + 25 * 104

1 j3002 2 + 1001 j3002 + 25 * 104

 = 0.983l-10.6°,

 Vo1 j3002 = 10.983l-10.6°2(5.33) = 5.24l-10.6°.

8 mH

1

2
vo

1

2

vg 20 V

500 mF

Figure 16.15 ▲ The circuit for Example 16.4.
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For v = 500 rad>s:

 H1 j5002 =
1 j5002 2 + 25 * 104

1 j5002 2 + 1001 j5002 + 25 * 104 = 0,

 Vo1 j5002 = (0)13.22 = 0.

For v = 700 rad>s:

 H1 j7002 =
1 j7002 2 + 25 * 104

1 j7002 2 + 1001 j7002 + 25 * 104

 = 0.96l16.26°,

 Vo1 j7002 = 10.96l16.26°2 12.292 = 2.2l16.26°.

For v = 900 rad>s:

 H1 j9002 =
1 j9002 2 + 25 * 104

1 j9002 2 + 1001 j9002 + 25 * 104

 = 0.99l9.13°,

 Vo1 j9002 = 10.99l9.13°2 11.782 = 1.76l9.13°.

Therefore, the first five terms in the Fourier se-
ries representation of the steady-state output 
voltage are

 vo = 15.99 sin1100t - 2.4°2 + 5.24 sin1300t - 10.6°2
+ 0 sin 500t + 2.2 sin1700t + 16.26°2
+ 1.76 sin1900t + 9.13°2 + cV.

c) As noted in part (a), the circuit in Fig. 16.15 is 
a bandreject filter. It has a center frequency  
of 11>LC = 500 rad>s, a bandwidth of 1>RC 
=  100 rad>s, and a quality of 5, so it is a selective 
filter. Its cutoff frequencies are 452.494 rad>s  
and 552.494 rad>s. The magnitude of vo at 500 rad>s,  
the center frequency of the filter, is zero, exactly  
what we should expect from a bandreject filter. The 
magnitudes of vo at the frequencies outside the 
passband defined by the cutoff frequencies are very 
close to the magnitudes of vg at those frequencies. 
This is also the behavior we expect from a selective 
bandreject filter.

Objective 2—Know how to analyze a circuit’s response to a periodic waveform

 16.5 The periodic triangular-wave voltage seen on the 
left is applied to the circuit shown on the right. 
Derive the first three nonzero terms in the Fourier 
series that represent the steady-state voltage vo 
if Vm = 281.25p2 mV and the period of the input 
voltage is 200p ms.

Answer:  2238.83 cos110t - 5.71°2
+ 239.46 cos(30t - 16.70°)
+ 80.50  cos (50t - 26.57°) + cmV.

 16.6 The periodic square-wave shown on the top is 
applied to the circuit shown on the bottom.
a) Derive the first four nonzero terms in the 

Fourier series that represents the steady-state 
voltage vo if Vm = 210p V and the period of 
the input voltage is 0.2p ms.

b) Which harmonic dominates the output voltage? 
Explain why.

Answer: (a) 17.5  cos110,000t + 88.81°2
+ 26.14  cos130,000t - 95.36°2
+ 168  cos150,000t2
+ 17.32  cos170,000t + 98.30°2 + g  V;

(b) The fifth harmonic, at 50,000 rad>s, be-
cause the circuit is a bandpass filter with 
a center frequency of 50,000 rad>s and a 
quality factor of 10.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 16.28 and 16.29.
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t
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t
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16.6 Average-Power Calculations  
with Periodic Functions

Given the Fourier series representation of the voltage and current at a pair 
of terminals in a linear lumped-parameter circuit, we can express the aver-
age power at the terminals as a function of the harmonic voltages and cur-
rents. Using the trigonometric form of the Fourier series from Eq. 16.20, 
we find that the periodic voltage and current at the circuit’s terminals are

 v = Vdc + a
∞

n = 1
Vn cos (nv0t - u

vn),

 i = Idc + a
∞

n = 1
In cos (nv0t - uin).

The notation used in the equations for voltage and current is defined as 
follows:

 Vdc = the amplitude of the dc voltage component,

 Vn = the amplitude of the nth@harmonic voltage,

 u
vn = the phase angle of the nth@harmonic voltage,

 Idc = the amplitude of the dc current component,

 In = the amplitude of the nth@harmonic current,

 uin = the phase angle of the nth@harmonic current.

We assume that the current is in the direction of the voltage drop 
across the terminals, so, using the passive sign convention, the instanta-
neous power at the terminals is vi. The average power is

P =
1
T

 L
t0 + T

t0

p dt =
1
T

 L
t0 + T

t0

vi dt.

To find the expression for the average power, we substitute the expressions 
for voltage and current into the equation for average power and integrate. 
At first glance, this appears to be a formidable task because the product vi 
requires multiplying two infinite series. However, the only terms to survive 
integration are the products of voltage and current at the same frequency. 
(See Problem 16.5.) Therefore, the equation for average power reduces to

 P =
1
T

 VdcIdct `
t0

t0 + T

+ a
∞

n = 1

1
T

 L
t0 + T

t0

VnIn cos(nv0t - u
vn)cos(nv0t - uin) dt.

Now, using the trigonometric identity

 cos a cos b =
1
2

 cos1a - b2 +
1
2

 cos1a + b2 .

we simplify the expression for P to

 P = VdcIdc

+
1
T

 a
∞

n = 1

VnIn

2
 L

t0 + T

t0

[ cos(u
vn - uin) + cos (2nv0t - u

vn - uin)]dt.
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The second term under the integral sign integrates to zero, so

 P = VdcIdc + a
∞

n = 1

VnIn

2
  cos (u

vn - uin). (16.30)

Equation 16.30 states that the total average power delivered by a pe-
riodic signal is the sum of the average powers associated with each har-
monic voltage and current. Currents and voltages of different frequencies 
do not interact to produce average power. Example 16.5 computes the 
average power delivered by a periodic voltage.

EXAMPLE 16.5  Calculating Average Power for a Circuit with a  
Periodic Voltage Source

Assume that the periodic square-wave voltage in 
Example 16.3 is applied across the terminals of a 
15 Ω resistor. The value of Vm is 60 V, and the value 
of T is 5 ms.

a) Write the first five nonzero terms of the Fourier 
series representation of v(t). Use the trigonomet-
ric form given in Eq. 16.20.

b) Calculate the average power associated with 
each term in (a).

c) Calculate the total average power delivered to 
the 15 Ω resistor.

d) What percentage of the total power is delivered 
by the first five terms of the Fourier series?

Solution

a) The dc component of v(t) is

a
v

=
(60)1T>42

T
= 15 V.

From Example 16.3 we have

 A1 = 12 60>p = 27.01 V,

 u1 = 45°,

 A2 = 60>p = 19.10 V,

 u2 = 90°,

 A3 = 2012>p = 9.00 V,

 u3 = 135°,

 A4 = 0,

 u4 = 0°,

 A5 = 5.40 V,

 u5 = 45°,

 v0 =
2p
T

=
2p

0.005
= 400p rad>s.

Thus, using the first five nonzero terms of the 
Fourier series,

v(t) = 15 + 27.01 cos1400pt - 45°2
+ 19.10 cos1800pt - 90°2
+ 9.00 cos11200pt - 135°2
+ 5.40 cos12000pt - 45°2 + g  V.

b) The voltage is applied to the terminals of a re-
sistor, so we can find the power associated with 
each term as follows:

 Pdc =
152

15
= 15 W,

 P1 =
1
2

  
27.012

15
= 24.32 W,

 P2 =
1
2

  
19.102

15
= 12.16 W,

 P3 =
1
2

  
92

15
= 2.70 W,

 P5 =
1
2

  
5.42

15
= 0.97 W.

c) To obtain the total average power delivered to 
the 15 Ω resistor, we first calculate the rms value 
of v(t):

Vrms = B (60)21T>42
T

= 1900 = 30 V.

The total average power delivered to the 15 Ω 
resistor is

PT =
302

15
= 60 W.

d) The total power delivered by the first five non-
zero terms is

P = Pdc + P1 + P2 + P3 + P5 = 55.15 W.

This is (55.15>60) (100), or 91.92% of the total.
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16.7 The rms Value of a Periodic 
Function

The rms value of a periodic function can be expressed in terms of the 
Fourier coefficients; by definition,

Frms = C1
T

 L
t0 + T

t0

f(t)2 dt.

Replacing f(t) with its Fourier series representation gives

Frms = C1
T

 L
t0 + T

t0

c a
v

+ a
∞

n = 1
An cos (nv0t - un) d

2

 dt.

The integral of the squared time function simplifies because the only 
terms whose integral over one period are not zero are the square of the dc 
term and the square of the terms at each frequency. Therefore,

  Frms = C1
T
aa

v

2T + a
∞

n = 1

T
2

 An
2b  

(16.31)

 = C a
v

2 + a
∞

n = 1

An
2

2

 = B  a
v

2 + a
∞

n = 1
a An12

b
2

.

We can use Eq. 16.31 to find the rms value of a periodic function by 
adding the square of the rms value of each harmonic to the square of the 
dc value and taking the square root of that sum. For example, let’s assume 
that a periodic voltage is represented by the finite series

v = 10 + 30 cos1v0t - u12 + 20 cos12v0t - u22
+  5 cos13v0t - u32 + 2 cos15v0t - u52V.

The rms value of this voltage is

 Vrms = 3102 + (30>12)2 + (20>12)2 + (5>12)2 + (2>12)2

 = 1764.5 = 27.65 V.

Objective 3—Be able to estimate the average power delivered to a resistor using a small number of Fourier 
coefficients

 16.7 The periodic voltage function in Assessment 
Problem 16.3 is applied to the circuit shown. If 
12Vm = 296.09 V and T = 2094.4 ms, estimate 
the average power delivered to the 2 Ω resistor.

Answer: 60.75 W.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 16.34 and 16.35.

1

2
2 V

1 H

vg

1

2

vR

1 F
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Because the number of terms in a Fourier series representation of a peri-
odic function is usually infinite, Eq. 16.31 yields an estimate of the actual 
rms value. We illustrate this result in Example 16.6.

SELF-CHECK: Assess your understanding of this material by trying Chapter Problems 16.37 and 16.39.

EXAMPLE 16.6 Estimating the rms Value of a Periodic Function

Use Eq. 16.31 to estimate the rms value of the volt-
age in Example 16.5.

Solution
From Example 16.5,

 Vdc = 15 V,

 V1 = 27.01>12  V, the rms value of the fundamental,

 V2 = 19.10>12  V, the rms value of the second harmonic,

 V3 = 9.00>12  V,   the rms value of the third harmonic,

 V5 = 5.40>12  V,   the rms value of the fifth harmonic.

Therefore,

 Vrms = B152 + a 27.0112
b

2

+ a 19.1012
b

2

+ a 9.0012
b

2

+ a 5.4012
b

2

 = 28.76 V.

From Example 16.5, the actual rms value is 30 V.  
We can get closer to this value by including more 
and more harmonics in Eq. 16.31. For example, if 
we include the harmonics through k = 9, the esti-
mated rms value is 29.32 V.

16.8 The Exponential Form of the 
Fourier Series

The exponential form of the Fourier series is a concise representation of 
the series, given by

 f(t) = a
∞

n = - ∞
Cnejnv0t, (16.32)

where

 Cn =
1
T

 L
t0 + T

t0

f(t)e-jnv0t dt. (16.33)

To derive Eqs. 16.32 and 16.33, start with Eq. 16.2 and replace the cosine 
and sine functions with their exponential equivalents:

 cos nv0t =
ejnv0t + e-jnv0t

2
,

 sin nv0t =
ejnv0t - e-jnv0t

2j
.

Substituting the exponential equivalents into Eq. 16.2 gives

  f(t) = a
v

+ a
∞

n = 1

an

2
 (ejnv0t + e-jnv0t) +

bn

2j
 (ejnv0t - e-jnv0t) 

(16.34) = a
v

+ a
∞

n = 1
a an - jbn

2
bejnv0t + a an + jbn

2
be-jnv0t.

Now we define Cn as

Cn =
1
2

 (an - jbn) =
An

2
 l-un, n = 1, 2, 3, g .
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From the definition of Cn,

 Cn =
1
2

 c 2
T

 L
t0 + T

t0

f(t) cos nv0t dt - j 
2
T

 L
t0 + T

t0

f(t) sin nv0t dt d

 =
1
T

 L
t0 + T

t0

f(t)1cos nv0t - jsin nv0t2  dt

 =
1
T

 L
t0 + T

t0

f(t)e-jnv0t dt,

which completes the derivation of Eq. 16.33. To complete the derivation 
of Eq. 16.32, we first observe from Eq. 16.33 that

C0 =
1
T

 L
t0 + T

t0

f(t)dt = a
v
.

Next we note that

C-n =
1
T

 L
t0 + T

t0

f(t)ejnv0tdt = Cn
* =

1
2

 (an + jbn).

Substituting the expressions for C0, Cn, and Cn
* into Eq. 16.34 yields

 f(t) = C0 + a
∞

n = 1
1Cnejnv0t + Cn

*e-jnv0t2

 = a
∞

n = 0
Cnejnv0t + a

∞

n = 1
Cn

*e-jnv0t.

Note that the second summation on the right-hand side is equivalent to 
summing Cnejnv0t from -1 to - ∞ ; that is,

a
∞

n = 1
Cn

*e-jnv0t = a
- ∞

n = -1
Cnejnv0t.

Because the summation from -1 to - ∞  is the same as the summation 
from - ∞  to -1, we can rewrite f(t) as

 f(t) = a
∞

n = 0
Cnejnv0t + a

-1

- ∞
Cnejnv0t

 = a
∞

- ∞
Cnejnv0t,

which completes the derivation of Eq. 16.32.
We can also find the rms value of a periodic function using the com-

plex Fourier coefficients. From Eqs. 16.21 and 16.31,

 Frms = Ba
v

2 + a
∞

n = 1

an
2 + bn

2

2
 ,

 0Cn 0 =
2an

2 + bn
2

2
,

 C0
2 = a

v

2.

Therefore:

 Frms = AC0
2 + 2 a

∞

n = 1
0Cn 0 2. (16.35)

Example 16.7 finds the exponential Fourier series representation of a 
periodic function.
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EXAMPLE 16.7 Finding the Exponential Form of the Fourier Series

Find the exponential Fourier series for the periodic 
voltage shown in Fig. 16.16.

Vm

v (t)

0 T
t

2t>2 T2t>2 T1t>2t>2
Figure 16.16 ▲ The periodic voltage for Example 16.7.

Solution
Using -t>2 as the starting point for the integration, 
we have, from Eq. 16.33,

 Cn =
1
T

 L
t>2

-t>2
Vme-jnv0t dt

 =
Vm

T
 a e-jnv0t

- jnv0
b `

-t>2

t>2

 =
jVm

nv0T
 (e-jnv0t>2 - ejnv0t>2)

 =
2Vm

nv0T
 sin nv0t>2.

Since v(t) has even symmetry, bn = 0 for all n, 
and we expect Cn to be real. Moreover, the ampli-
tude of Cn follows a 1sin x2 >x distribution, as indi-
cated when we rewrite

Cn =
Vmt

T
 
 sin 1nv0t>22

nv0t>2
.

We say more about this subject in Section 16.9. 
The exponential Fourier series representation of 
v(t) is

 v(t) = a
∞

n = - ∞
aVmt

T
b sin 1nv0t>22

nv0t>2
 ejnv0t

 = aVmt

T
b a

∞

n = - ∞

sin 1nv0t>22
nv0t>2

 ejnv0t.

Objective 4—Be able to calculate the exponential form of the Fourier coefficients for a periodic waveform

 16.8 Derive the expression for the Fourier coeffi-
cients Cn for the periodic function shown. Hint: 
Take advantage of symmetry by using the fact 
that Cn = (an - jbn)>2.

8
i (A)

28

2

22 4 8 12 16 20 24 28 32 36 40 44

t (ms)

Answer: Cn = - j
4
pn

 a1 + 3 cos
np
4

b , n odd

 16.9 a) Calculate the rms value of the periodic cur-
rent in Assessment Problem 16.8.

b) Using C1-C11, estimate the rms value.
c) What is the percentage of error in the value 

obtained in (b), based on the true value 
found in (a)?

d) For this periodic function, could fewer terms 
be used to estimate the rms value and still 
insure the error is less than 1%?

Answer: (a) 134 A;

(b) 5.777 A;

(c) -0.93 %;

(d) yes; if C1-C9 are used, the error is 
-0.98 %.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 16.44 and 16.45.
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16.9 Amplitude and Phase Spectra
As we have noted, we generally cannot visualize what a periodic  function 
looks like in the time domain from its Fourier series representation. 
Nevertheless, we recognize that the Fourier coefficients characterize the 
periodic function completely.

We can describe a periodic function by plotting the amplitude and 
phase angle of each term in its Fourier series versus frequency. The plot of 
each term’s amplitude versus the frequency is called the amplitude spec-
trum of f(t), and the plot of each term’s phase angle versus the frequency 
is called the phase spectrum of f(t). Because the amplitude and phase 
angle are defined at discrete frequency values (that is, at v0, 2v0, 3v0, c),  
these plots are also called line spectra.

Amplitude and phase spectra plots are based on either Eq. 16.20 (An 
and -un) or Eq. 16.32 (Cn). We focus on Eq. 16.32 and leave the plots 
based on Eq. 16.20 to the problems. For example, consider the periodic 
voltage in Fig. 16.16. From Example 16.6,

Cn =
Vmt

T
 
sin1nv0t>22

nv0t>2
,

From the expression for Cn, we see that the amplitude spectrum is 
bounded by the envelope of the 0 1sin x2 >x 0  function. Figure 16.17 pro-
vides the plot of 0 1sin x2 >x 0  versus x, where x is in radians. It shows 
that the function’s value is zero whenever x is an integral multiple of p.  
Replacing v0 with 2p>T in the argument of the sine function in the 
 e xpression for Cn,

nv0a t2 b =
np t

T
=

np
T>t.

We can therefore deduce that the amplitude spectrum goes through zero 
whenever nt>T is an integer. As the reciprocal of t>T becomes an in-
creasingly larger integer, the number of harmonics between every p ra-
dians increases. If np>T is not an integer, the amplitude spectrum still 
follows the 0 1sin x2 >x 0  envelope. However, the envelope is not zero at an 
integral multiple of v0. Because Cn is real for all n, the phase angle associ-
ated with Cn is either zero or 180°, depending on its algebraic sign.

Now, what happens to the amplitude and phase spectra if f(t) is 
shifted along the time axis? To find out, we shift the periodic voltage in 
Example 16.6 t0 units to the right. By hypothesis,

v(t) = a
∞

n = - ∞
Cnejnv0t.

Therefore

v(t - t0) = a
∞

n = - ∞
Cnejnv0(t - t0) = a

∞

n = -∞
Cne-jnv0t0ejnv0t,

which indicates that shifting the origin has no effect on the amplitude 
spectrum, because

0Cn 0 = 0Cne-jnv0t0 0 .
However, the phase spectrum has changed to - 1un + nv0t02  rads.

Example 16.8 plots the amplitude and phase spectra for a specific in-
stance of the periodic voltage in Example 16.7.

0.2

0

0.4
0.6
0.8

1.0

sin x
x

x
22p 2p21.5p 2p 20.5p 0.5p p 1.5p

Figure 16.17 ▲ The plot of (sin x)>x versus x.
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EXAMPLE 16.8  Plotting the Amplitude and Phase Spectra for a Periodic 
Voltage

Suppose that for the periodic voltage in Fig. 16.16, 
Vm = 5 V, T = 10 ms, and t = T>5.

a) Plot the amplitude and phase spectra versus fre-
quency (in Hz) for -10 … n … +10, using the 
expressions for Cn given by Eq. 16.32.

b) Repeat part (a) if the periodic voltage in  
Fig. 16.16 is shifted t>2 units to the right.

Solution
a) Substituting the values for Vm and t into the ex-

pression for Cn from Example 16.7 and simplify-
ing, we get

Cn =
 sin1np>52

np>5
.

The values of Cn for n between –10 and +10 are 
tabulated at right. Since Cn is a real number for 
all values of n, its magnitude is the absolute value 

of Cn and its phase angle is 0° if Cn is positive and 
180° if Cn is negative. The amplitude and phase 
spectra are plotted in Fig. 16.18.

n Cn n Cn

-10   0.000  1  0.935

 -9 -0.104  2  0.757

 -8 -0.189  3  0.505

 -7 -0.216  4  0.234

 -6 -0.156  5   0.000

 -5   0.000  6 -0.156

 -4   0.234  7 -0.216

 -3   0.505  8 -0.189

 -2   0.757  9 -0.104

 -1   0.935 10   0.000

  0   1.000

0

1

0.8

0.6

0.4

0.2

180°

90°

21000 2800 2600 2400 2200 200 400 600 800

f (Hz)

f (Hz)

1000

021000 2800 2600 2400 2200 200 400 600 800 1000

|Cn|

un

Figure 16.18 ▲ The amplitude and phase spectra for the periodic waveform in Fig. 16.16, 
with Vm = 5 V, T = 10 ms, and t = T>5.
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b) When the periodic voltage in Fig. 16.16 is shifted 
to the right by t>2, we know that the amplitude 
spectrum is unchanged. Since t = T>5, the new 
phase angle u′n is

u′n = - 1un + np>52 .

The plot of the amplitude spectra for this shifted 
periodic voltage is the same as the one shown in 
Fig. 16.18, while the plot of the phase spectra for 
the shifted period voltage is shown in Fig. 16.19, 
for -10 … n … +10.

The periodic waveform in Fig. 16.16 is im-
portant because it provides an excellent way to 
illustrate the transition from the Fourier series 
representation of a periodic function to the 
Fourier transform representation of a nonpe-
riodic function. We discuss the Fourier trans-
form in Chapter 17.

45°

245°
2100028002600 24002200 2000 400 600 800 1000

290°

2135°

2180°

90°

135°

180°

un

f (Hz)

Figure 16.19 ▲ The phase spectra for the periodic waveform in 
Fig. 16.16, shifted to the right by t>2, with Vm = 5 V, T = 10 ms, 
and t = T>5.

Objective 4—Be able to calculate the exponential form of the Fourier coefficients for a periodic waveform

 16.10 The function in Assessment Problem 16.8 is 
shifted along the time axis 8 ms to the right. 
Write the exponential Fourier series for the 
periodic current.

Answer:

i(t) =
4
p

 a
∞

n = - ∞ 1odd2

1
n

 a1 + 3 cos 
np
4

 be-1jp>221n+12ejnv0t A.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 16.49 and 16.50.

Practical Perspective
Active High-Q Filters
Consider the narrowband op amp bandpass filter shown in Fig. 16.20(a). 
The square-wave voltage shown in Fig. 16.20(b) is the input to the filter. 
We know that the square wave is composed of an infinite sum of sinu-
soids, one sinusoid at the same frequency as the square wave and all 
of the remaining sinusoids at integer multiples of that frequency. What 
effect will the filter have on this input sum of sinusoids?

The Fourier series representation of the square wave in Fig. 16.20(b) 
is given by

vg(t) =
4A
p

 a
∞

n = 1,3,5, c

1
n

 sin 
np
2

 cos nv0t

where A = 15.65p V. The first three terms of this Fourier series are given by

vg(t) = 62.6 cos v0t - 20.87 cos 3v0t + 12.52 cos 5v0t - cV.
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The period of the square wave is 50p ms, so the frequency of the square 
wave is 40,000 rad>s.

The transfer function for the bandpass filter in Fig. 16.20(a) is

H(s) =
Kbs

s2 + bs + v0
2

where K = 400>313, b = 2000 rad>s, v0 = 40,000 rad>s. This filter has a 
quality factor of 40,000>2000 = 20. Note that the center frequency of the 
bandpass filter equals the frequency of the input square wave.

Multiply each term of the Fourier series representation of the square 
wave, represented as a phasor, by the transfer function H(s) evaluated 
at the frequency of the term in the Fourier series to get the representa-
tion of the output voltage of the filter as a Fourier series:

vo(t) = -80 cos v0t - 0.5 cos 3v0t + 0.17 cos 5v0t + g V.

Notice the selective nature of the bandpass filter, which effectively 
amplifies the fundamental frequency component of the input square 
wave and attenuates all of the harmonic components.

Now make the following changes to the bandpass filter of 
Fig. 16.20(a)—let R1 = 391.25 Ω, R2 = 74.4 Ω, R3 = 1 kΩ, and 
C1 = C2 = 0.1 mF. The transfer function for the filter, H(s), has the 
same form given above, but now K = 400>313, b = 20,000 rad>s,  
v0 = 40,000 rad>s. The passband gain and center frequency are un-
changed, but the bandwidth has increased by a factor of 10. This 
makes the quality factor 2, and the resulting bandpass filter is less se-
lective than the original filter. We can see this by looking at the output 
voltage of the filter as a Fourier series:

vo(t) = -80 cos v0t - 5 cos 3v0t + 1.63 cos 5v0t + g V.

2

1

(a)

(b)

1

2

vo

1

2

vg

100 nF3912.50 V

100 nF 10 kV

6.26 V

C2

C1

R1

R2

R3

15.65p

vg (V)

t (ms)
25p 50p0250p 225p 12.5p 37.5p

215.65p

237.5p 212.5p

Figure 16.20 ▲ (a) narrowband bandpass filter; (b) square wave input.
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At the fundamental frequency, the output has the same 
 amplification factor, but the higher harmonic components have not 
been attenuated as significantly as they were when the filter with 
Q = 20 was used. Figure 16.21 plots the first three terms of the 
Fourier series representations of the input square wave and the re-
sulting output waveforms for the two bandpass filters. Note the nearly 
perfect replication of a sinusoid in the solid line plot of Fig. 16.21(b) 
and the distortion that results when using a less selective filter in the 
dashed line plot of Fig. 16.21(b).

SELF-CHECK: Assess your understanding of the Practical Perspective 
by solving Chapter Problems 16.56 and 16.57.

(a)

80

280

20

100

0
220

60
40

240
260

vg (V)

t (ms)

(a)

100

280
2100

20

100
0

220

80

40
60

240
260

vo (V)

t (ms)

Figure 16.21 ▲ (a) The first three terms of the Fourier series of the square wave in Fig. 16.20(b); (b) the first three terms of  
the Fourier series of the output from the bandpass filter in Fig. 16.20(a), where Q = 20 (solid line); the first three terms of  
the Fourier series of the output from the bandpass filter in Fig. 16.20(a) with component values changed to give Q = 2 
(dashed line).

Summary
• A periodic function is a function that repeats itself every 

T seconds. A period is the smallest time interval (T) that 
a periodic function can be shifted to produce a function 
identical to itself. (See page 646.)

• The Fourier series is an infinite series used to represent 
a periodic function. The series consists of a constant 
term and infinitely many harmonically related cosine 
and sine terms. (See page 649.)

• The fundamental frequency is the frequency determined 
by the fundamental period (f0 = 1>T or v0 = 2pf0). 
(See page 649.)

• The harmonic frequency is an integer multiple of the 
fundamental frequency. (See page 649.)

• The Fourier coefficients are the constant term and the 
coefficient of each cosine and sine term in the series. 
(See Eqs. 16.3–16.5.) (See page 650.)

• Five types of symmetry are used to simplify the compu-
tation of the Fourier coefficients:

• even, in which all sine terms in the series are zero;

• odd, in which all cosine terms and the constant term 
are zero;

• half-wave, in which all even harmonics are zero;

• quarter-wave, half-wave, even, in which the series con-
tains only odd harmonic cosine terms;

• quarter-wave, half-wave, odd, in which the series con-
tains only odd harmonic sine terms.

(See page 653.)
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• In the alternative form of the Fourier series, each 
harmonic represented by the sum of a cosine and 
sine term is combined into a single term of the form 
An cos1nv0t - un2 . (See page 659.)

• For steady-state response, the Fourier series of the out-
put signal is determined by first finding the output for 
each component of the input signal. The individual re-
sponses are added (superimposed) to form the Fourier 
series of the output signal. The response to the individu-
al terms in the input series is found by either frequency 
domain or s-domain analysis. (See page 661.)

• The waveform of the output signal is difficult to ob-
tain without the aid of a computer. Sometimes the 
frequency response (or filtering) characteristics of 
the circuit can be used to ascertain how closely the 
output waveform matches the input waveform. (See 
page 663.)

• Only harmonics of the same frequency interact to pro-
duce average power. The total average power is the sum 
of the average powers associated with each frequency. 
(See page 668.)

• The rms value of a periodic function can be estimated 
from the Fourier coefficients. (See Eqs. 16.31 and 16.35.) 
(See page 669.)

• The Fourier series of a periodic signal may also be writ-
ten in exponential form by using Euler’s identity to re-
place the cosine and sine terms with their exponential 
equivalents. (See page 670.)

• An amplitude spectrum plots the amplitudes of a function’s 
Fourier series representation versus discrete frequencies. 
A phase spectrum plots the phase angles of a function’s 
Fourier series representation versus discrete frequencies. 
These plots help to visualize the transformation of a cir-
cuit’s input signal to its output signal. (See page 673.)

Problems

Sections 16.1–16.2

 16.1  For each of the periodic functions in Fig. P16.1, 
specify

a) vo in radians per second

b) fo in hertz

c) the value of a
v

d) the equations for ak and bk

e) v(t) as a Fourier series

Figure P16.1

v(V)
90

60

30

–30

–60

–90
(b)

t (ms)

v(V)

50

24 2 0 4 6
(a)

t (ms)
8 102 2

20 40 60 10080220240

 16.2  Find the Fourier series expressions for the period-
ic voltage functions shown in Fig. P16.2. Note that 
Fig. P16.2(a) illustrates the square wave; Fig. P16.2(b) 
illustrates the full-wave; rectified sine wave, where 
v(t) = Vm sin(p>T), 0 … t … T; and Fig. P16.2(c) 
illustrates the half-wave rectified sine wave, where 
v(t) = Vm sin(2p>T)t, 0 … t … T>2.

Figure P16.2 
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c) Verify the following equation:

L
t0 + T

t0

sin mv0t sin nv0t dt = 0, for all m ≠ n,

=
T
2

,  for m = n.

Hint: Use the trigonometric identity 

 sin a sin b =
1
2

  cos 1a - b2 -
1
2

  cos 1a + b2 .

d) Verify the following equation:

L
t0 + T

t0

cos mv0t cos nv0t dt = 0, for all m ≠ n,

=
T
2

,   for m = n.

Hint: Use the trigonometric identity 

 cos a cos b =
1
2

  cos 1a - b2 +
1
2

  cos 1a + b2 .

 16.6  Derive Eq. 16.5.

Section 16.3

 16.7  Derive the expressions for the Fourier coefficients 
of an odd periodic function. Hint: Use the same tech-
nique as used in the text in deriving Eqs. 16.7–16.9.

 16.8  Show that if f(t) = -f(t - T>2), the Fourier coeffi-
cients bk are given by the expressions

bk = 0            for k even;

bk =
4
T

 L
T>2

0
f(t) sin kvot dt,  for k odd.

Hint: Use the same technique as used in the text to 
derive Eqs, 16.16.

 16.9  Derive Eqs. 16.18. Hint: Start with Eq. 16.16 and di-
vide the interval of integration into 0 to T>4 and 
T>4 to T>2. Note that because of evenness and 
quarter-wave symmetry, f(t) = -f(T>2 - t) in the 
interval T>4 … t … T>2. Let x = T>2 - t in the 
second interval and integrate between 0 and T>4.

 16.10  Derive Eqs. 16.19. Follow the hint given in Problem 
16.9 except that because of oddness and quarter- 
wave symmetry, f(t) = f(T>2 - t) in the interval 
T>4 … t … T>2.

 16.11  It is given that v(t) = 2 cos 2p � t �V over the inter-
val -5 … t … 5 s. The function then repeats itself.

a) What is the fundamental frequency in radians 
per second?

b) Is the function even?

c) Is the function odd?

d) Does the function have half-wave symmetry?

 16.3  Derive the Fourier series for the periodic voltage 
shown in Fig. P16.3, given that

 v(t) = 50 cos  
2p
T

 t V,      

-T
4

… t …
T
4

 ;

 v(t) = -25 cos 
2p
T

 t V,    
T
4

… t …
3T
4

.

Figure P16.3
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 16.4  Derive the expressions for a
v
, ak, and bk for the peri-

odic voltage shown in Fig. P16.4 if Vm = 100p V.

Figure P16.4 
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 16.5  a) Verify the following equations:

L
t0 + T

t0

sin mv0t dt = 0, for all m,

L
t0 + T

t0

cos mv0t dt = 0, for all m.

b) Verify the following equation:

L
t0 + T

t0

cos mv0t sin nv0t dt = 0, for all m and n.

Hint: Use the trigonometric identity 

 cos a sin b =
1
2

  sin1a + b2 -
1
2

  sin1a - b2 .
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Figure P16.14
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 16.15  It is given that f(t) = 10t2 over the interval 
-5 6 t 6 5 s.

a) Construct a periodic function that satisfies this 
f(t) between -5 and +5 s, has a period of 20 s, 
and has half-wave symmetry.

b) Is the function even or odd?

c) Does the function have quarter-wave symmetry?

d) Derive the Fourier series for f(t).

e) Write the Fourier series for f(t) if f(t) is shifted 
5 s to the right.

 16.16  Repeat problem 16.15 given that f(t) = t5 over the 
interval -2s 6 t 6 2s.

 16.17  a) Derive the Fourier series for the periodic cur-
rent shown in Fig. P16.17.

b) Repeat (a) if the vertical reference axis is shifted 
T>2 units to the right.

Figure P16.17
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 16.18  It is sometimes possible to use symmetry to find the 
Fourier coefficients, even though the original func-
tion is not symmetrical! With this thought in mind, 
consider the function in Fig P16.4. Observe that v(t) 
can be divided into the two functions illustrated in Fig. 
P16.18(a) and (b). Furthermore, we can make v2(t) an 
even function by shifting it T>8 units to the left. This is 
illustrated in Fig. P16.18(c). At this point we note that 
v(t) = v1(t) + v2(t) and that the Fourier series of 
v1(t) is a single-term series consisting of Vm>2. To find 
the Fourier series of v2(t), we first find the Fourier se-
ries of v2(t + T>8) and then shift this series T>8 units 
to the right. Use the technique just outlined to verify 
the Fourier coefficients found in Problem 16.4.

 16.12  One period of a periodic function is described by 
the following equations:

 i(t) = -8t A,     -5 ms … t … 5 ms;

 i(t) = -40 mA,   5 ms … t … 15 ms;

 i(t) = 8t - 0.16 A,    15 ms … t … 25 ms;

 i(t) = 40 mA,      25 ms … t … 35 ms.

a) What is the fundamental frequency in hertz?

b) Is the function even?

c) Is the function odd?

d) Does the function have half-wave symmetry?

e) Does the function have quarter-wave symmetry?

f) Give the numerical expressions for a
v
, ak, and bk.

 16.13  Find the Fourier series of each periodic function 
shown in Fig. P16.13.

Figure P16.13 
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 16.14  The periodic function shown in Fig. P16.14 is even 
and has both half-wave and quarter-wave symmetry.

a) Sketch one full cycle of the function over the 
 interval -T>4 … t … 3T>4.

b) Derive the expression for the Fourier coeffi-
cients a

v
, ak, and bk.

c) Write the first three nonzero terms in the Fouri-
er expansion of f(t).

d) Use the first three nonzero terms to estimate 
f(T>8).
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Section 16.5

 16.23  Derive Eqs. 16.26 and 16.27.

 16.24  a) Derive Eq. 16.28.
Hint: Note that bk = 4Vm>pk +  kvoRCak. Use 
this expression for bk to find ak

2 + bk
2 in terms 

of ak. Then use the expression for ak to derive 
Eq. 16.28.

b) Derive Eq. 16.29.

 16.25  Show that when we combine Eqs. 16.28 and 16.29 
with Eqs. 16.20 and 16.21, the result is Eq. 16.22. 
Hint: Note from the definition of bk that

ak

bk
= -tan  bk,

and from the definition of uk that

 tan  uk = -cot  bk.

Now use the trigonometric identity

 tan  x =  cot (90 - x)

to show that uk = 90 + bk.

 16.26  a) Show that for large values of C, Eq. 16.24 can be 
approximated by the expression

vo(t) ≈
-VmT

4RC
+

Vm

RC
 t.

Note that this expression is the equation 
of the triangular wave for 0 … t … T>2. 
Hints: (1) Let e-t>RC ≈ 1 - (t>RC) and 
e-T>2RC ≈ 1 - (T>2RC); (2) put the result-
ing expression over the common denominator 
2 - (T>2RC); (3) simplify the numerator; and (4) 
for large C, assume that T>2RC is much less than 2.

b) Substitute the peak value of the triangular 
wave into the solution for Problem 16.13 (see 
Fig. P16.13(b)) and show that the result is Eq. 16.23.

 16.27  The square-wave voltage shown in Fig. P16.27(a) is 
applied to the circuit shown in Fig. P16.27(b).

a) Find the Fourier series representation of the 
steady-state current i.

b) Find the steady-state expression for i by straight- 
forward circuit analysis.

Figure P16.27 
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Section 16.4

 16.19  For each of the periodic functions in Fig. P16.3, derive 
the Fourier series for v(t) using the form of Eq. 16.38.

 16.20  Derive the Fourier series for the periodic function de-
scribed in Problem 16.12, using the form of Eq. 16.38.

 16.21  Derive the Fourier series for the periodic function con-
structed in Problem 16.15, using the form of Eq. 16.38.

 16.22  a) Derive the Fourier series for the periodic wave-
form given in Fig. P16.22 when Im = 10p A. 
Also write the series in the form of Eq. 16.38.

b) Use the first three nonzero terms to estimate 
i(T>4).

Figure P16.22
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 16.31  The periodic current described below is used to 
energize the circuit shown in Fig. P16.31. Write the 
time-domain expression for the third-harmonic 
component in the expression for vo.

 ig = 100t A,         -50 ms … t … 50 ms;

 = 5 A,        50 ms … t … 200 ms;

 = 25 - 100t A,  200 ms … t … 300 ms;

 = -5 A,    300 ms … t … 450 ms.

Figure P16.31
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 16.32  A periodic voltage having a period of 10p ms is 
given by the following Fourier series:

vg = 150 a
∞

n = 1, 3, 5, c

1
n

 sin 
np
2

 cos nvot V.

This periodic voltage is applied to the circuit shown 
in Fig. P16.32. Find the amplitude and phase angle 
of the components of vo that have frequencies of 
3 and 5 Mrad>s.

Figure P16.32
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Section 16.6

 16.33  The periodic current shown in Fig. P16.33 is applied 
to a 2.5 kΩ resistor.

a) Use the first three nonzero terms in the Fourier 
series representation of i(t) to estimate the aver-
age power dissipated in the 2.5 kΩ resistor.

b) Calculate the exact value of the average power 
dissipated in the 2.5 kΩ resistor.

c) What is the percentage of error in the estimated 
value of the average power?

 16.28  The periodic square-wave voltage shown in 
Fig P16.13(a) with Vm = 0.5p V and T = 10 p ms is 
applied to the circuit shown in Fig. P16.28.

a) Derive the first three nonzero terms in the Fourier 
series that represents the steady-state voltage vo.

b) Which frequency component in the input voltage is 
eliminated from the output voltage? Explain why.

Figure P16.28
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 16.29  The periodic square-wave voltage seen in Fig. P16.29(a) 
is applied to the circuit shown in Fig. P16.29(b). Derive 
the first three nonzero terms in the Fourier series that 
represents the steady-state voltage vo if Vm = 30p V 
and the period of the input voltage is 200p ms.

Figure P16.29
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 16.30  The full-wave rectified sine-wave voltage shown 
in Fig. P16.30(a) is applied to the circuit shown in  
Fig. P16.30(b).

a) Find the first five nonzero terms in the Fourier 
series representation of io.

b) Does your solution for io make sense? Explain.
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Figure P16.33
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Fourier series for this periodic voltage was 
found in Assessment Problem 16.3.

b) Estimate the rms value of the voltage, using the 
first three nonzero terms in the Fourier series 
representation of vg(t).

Figure P16.37
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 16.38  a) Use the first three nonzero terms in the Fouri-
er series approximation of the periodic voltage 
shown in Fig. P16.38 to estimate its rms value.

b) Calculate the true rms value of the voltage.

c) Calculate the percentage of error in the estimat-
ed value.

Figure P16.38
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 16.39  a) Estimate the rms value of the periodic square-
wave voltage shown in Fig. P16.39(a) by using 
the first five nonzero terms in the Fourier series 
representation of v(t).

b) Calculate the percentage of error in the estimation.

c) Repeat parts (a) and (b) if the periodic square-
wave voltage is replaced by the periodic triangular 
voltage shown in Fig. P16.39(b).

Figure P16.39
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 16.34  The periodic voltage across a 400 Ω resistor is 
shown in Fig. P16.34.

a) Use the first three nonzero terms in the Fouri-
er series representation of v(t) to estimate the 
 average power dissipated in the 400 Ω resistor.

b) Calculate the exact value of the average power 
dissipated in the 400 Ω resistor.

c) What is the percentage error in the estimated 
value of the average power dissipated?

Figure P16.34
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 16.35  The triangular-wave voltage source, shown in  
Fig. P16.35(b), is applied to the circuit in Fig. P16.35(a). 
Estimate the average power delivered to the 2522 Ω 
resistor when the circuit is in steady-state operation.

Figure P16.35 
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Section 16.7

 16.36  The voltage and current at the terminals of a net-
work are
 v = 50 + 20 sin 300t + 50 cos 700t V,
 i = 7 + 3 sin (300t + 40°) + 75 cos (700t - 60°) A.
The current is in the direction of the voltage drop 
across the terminals.

a) What is the average power at the terminals?

b) What is the rms value of the voltage?

c) What is the rms value of the current?

 16.37  a) Find the rms value of the voltage shown in 
Fig. P16.37 for Vm = 100 V. Note that the  
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c) Use the first four nonzero terms of the 
 expression derived in (b) to estimate the rms 
value of ig.

d) Find the exact rms value of ig.

e) Calculate the percentage of error in the estimated 
rms value.

Figure P16.42
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 16.43  The rms value of any periodic triangular wave 
having the form depicted in Fig. P16.43(a) is 
 independent of ta and tb. Note that for the func-
tion to be single valued, ta … tb. The rms value is 
equal to Vp>13. Verify this observation by finding  
the rms value of the three waveforms depicted in 
Fig. P16.43(b)–(d).

Figure P16.43
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 16.40  a) Estimate the rms value of the full-wave rectified 
sinusoidal voltage shown in Fig. P16.40(a) by 
 using the first three nonzero terms in the Fourier 
series representation of v(t).

b) Calculate the percentage of error in the  
estimation.

c) Repeat (a) and (b) if the full-wave rectified 
sinusoidal voltage is replaced by the half-
wave rectified sinusoidal voltage shown in 
Fig. P16.40(b).

Figure P16.40
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 16.41  Assume the periodic function described in 
Problem 16.14 is a current i with a peak amplitude  
of 5 A.

a) Find the rms value of the current.

b) If this current exists in a 10 kΩ  resistor,  
what is the average power dissipated in the 
resistor?

c) If i is approximated by using just the funda-
mental frequency term of its Fourier series, 
what is the average power delivered to the  
10 kΩ resistor?

d) What is the percentage of error in the estimation 
of the power dissipated?

 16.42  a) Derive the expressions for the Fourier 
 coefficients for the periodic current shown in  
Fig. P16.42.

b) Write the first four nonzero terms of the series 
using the alternative trigonometric form given 
by Eq. 16.20.
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Figure P16.47
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 16.48  a) Find the rms value of the periodic voltage in  
Fig. P16.47(b).

b) Estimate the rms value of vg using the complex 
coefficients derived in Problem 16.47(b).

c) What is the percentage of error in the estimated 
rms value of vg?

Section 16.9

 16.49  a) Make an amplitude and phase plot, based  
on Eq. 16.20, for the periodic voltage in  
Example 16.3. Assume Vm is 40 V. Plot both 
amplitude and phase versus nvo, where 
n = 0, 1, 2, 3, c

b) Repeat (a), but base the plots on Eq. 16.32.

 16.50  a) Make amplitude and phase plots for the period-
ic voltage in Problem 16.33, based on Eq. 16.20. 
Plot both amplitude and phase versus nvo where 
n = 0, 1, 2, c

b) Repeat (a), but base the plots on Eq. 16.32.

 16.51  A periodic voltage is represented by a truncated 
Fourier series. The amplitude and phase spectra are 
shown in Fig. P16.51(a) and (b), respectively.

a) Write an expression for the periodic voltage us-
ing the form given by Eq. 16.20.

b) Is the voltage an even or odd function of t?

c) Does the voltage have half-wave symmetry?

d) Does the voltage have quarter-wave symmetry?

Section 16.8

 16.44  Derive the expression for the complex Fourier 
coefficients for the periodic voltage shown in 
Fig. P16.44.

Figure P16.44 
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 16.45  a) The periodic voltage in Problem 16.44 is applied 
to a 25 Ω resistor. If Vm = 150 V what is the 
 average power delivered to the resistor?

b) Assume v(t) is approximated by a truncated 
 exponential form of the Fourier series con-
sisting of the first five nonzero terms, that is, 
n = 0, 1, 2, 3, and 4. What is the rms value of the 
voltage, using this approximation?

c) If the approximation in part (b) is used to rep-
resent v what is the percentage of error in the 
calculated power?

 16.46  Use the exponential form of the Fourier series to write 
an expression for the voltage shown in Fig. P16.46.

Figure P16.46
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 16.47  The periodic voltage source in the circuit shown in  
Fig. P16.47(a) has the waveform shown in 
Fig. P16.47(b).

a) Derive the expression for Cn.

b) Find the values of the complex coefficients 
Co, C-1, C1, C-2, C2, C-3, C3, C-4, and C4 for the 
input voltage vg if Vm = 54 V and T = 10p ms.

c) Repeat (b) for vo.

d) Use the complex coefficients found in (c) to esti-
mate the average power delivered to the 250 kΩ  
resistor.
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Sections 16.1–16.9

 16.53  The input signal to a unity-gain third-order high-
pass Butterworth filter is a half-wave rectified 
sinusoidal voltage. The corner frequency of the 
filter is 2500 rad>s. The amplitude of the sinusoi-
dal voltage is 270p V and its period is 400p ms. 
Write the first three terms of the Fourier series 
that represents the steady-state output voltage of 
the filter.

 16.54  The input signal to a unity-gain second- order 
low-pass Butterworth filter is the periodic 
 triangular-wave voltage shown in Fig P16.54. The 
corner frequency of the filter is 2 krad>s. Write 
the first three terms of the Fourier series that 
represents the steady-state output voltage of the 
filter.

Figure P16.54
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 16.55  The input signal to a unity-gain second-order high-
pass Butterworth filter is a full-wave rectified sine 
wave with an amplitude of 2.5p V and a fundamen-
tal frequency of 5000 rad>s. The corner frequency of 
the filter is 1 krad>s. Write the first two terms in the 
Fourier series that represents the steady-state out-
put voltage of the filter.

 16.56  The transfer function (Vo>Vg) for the narrowband 
bandpass filter circuit in Fig. P16.56(a) is

H(s) =
-Kobs

s2 + bs + vo
2  .

a) Find Ko, b, and vo
2 as functions of the circuit pa-

rameters R1, R2, R3, C1, and C2.

b) Write the first three terms in the Fourier series 
that represents vo if vg is the periodic voltage in 
Fig. P16.56(b).

Figure P16.51
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 16.52  A periodic function is represented by a Fourier se-
ries that has a finite number of terms. The amplitude 
and phase spectra are shown in Fig. P16.52(a) and 
(b), respectively.

a) Write the expression for the periodic current us-
ing the form given by Eq. 16.20.

b) Is the current an even or odd function of t?

c) Does the current have half-wave symmetry?

d) Calculate the rms value of the current in  
milliamperes.

e) Write the exponential form of the Fourier series.

f) Make the amplitude and phase spectra plots on 
the basis of the exponential series.

Figure P16.52
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 16.57  a) Find the values for K, b, and vo
2 for the bandpass 

filter shown in Fig. P16.57(a).

b) Find the first three terms in the Fourier series for 
vo in Fig. P16.57(a) if the input to the filter is the 
waveform shown in Fig. P16.57(b).

c) Predict the value of the quality factor for the fil-
ter by examining the result in part (b).

d) Calculate the quality factor for the filter using b 
and vo and compare the value to your prediction 
in part (c).

Figure P16.57
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CHAPTER CONTENTS

17
CHAPTER 

The Fourier Transform
In Chapter 16, we represented periodic functions with a 
Fourier series. This series describes the periodic function using 
the frequency-domain attributes of amplitude and phase angle. 
The Fourier transform extends this frequency-domain represen-
tation to functions that are not periodic. But we have already 
transformed aperiodic functions from the time domain to the fre-
quency domain, using the Laplace transform. You may wonder, 
then, why yet another type of transformation is necessary.

Strictly speaking, the Fourier transform is not a new trans-
form. It is a special case of the bilateral Laplace transform, with 
the real part of the complex frequency set to zero. However, in 
terms of a physical interpretation, the Fourier transform is better 
viewed as a limiting case of a Fourier series. We present this point 
of view in Section 17.1, where we derive the Fourier transform 
equations.

The Fourier transform is more useful than the Laplace trans-
form in certain communications theory and signal-processing 
applications. Although we cannot pursue the Fourier transform 
in depth, its introduction here seems appropriate while the ideas 
underlying the Laplace transform and the Fourier series are still 
fresh in your mind.

17.1  The Derivation of the Fourier  
Transform p. 690

17.2  The Convergence of the Fourier  
Integral p. 692

17.3  Using Laplace Transforms to Find  
Fourier Transforms p. 694

17.4 Fourier Transforms in the Limit p. 696

17.5 Some Mathematical Properties p. 699

17.6 Operational Transforms p. 700

17.7 Circuit Applications p. 705

17.8 Parseval’s Theorem p. 707

1 Be able to calculate the Fourier transform of 
a function using any or all of the following:

• The definition of the Fourier transform;

• Laplace transforms;

• Mathematical properties of the Fourier 
transform;

• Operational transforms.

2 Know how to use the Fourier transform to 
find the response of a circuit.

3 Understand Parseval’s theorem and be 
able to use it to answer questions about 
the energy contained within specific 
frequency bands.

CHAPTER OBJECTIVES



Practical Perspective
Filtering Digital Signals
It is common to use telephone lines to communicate 
 information from one computer to another. As you may 
know, computers represent all information as collections 
of 1’s and 0’s. The value 1 is represented as a voltage, 
usually 5 V, and 0 is represented as 0 V, as shown below. 

The telephone line has a frequency response charac-
teristic that is similar to a low-pass filter. We can use 
Fourier transforms to understand the effect of transmit-
ting a digital value using a telephone line that behaves 
like a filter.

Squareplum/Shutterstock

0 1 1 1 0 1 0 0 1 0

0 1 1 1 0 1 0 0 1 0
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17.1 The Derivation of the Fourier 
Transform

We derive the Fourier transform, viewed as a limiting case of a Fourier 
series and using the exponential form of the series:

 f(t) = a
∞

n = -∞
Cnejnv0t, (17.1)

where

 Cn =
1
T

 L
T>2

-T>2
f(t)e - jnv0t dt. (17.2)

In Eq. 17.2, we elected to start the integration at t0 = -T>2.
If the period T increases without limit, f(t) transitions from a periodic 

to an aperiodic function. In other words, if T is infinite, f(t) never repeats 
itself and hence is aperiodic. As T increases, the separation between ad-
jacent harmonic frequencies becomes smaller and smaller. In particular,

∆v = (n + 1)v0 - nv0 = v0 =
2p
T

,

and as T gets larger and larger, the incremental separation ∆v approaches 
a differential separation dv. Therefore,

1
T

 S dv
2p

  as T S ∞ .

As the period increases, the frequency is no longer a discrete variable but 
is instead a continuous variable, or

nv0 S v as T S ∞ .

We can also see from Eq. 17.2 that, as the period increases, the 
Fourier coefficients Cn get smaller. In the limit, Cn S 0 as T S ∞ . This 
result makes sense because we expect the Fourier coefficients to vanish 
when the function is no longer periodic. Note, however, the limiting value 
of the product CnT; that is,

CnT S L
∞

-∞
f(t)e - jvt dt as T S ∞ .

In writing the limiting value of CnT, we replaced nv0 with v. The integral 
represents the Fourier transform of f(t) and is denoted

FOURIER TRANSFORM

 F(v) = f5f(t)6 = L
∞

-∞
f(t)e -jvt dt. (17.3)
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We obtain an explicit expression for the inverse Fourier transform by 
investigating the limiting form of Eq. 17.1 as T S ∞ . We begin by multi-
plying and dividing Eq. 17.1 by T:

f(t) = a
∞

n = -∞
(CnT)ejnv0ta 1

T
b .

As T S ∞ , the summation approaches integration, CnT S F(v), nv0 S v, 
and 1>T S dv>2p. Thus, in the limit, f(t) becomes

INVERSE FOURIER TRANSFORM

 f(t) =
1

2p
 L

∞

-∞
F(v)ejvt dv. (17.4)

Equations 17.3 and 17.4 define the Fourier transform. Equation 17.3 
transforms the time-domain expression f(t) into its corresponding 
 frequency-domain expression F(v). Equation 17.4 defines the inverse 
 operation, transforming F(v) intof(t).

Let’s now derive the Fourier transform of the pulse shown in 
Fig. 17.1. Note that this pulse corresponds to the periodic voltage in 
Example 16.7 if we let T S ∞ . The Fourier transform of v(t) comes di-
rectly from Eq. 17.3:

 V(v) = L
t>2

- t>2
Vme - jvt dt

 = Vm
e - jvt

(- jv)
`

- t>2

t>2

 =
Vm

- jv
 a -2j sin 

vt

2
 b ,

which can be written in the form 1sin x2 >x by multiplying the numerator 
and denominator by t>2. Then,

 V(v) = Vmt 
 sin vt>2

vt>2
. (17.5)

For the periodic voltage pulses in Example 16.7, the expression for the 
Fourier coefficients is

 Cn =
Vmt

T
 
 sin nv0t>2

nv0t>2
. (17.6)

Compare Eqs. 17.5 and 17.6. Note that as the time-domain function goes 
from periodic to aperiodic, the amplitude spectrum goes from a discrete line 
spectrum to a continuous spectrum. Furthermore, the envelope of the line 
spectrum has the same shape as the continuous spectrum. Thus, as T in-
creases, the lines in the spectrum get closer together and their amplitudes get 
smaller, but their envelope doesn’t change shape. The physical interpretation 

v(t)

Vm

0 t>22t>2 t

Figure 17.1 ▲ A voltage pulse.
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17.2  The Convergence  
of the Fourier Integral

A function of time f(t) has a Fourier transform if the integral in Eq. 17.3 
converges. If f(t) is a well-behaved function that differs from zero over a 
finite interval of time, convergence is no problem. Well-behaved implies 
that f(t) is single valued and encloses a finite area over the range of inte-
gration. In practical terms, all pulses of finite duration that interest us are 
well-behaved functions. The evaluation of the Fourier transform of the 
rectangular pulse discussed in Section 17.1 illustrates this point.

If f(t) is different from zero over an infinite interval, the conver-
gence of the Fourier integral depends on the behavior of f(t) as t S ∞ .  
A  single-valued function that is nonzero over an infinite interval has a 
Fourier transform if the integral

L
∞

-∞
0  f(t) 0  dt

exists and if any discontinuities in f(t) are finite. An example is the decay-
ing exponential function illustrated in Fig. 17.3. The Fourier transform of 
f(t) is

f(t)

K

Ke2at

0
t

Figure 17.3 ▲ The decaying exponential function 
Ke - atu(t).

2p>t22p>t24p>t 4p>t

0.2 Vm

nv0

Cn

0
(a)

2p>t22p>t24p>t
nv0

Cn

0.1 Vm

0 4p>t
(b)

22p>t24p>t

V(v)

2p>t 4p>t
v

Vmt

0
(c)

Figure 17.2 ▲ Transition of the amplitude spectrum 
as f1 t2  goes from periodic to aperiodic. (a) Cn versus 
nv0, T>t = 5; (b) Cn versus nv0, T>t = 10; (c) V(v) 
versus v.

of the Fourier transform V(v) is therefore a measure of the frequency con-
tent of v(t). Figure 17.2 illustrates these observations. The amplitude spec-
trum plot is based on the assumption that t is constant and T is increasing.
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 F(v) = L
∞

-∞
f(t)e-jvt dt = L

∞

0
Ke-ate-jvt dt

 =
Ke-1a + jv2t

-1a + jv2 `
0

∞
=

K
-1a + jv2   10 - 12

 =
K

a + jv
, a 7 0.

A third important group of functions has great practical interest, but 
these functions do not, in a strict sense, have Fourier transforms. For 
 example, the integral in Eq. 17.3 doesn’t converge if f(t) is a constant. 
The same can be said if f(t) is a sinusoidal function, cos v0t, or a step 
function, Ku(t). These functions are very important in circuit analysis, 
but, to  include them in Fourier analysis, we must resort to the following 
 mathematical manipulations.

• Create a function in the time domain that has a Fourier transform 
and at the same time can be made arbitrarily close to the function of 
interest. Call the approximating function f′(t).

• Find the Fourier transform of the approximating function, F′(v), and 
then evaluate the limiting value of F′(v) as f′(t) approaches f(t).

• Define the limiting value of F′(v) as the Fourier transform of f(t).

Example 17.1 illustrates this three-step process.

EXAMPLE 17.1 Finding the Fourier Transform of a Constant

Find the Fourier transform of a constant function, 
f(t) = A.

Solution
Approximate a constant with the exponential 
function

f′(t) = Ae - P 0t 0, P 7 0.

As P S 0, f′(t) S A. Figure 17.4 shows the approxi-
mation graphically.

The Fourier transform of f′(t) is

F′(v) = L
0

-∞
AePte - jvtdt + L

∞

0
Ae - Pte - jvtdt.

Evaluating the integrals gives

F′(v) =
A

P - jv
+

A
P + jv

=
2PA

P2 + v2.

This function generates an impulse function at 
v = 0 as P S 0. You can verify this result by show-
ing that 

• F′(v) approaches infinity at v = 0 as P S 0.
• The width of F′(v) approaches zero as P S 0.
• The area under F′(v) is independent of P.

The area under F′(v) is the strength of the impulse 
and is

L
∞

- ∞

2PA
P2 + v2 dv = 4PAL

∞

0

dv

P2 + v2 = 2pA. 

In the limit, f′(t) approaches a constant A, and 
F′(v) approaches an impulse function 2pAd(v). 
Therefore, the Fourier transform of a constant A is 
defined as 2pAd(v), or

f5A6 = 2pAd(v).

A

t

f(t)

0

   2 ,   1

Ae2  2 tAe 2 t

Ae 1 t Ae2  1 t
e e

e e

ee

Figure 17.4 ▲ The approximation of a constant with an 
 exponential function.
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In Section 17.4, we say more about Fourier transforms defined through 
a limit process. Before doing so, in Section 17.3, we use the Laplace trans-
form to find the Fourier transform of functions for which the Fourier in-
tegral converges.

17.3 Using Laplace Transforms  
to Find Fourier Transforms

We can use a table of unilateral, or one-sided, Laplace transform pairs 
to find the Fourier transform for functions whose Fourier integral con-
verges. The Fourier integral converges when the poles of F(s) lie in the 
left half of the s plane. Note that if F(s) has poles in the right half of the s 
plane or along the imaginary axis, f(t) does not satisfy the constraint that 

1 ∞
-∞ 0  f(t) 0  dt exists.

The following rules apply when using Laplace transforms to find the 
Fourier transforms of such functions.

1. If f(t) is zero for t … 0 - , replace s by jv in the Laplace transform of 
f(t) to get the Fourier transform of f(t). Thus

 f5 f(t)6 = l5 f(t)6s = jv. (17.7)

2. A negative-time function is nonzero for negative values of time and 
zero for positive values of time. The Fourier transform of a negative- 
time function exists because the range of integration on the Fourier 
integral goes from - ∞  to + ∞ . To find the Fourier  transform of such 

Objective 1—Be able to calculate the Fourier transform of a function

 17.1 Use the defining integral to find the Fourier 
transform of the following functions:

a) f(t) = -A, -t>2 … t 6 0;

f(t) = A, 0 6 t … t>2;

f(t) = 0 elsewhere.

b) f(t) = 0, t 6 0;

f(t) = te - at, t Ú 0, a 7 0.

Answer: (a) - ja 2A
v

b a1 - cos
vt

2
b ;

(b) 
1

1a + jv2 2.

 17.2 The Fourier transform of f(t) is given by

F(v) = 0,  - ∞ … v 6 -3 s;

F(v) = 4,  -3 s 6 v 6 -2 s;

F(v) = 1,  -2 s 6 v 6 2 s;

F(v) = 4,  2 s 6 v 6 3 s;

F(v) = 0,  3 s 6 v … ∞ .

Find f(t).

Answer: f(t) =
1
pt

 14 sin 3t - 3 sin 2t2 .

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 17.1 and 17.2.
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a negative-time function, reflect the function over to the positive 
time domain and find its one-sided Laplace transform. Replace s 
with - jv in the Laplace transform to get the Fourier transform of 
the original time function. Therefore, 

 f5 f(t)6 = l5 f(- t)6s = -jv. (17.8)

3. Functions that are nonzero over all time can be resolved into pos-
itive- and negative-time functions. We use Eqs. 17.7 and 17.8 to find 
the Fourier transform of the positive- and negative-time functions, 
respectively. The Fourier transform of the original function is the 
sum of the two transforms. Thus, if we let

f + (t) = f(t) 1 for t 7 02 ,

f - (t) = f(t) 1 for t 6 02 ,

then

f(t) = f + (t) +  f - (t)

and

  f5 f(t)6 = f5 f + (t)6 + f5 f - (t)6  

(17.9) = l5 f + (t)6s = jv + l5 f - (- t)6s = -jv.

If f(t) is even, Eq. 17.9 reduces to

f5 f(t)6 = l5 f(t)6s = jv + l5 f(t)6s = -jv.

If f(t) is odd, then Eq. 17.9 becomes

f5 f(t)6 = l5 f(t)6s = jv - l5 f(t)6s = -jv.

Example 17.2 uses the Laplace transform to find the Fourier transform.

EXAMPLE 17.2 Finding the Fourier Transform from the Laplace Transform

Use the Laplace transform to find the Fourier 
transform for each of the following functions:

a) f(t) = 0,  t … 0 - ;

f(t) = e - at cos v0t,  t Ú 0 + .

b) f(t) = 0,  t Ú  0 + ;

f(t) = eat cos v0t,  t …  0 - .

c) f(t) = e - a 0t 0.

Solution

a) Using Rule 1, find the Laplace transform  
of f(t) and substitute jv for s to get F(v).  
Therefore,

f5 f(t)6 =
s + a

(s + a)2 + v0
2 `

s = jv
=

jv + a

(jv + a)2 + v0
2.



696 The Fourier Transform

b) This is a negative-time function. Using Rule 2,  
reflect the function over to the positive-time 
 domain to get

f1- t2 = 0,  1 for t … 0 -2 ;

f1- t2 = e - at cos v0t,  1 for t Ú 0 +2 .

Both f(t) and its mirror image are plotted in 
Fig. 17.5. The Fourier transform of f(t) is

 f5 f(t)6 = l5 f(- t)6 s = -jv =
s + a

(s + a)2 + v0
2 `

s = -jv

 =
- jv + a

1 - jv + a2 2 + v0
2.

c) This function is defined for all positive and nega-
tive time. Using Rule 3, we find that the positive- 
and negative-time functions are

f + (t) = e - at and f - (t) = eat.

Find the Laplace transform of f + (t) and f - 1- t2 :

l5 f + (t)6 =
1

s + a
,

l5 f - (- t)6 =
1

s + a
.

Therefore, from Eq. 17.9,

 f5e - a 0t 0 6 =
1

s +  a
`
s = jv

 +  
1

s +  a
`
s = -jv

 =
1

jv + a
+

1
- jv + a

 =
2a

v2 + a2.

f(t)

f(t) f(2t)

0
02 01

t

Figure 17.5 ▲ The reflection of a negative-time function 
over to the positive-time domain.

Objective 1—Be able to calculate the Fourier transform of a function

 17.3 Find the Fourier transform of each function. 
In each case, a is a positive real constant.

a) f(t) = 0, t 6 0;

f(t) = e - at sin v0t, t Ú 0.

b) f(t) = 0, t 7 0;

f(t) = - teat, t … 0.

c) f(t) = te -at, t Ú 0;

f(t) = teat, t … 0.

Answer: (a) 
v0

1a + jv22 + v0
2;

(b) 
1

1a - jv22;

(c) 
- j4av

1a2 +  v222.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 17.5.

17.4 Fourier Transforms in the Limit
As we pointed out in Section 17.2, the Fourier transforms of several prac-
tical functions must be defined by a limit process. We now return to these 
types of functions and develop their transforms.
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The Fourier Transform of a Signum Function
We showed that the Fourier transform of a constant A is 2pAd(v) in 
Example 17.1. Another function of interest is the signum function, de-
fined as +1 for t 7 0 and -1 for t 6 0. The signum function is denoted 
sgn(t) and can be expressed in terms of unit step functions as

 sgn(t) = u(t) - u(- t). (17.10)

Figure 17.6 shows the function graphically.
To find the signum function’s Fourier transform, create a function 

that approaches the signum function in the limit:

sgn(t) =  lim
PS0

[e - Ptu(t) - ePtu(- t)], P 7 0.

The function inside the brackets, plotted in Fig. 17.7, has a Fourier trans-
form because the Fourier integral converges. Since f(t) is an odd function, its 
Fourier transform is:

 f5 f(t)6 =
1

s + P
`
s = jv

-  
1

s + P
`
s = -jv

 =
1

jv + P
-

1
- jv + P

 =
-2jv

v2 + P2.

As P S 0, f(t) S sgn(t), and f5 f(t)6 S 2>jv. Therefore,

f5sgn(t)6 =
2
jv

.

The Fourier Transform of a Unit Step Function
To find the Fourier transform of a unit step function, we use the Fourier 
transforms of a constant and the signum function. Note that the unit step 
function can be expressed as

u(t) =
1
2

+
1
2

 sgn(t).

Thus,

 f5u(t)6 = f e 1
2

 f + f e 1
2

 sgn(t)f

 = pd(v) +
1
jv

.

The Fourier Transform of a Cosine Function
To find the Fourier transform of cos v0t, we return to the inverse- 
transform integral of Eq. 17.4 and observe that if

F(v) = 2pd(v - v0),

0

1.0

21.0

t

e2  tu(t)

e tu(2t)

f(t)

e

e

Figure 17.7 ▲ A function that approaches sgn (t) 
as P approaches zero.

0

21.0

1.0

sgn(t)

t

Figure 17.6 ▲ The signum function.
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then

f(t) =
1

2p
 L

∞

-∞
[2pd(v - v0)]ejvt dv.

Using the sifting property of the impulse function, we simplify f(t) to

f(t) = ejv0t.

Therefore,

f5ejv0t6 = 2pd(v - v0).

We now use the Fourier transform of ejv0t to find the Fourier transform of 
cos v0t because

 cos v0t =
ejv0t + e - jv0t

2
.

Thus,

 f5cos v0t6 =
1
2
1f5ejv0t6 + f5e - jv0t62

 =
1
2

 [2pd(v - v0) + 2pd(v + v0)]

 = pd(v - v0) + pd(v + v0).

The Fourier transform of sin v0t involves similar manipulation, which 
we leave for Problem 17.4. Table 17.1 presents a summary of the trans-
form pairs of the important elementary functions.

We now turn to the properties of the Fourier transform that help us 
describe aperiodic time-domain behavior in terms of frequency-domain 
behavior.

TABLE 17.1 Fourier Transforms of Elementary Functions

Type f(t) F(V)

impulse d(t) 1

constant A 2pAd(v)

signum sgn(t) 2>jv

step u(t) pd(v) +  1>jv

positive-time exponential e - atu(t) 1> 1a +  jv2 , a 7 0

negative-time exponential eatu1- t2 1> 1a -  jv2 , a 7 0

positive- and negative-time exponential e - a 0t 0 2a>(a2 +  v2), a 7 0

complex exponential ejv0t 2pd1v - v02
cosine cos v0t p3d1v + v02 + d1v - v024
sine sin v0t jp3d1v + v02 - d1v - v024
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17.5 Some Mathematical Properties
We begin by noting that F(v) is a complex quantity and can be expressed 
in either rectangular or polar form. Thus, from the defining integral,

 F(v) = L
∞

- ∞
f(t)e - jvtdt

 = L
∞

-∞
f(t)(cos vt - j sin vt) dt

 = L
∞

-∞
f(t) cos vt dt - jL

∞

-∞
f(t) sin vt dt.

Now we let

 A(v) = L
∞

-∞
f(t) cos vt dt,

 B(v) = - L
∞

-∞
f(t) sin vt dt.

Thus, using the definitions for A(v) and B(v), we get

F(v) = A(v) + jB(v) = 0F(v) 0 eju(v).

We can make the following observations about F(v):

• The real part of F(v)—that is, A(v)—is an even function of v,  
so A(v) = A1-v2 .

• The imaginary part of F(v)—that is, B(v)—is an odd function of v, 
so B(v) = -B1-v2 .

• The magnitude of F(v)—that is, 2A2(v) + B2(v)—is an even func-
tion of v.

• The phase angle of F(v)—that is, u(v) =  tan- 1B(v)>A(v)—is an 
odd function of v.

• Replacing v by -v generates the conjugate of F(v), so 
F1-v2 = F *(v).

Hence, if f(t) is an even function, F(v) is real, and if f(t) is an odd 
function, F(v) is imaginary. If f(t) is even,

 A(v) = 2L
∞

0
f(t) cos vt dt (17.11)

and

B(v) = 0.

If f(t) is an odd function,

A(v) = 0
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and

B(v) = -2L
∞

0
f(t) sin vt dt.

We leave the derivations for you as Problems 17.10 and 17.11.
If f(t) is an even function, its Fourier transform is an even function, 

and if f(t) is an odd function, its Fourier transform is an odd function. 
Moreover, if f(t) is an even function, from the inverse Fourier integral,

  f(t) =
1

2p
 L

∞

-∞
F(v)ejvtdv =

1
2p

 L
∞

- ∞
A(v)ejvtdv 

(17.12)

 =
1

2p
 L

∞

-∞
A(v)(cos vt + j sin vt)dv

 =
1

2p
 L

∞

-∞
A(v) cos vt dv + 0

 =
2

2p
 L

∞

0
A(v) cos vt dv.

Now compare Eq. 17.12 with Eq. 17.11. Note that, except for a factor of 
1>2p, these two equations have the same form. Thus, the waveforms of 
A(v) and f(t) become interchangeable if f(t) is an even function.

For example, we have already observed that a rectangular pulse in 
the time domain produces a frequency spectrum of the form 1sin v2 >v.  
Specifically, Eq. 17.5 expresses the Fourier transform of the voltage 
pulse shown in Fig. 17.1. Hence, a rectangular pulse in the frequency do-
main must be generated by a time-domain function of the form 1sin t2 >t.  
We can illustrate this transform by finding the time-domain function 
f(t) corresponding to the frequency spectrum shown in Fig. 17.8. From  
Eq. 17.12,

 f(t) =
2

2p
 L

v0>2

0
M cos vt dv =

2M
2p

 a sin vt
t

b `
0

v0>2

 =
1

2p
 aM 

sin v0t>2

t>2
b

 =
1

2p
  aMv0 

sin v0t>2

v0t>2
b .

We say more about the frequency spectrum of a rectangular pulse in 
the time domain versus the rectangular frequency spectrum of 1sin t2 >t 
after we introduce Parseval’s theorem.

17.6 Operational Transforms
Fourier transforms, like Laplace transforms, can be classified as 
 functional and operational. So far, we have concentrated on the 
 functional transforms. We now discuss some of the important opera-
tional Fourier transforms, which are similar to the operational Laplace 
transforms in Chapter 12. Hence, we leave their proofs to you as 
Problems 17.12–17.19.

v0>22v0>2 0

A(v)

M

v

Figure 17.8 ▲ A rectangular frequency spectrum.
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Multiplication by a Constant
From the defining integral, if

f5 f(t)6 = F(v),

then

f5Kf(t)6 = KF(v).

Thus, multiplication of f(t) by a constant corresponds to multiplying F(v) 
by that same constant.

Addition (Subtraction)
Addition (subtraction) in the time domain translates into addition 
 (subtraction) in the frequency domain. Thus, if

f5 f1(t)6 = F1(v),

f5 f2(t)6 = F2(v),

f5 f3(t)6 = F3(v),

then

f5 f1(t) - f2(t) + f3(t)6 = F1(v) - F2(v) + F3(v),

which is derived by substituting the algebraic sum of time-domain func-
tions into the defining integral.

Differentiation
The Fourier transform of the first derivative of f(t) is

fe df(t)

dt
 f = jvF(v).

The nth derivative of f(t) is

fe dnf(t)

dtn  f = (jv)nF(v).

These equations are valid if f(t) is zero at { ∞ .

Integration
If

g(t) = L
t

- ∞
f(x) dx,

then

f5g(t)6 =
F(v)

jv
.

This equation is valid if

L
∞

- ∞
f(x) dx = 0.
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Scale Change
Dimensionally, time and frequency are reciprocals. Therefore, when time 
is expanded, frequency is compressed (and vice versa), as reflected in the 
functional transform

f5 f(at)6 =
1
a

 Fav
a
b , a 7 0.

Note that when 0 6 a 6 1.0, time is expanded, whereas when a 7 1.0, 
time is compressed.

Translation in the Time Domain
Translating a function in the time domain alters the phase spectrum and 
leaves the amplitude spectrum unchanged. Thus

f5 f(t - a)6 = e - jvaF(v).

If a is positive in this equation, the time function is delayed (shifted to the 
right on the time axis), and if a is negative, the time function is advanced 
(shifted to the left on the time axis).

Translation in the Frequency Domain
Translation in the frequency domain corresponds to multiplication by the 
complex exponential in the time domain:

f5ejv0tf(t)6 = F(v - v0).

Modulation
Amplitude modulation varies the amplitude of a sinusoidal carrier. If the 
carrier signal is f(t), the modulated carrier is f(t) cos v0t. The amplitude 
spectrum of the modulated carrier is one-half the amplitude spectrum of 
f(t) and is centered at {v0, so,

f5 f(t) cos v0t6 =
1
2

 F(v - v0) +
1
2

 F(v + v0).

Convolution in the Time Domain
Convolution in the time domain corresponds to multiplication in the fre-
quency domain. In other words,

y(t) = L
∞

-∞
x1l2h1 t - l2  dl

becomes

 f5y(t)6 = Y(v) = X(v)H(v). (17.13)

Equation 17.13 is important in Fourier transform applications because 
it states that the output’s transform Y(v) is the product of the input’s 
transform X(v) and the system function H(v). We say more about this 
relationship in Section 17.7.
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Convolution in the Frequency Domain
Convolution in the frequency domain corresponds to finding the Fourier 
transform of the product of two time functions. Thus, if

f(t) = f1(t)f2(t),

then

F(v) =
1

2p
 L

∞

- ∞
F1(u)F2(v - u) du.

Table 17.2 summarizes these 10 operational transforms and another 
operational transform that we introduce in Example 17.3.

TABLE 17.2 Operational Transforms

f 1 t 2 F 1V 2
Kf(t) KF(v)

f1(t) - f2(t) + f3(t) F1(v) - F2(v) + F3(v)

dnf(t)>dtn 1 jv2 nF(v)

L
t

- ∞
f(x) dx F(v)>jv

f(at)
1
a

 Fav
a
b , a 7 0

f1 t - a2 e - jvaF(v)

ejv0tf(t) F1v - v02

f(t) cos v0t
1
2

 F1v - v02  +  
1
2

 F1v + v02

L
∞

- ∞
x1l2h1 t - l2  dl X(v)H(v)

f1(t)f2(t)
1

2p
 L

∞

- ∞
F1(u)F21v - u2  du

tnf(t) ( j)n
dnF(v)

dvn

EXAMPLE 17.3 Deriving an Operational Fourier Transform

Find the Fourier transform for the function 
f(t) = tnf(t), assuming that F(v) = f5 f(t)6  is 
known.

Solution
From the definition of the Fourier transform in  
Eq. 17.3,

F(v) = L
∞

- ∞
f(t)e - jvtdt.

Take the derivative of both sides with respect to the 
frequency v and simplify:

 
dF(v)

dv
= L

∞

- ∞

d
dv

 c f(t)e - jvtdt d  

 = - jL
∞

- ∞
tf(t)e - jvtdt = - jf5 tf(t)6 .
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Therefore,

f5 tf(t)6 = j
dF(v)

dv
.

Repeat this process, taking the second derivative of 
both sides of Eq. 17.3 with respect to v:

 
d2F(v)

dv2 = L
∞

- ∞

d2

dv2 c f(t)e - jvtdt d

 = L
∞

- ∞
1 - jt2 1 - jt2f(t)e - jvtdt

 = 1 - j2 2 f5 t2f(t)6 .

Therefore,

f5 t2f(t)6 = (j)2d2F(v)

dv2 .

Now take the nth derivative of both sides of Eq. 17.3 
with respect to v:

 
dnF(v)

dvn = L
∞

- ∞

dn

dvn c f(t)e - jvtdt d

 = L
∞

- ∞
1- jt2 nf(t)e - jvtdt

 = 1- j2 n f5 tnf(t)6 .

Replacing 1 - j2 n with 1>jn, we get

f5 tnf(t)6 = ( j)ndnF(v)

dvn .

Therefore, the effect of multiplying a function by t n 
in the time domain corresponds to finding the nth 
derivative of the function’s Fourier transform with 
respect to v.

Objective 1—Be able to calculate the Fourier transform of a function

 17.4 Suppose f(t) is defined as follows:

 f(t) =
2A
t

 t +  A,  -  
t

2
… t … 0;

 f(t) = -
2A
t

 t +  A,   0 … t …
t

2
,

 f(t) = 0,  elsewhere.

a) Find the second derivative of f(t).

b) Find the Fourier transform of the second 
derivative.

c) Use the result obtained in (b) to find the 
Fourier transform of the function in (a). 
(Hint: Use the operational transform of 
differentiation.)

Answer: (a)  
2A
t

 da t +  
t

2
b  -  

4A
t

 d(t)

+  
2A
t

 da t-  
t

2
b ;

(b)  
4A
t

  acos 
vt

2
  -  1b ;

(c)  
4A

v2t
  a1 - cos 

vt

2
b .

 17.5 The rectangular pulse shown can be expressed 
as the difference between two step voltages; 
that is,

v(t) = Vmua t +  
t

2
b  -  Vmu a t -  

t

2
b  V.

Use the operational transform for translation in 
the time domain to find the Fourier transform 
of v(t).

v(t)

Vm

t>22t>2 0
t

Answer: V(v) = Vmt 
sin1vt>22
1vt>22 .

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problem 17.19.
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17.7 Circuit Applications
The Laplace transform is used more often than the Fourier transform 
when finding a circuit’s response to a nonperiodic input. This is because 
the Laplace transform integral converges for a wider range of input func-
tions and it accommodates initial conditions. We can certainly use the 
Fourier transform to find a circuit’s response to an input using Eq. 17.13, 
which relates the transform of the output Y(v) to the transform of the 
input X(v) and the transfer function H(v) of the circuit. Note that H(v) is 
the familiar H(s), with s replaced by jv.

Example 17.4 uses the Fourier transform to find the response of a 
circuit.

EXAMPLE 17.4 Using the Fourier Transform to Find the Transient Response

Use the Fourier transform to find io(t) in the circuit 
shown in Fig. 17.9. The current source ig(t) is the 
signum function 20 sgn(t) A.

ig(t)

1 H

3 V

1 V io(t)

Figure 17.9 ▲ The circuit for Example 17.4.

Solution
The Fourier transform of the input is

 Ig(v) = f520 sgn(t)6

 = 20a 2
jv

b

 =
40
jv

.

The transfer function of the circuit is the ratio of Io 
to Ig, which we can find using current division in the 
s domain:

 Io =
1}(3 + s)

3 + s
 Ig

 =
1

4 + s
 Ig.

Therefore,

H(s) =
1

4 + s
and

H(v) =
1

4 + jv
.

The Fourier transform of io(t) is

 Io(v) = Ig(v)H(v)

 =
40

jv14 + jv2 .

Expanding Io(v) into a sum of partial fractions 
yields

Io(v) =
K1

jv
+

K2

4 + jv
.

Evaluating K1 and K2 gives

 K1 =
40
4

= 10,

 K2 =
40
-4

= -10.

Therefore

Io(v) =
10
jv

-
10

4 + jv
.

Find the output current in the time domain using 
the functional and operational Fourier transform 
 tables, Tables 17.1 and 17.2. The result is

 io(t) = f - 13Io(v)4
 = 5 sgn(t) - 10e - 4tu(t).

Figure 17.10 shows the response. Does the 
solution make sense in terms of known circuit 
 behavior? The answer is yes, based on the follow-
ing analysis. The current source delivers -20 A to 
the circuit  between -∞  and 0, and because the cur-
rent is  constant, the inductor behaves like a short 
circuit over this time interval. Therefore, the resis-
tance in each branch determines how the -20 A 
divides  between the two branches. One-fourth of 
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the -20 A appears in the io branch, so io is -5 A for 
t 6 0. When the current source jumps from -20 A 
to +20 A at t = 0, io approaches its final value of 
+5 A exponentially. The equivalent resistance 
with respect to the inductor’s terminals is 4 Ω,  
so the time constant of the exponential rise for 

t 7 0 is 
1
4

  s.

0
25

t

io(t)
5 sgn(t)

5 sgn(t)

5
(A)

io

io
210

210e24t

Figure 17.10 ▲ The plot of io1 t2  versus t.

EXAMPLE 17.5  Using the Fourier Transform to Find the Sinusoidal  
Steady-State Response

Suppose the current source in the circuit in  
Example 17.4 (Fig. 17.9) changes to a sinusoid, 
given by

ig(t) = 50cos 3t A.

Use the Fourier transform method to find io(t).

Solution
The transform of the input current is

Ig(v) = 50p3d1v - 32 + d1v + 32 4 .

As before, the transfer function of the circuit is

H(v) =
1

4 +  jv
.

The transform of the current response then is

Io(v) = 50p 
d1v - 32  +  d1v + 32

4 +  jv
.

To find the inverse transform of Io(v) we begin with 
the inverse Fourier transform intergral in Eq. 17.4, 
and then use the sifting property of the impulse 
function:

 io(t) = f - 15Io(v)6

 =
50p
2p L

∞

-∞
c d1v - 32 + d1v + 32

4 + jv
d ejvt dv

 = 25 a ej3t

4 + j3
+

e - j3t

4 - j3
b

 = 25 a ej3te - j36.87°

5
+

e - j3tej36.87°

5
b

 = 532cos13t - 36.87°24
 = 10cos13t - 36.87°2A.

You should verify that the solution for io(t) is iden-
tical to that obtained by phasor analysis.

Objective 2—Know how to use the Fourier transform to find the response of a circuit

 17.6 The current source in the circuit shown deliv-
ers a current of 10sgn (t) A. The output is the 
voltage across the 1 H inductor. Compute
(a) Ig(v); (b) H1 jv2 ; (c) Vo(v); (d) vo(t);
(e) i1(0 - ); (f) i1(0 + ); (g) i2(0 - ); (h) i2(0 + );
(i) vo(0 - ); and (j) vo(0 + ).

ig 1 H4 Vi1

1 V

i2

vo

1

2

ASSESSMENT PROBLEMS

An important characteristic of the Fourier transform is that it gives 
us the steady-state response to a sinusoidal input. There is no transient 
component in the response because the Fourier transform of cos v0t 
 assumes that the function exists over all time. Example 17.5 illustrates 
this feature.
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Answer: (a) 20>jv;
(b) 4jv> 15 + jv2 ;
(c) 80> 15 + jv2 ;
(d) 80e - 5tu(t) V;
(e) -2 A;
(f) 18 A;
(g) 8 A;
(h) 8 A;
(i) 0 V;
(j) 80 V.

 17.7 The voltage source in the circuit shown is gen-
erating the voltage

vg = etu1 - t2  +  u(t) V.

a) Use the Fourier transform method to find va.

b) Compute va(0 - ), va(0 + ), and va1 ∞ 2 .

1 F0.5 V

1 V

va

1

2

vg
1

2

Answer: (a) 
1
4

  etu1 - t2 -  
1
12

  e - 3tu(t) +
1
6

+
1
6

  sgn(t) V;

(b) 
1
4

  V, 
1
4

  V, 
1
3

  V.

SELF-CHECK: Also try Chapter Problems 17.20, 17.28, and 17.30.

17.8 Parseval’s Theorem
Parseval’s theorem relates the energy of a time-domain function having 
finite energy to the Fourier transform of that function. Imagine that the 
time-domain function f(t) is either the voltage across or the current in a 
1 Ω resistor. The energy of this function then is

W1Ω = L
∞

- ∞
f 2(t) dt.

Parseval’s theorem says that we can also calculate this energy using a 
 frequency-domain integral:

 W1Ω = L
∞

- ∞
f 2(t) dt =

1
2p

 L
∞

- ∞
� F1v2� 2 dv. (17.14)

Therefore, we can calculate the 1 Ω energy associated with f(t)  either 
by integrating the square of f(t) over all time or by integrating the 
square of the magnitude of the Fourier transform of f(t) over all fre-
quencies and multiplying by 1>2p. Parseval’s theorem is valid if both 
integrals exist.

The average power of time-domain signals with finite energy is zero 
when averaged over all time. Therefore, when comparing such signals, we 
use the energy content of the signals instead of their average power. Using 
a 1 Ω resistor when making the energy calculation is convenient and lets 
us compare the energy content of voltages and currents.

We begin deriving Eq. 17.14 by rewriting the left-hand side as f(t) 
times itself and then expressing one f(t) in terms of the inversion integral:

 L
∞

- ∞
f 2(t) dt = L

∞

- ∞
f(t) f(t) dt

 = L
∞

- ∞
f(t) c 1

2p
 L

∞

- ∞
F(v)e jvt dv d  dt.
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We move f(t) inside the interior integral because the integration is with re-
spect to v, and then we factor the constant 1>2p outside both integrals. Then,

L
∞

- ∞
f 2(t) dt =

1
2p

 L
∞

- ∞
c L

∞

- ∞
F(v) f(t)e jvt dv d  dt.

We reverse the order of integration and then factor F(v) out of the inte-
gral with respect to t. Thus

L
∞

- ∞
f 2(t) dt =

1
2p

 L
∞

- ∞
F(v) c L

∞

- ∞
f(t)e jvt dt d  dv.

The bracketed integral is F1-v2 , so

L
∞

- ∞
f 2(t) dt =

1
2p

 L
∞

- ∞
F(v) F(-v) dv.

In Section 17.5, we noted that F1-v2 = F*(v). Thus, the product 
F(v) F1-v2  is the magnitude of F(v) squared, completing the derivation 
of Eq. 17.14. We also noted that 0F(v) 0  is an even function of v. Therefore, 
we can also write Eq. 17.14 as

 L
∞

- ∞
f 2(t) dt =

1
p

 L
∞

0
� F(v)�2 dv. (17.15)

Demonstrating Parseval’s Theorem
To demonstrate Eq. 17.15, suppose

f(t) = e - a 0t 0.

Substituting this f(t) into the left-hand side of Eq. 17.15 and evaluating the 
left-hand side, we get

 L
∞

- ∞
e - 2a 0t 0 dt = L

0

- ∞
e2at dt + L

∞

0
e - 2at dt

 =
e2at

2a
`
- ∞

0

+
e - 2at

-2a
`
0

∞

 =
1
2a

+
1
2a

=
1
a

.

The Fourier transform of f(t) is

F(v) =
2a

a2 + v2,

and therefore the right-hand side of Eq. 17.15 evaluates to

 
1
p

 L
∞

0

4a2

(a2 + v2)2  dv =
4a2

p
 

1
2a2  a v

v2 + a2 +
1
a

  tan- 1 
v

a
b  `

0

∞

 =
2
p

  a0 +
p

2a
- 0 - 0b

 =
1
a

.

Note that both the left-hand side and the right-hand side of Eq. 17.15 
 evaluate to 1>a.
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Interpreting Parseval’s Theorem
A physical interpretation of Parseval’s theorem tells us that the magni-
tude of the Fourier transform squared, � F(v) � 2, is an energy density (in 
joules per hertz). To see this, change the variable of integration on the 
right-hand side of Eq. 17.15, using v = 2pf . The result is

1
p

 L
∞

0
� F12pf2 � 2 2p df = 2L

∞

0
� F12pf2 � 2 df,

where � F12pf2 � 2df  is the energy in an infinitesimal band of frequencies 
(df), and the total 1 Ω energy associated with f(t) is the sum (integral) of 
� F12pf2 � 2df  over all frequencies.

We can also calculate the portion of the total energy for a specified 
frequency band. For example, the 1Ω energy in the frequency band from 
v1 to v2 is

 W1Ω =
1
p

 L
v2

v1

0F(v) 0 2 dv. (17.16)

Note that if we write the frequency-domain integral using

1
2p

 L
∞

- ∞
0F(v) 0 2 dv

instead of

1
p

 L
∞

0
0F(v) 0 2 dv,

we can rewrite Eq. 17.16 as

 W1Ω =
1

2p
 L

- v1

-v2

0F(v) 0 2dv +
1

2p
 L

v1

v2

0F(v) 0 2dv. (17.17)

Figure 17.11 shows a graphical interpretation of Eq. 17.17.
Examples 17.6–17.9 illustrate calculations using Parseval’s theorem.

|F(v)|2

v
0 v12v12v2 v2

Figure 17.11 ▲ The graphic interpretation  
of Eq. 17.17.

EXAMPLE 17.6 Applying Parseval’s Theorem

The current in a 40 Ω resistor is

i = 20e - 2tu(t) A.

What percentage of the total energy dissipated in 
the resistor is associated with the frequency band 
0 … v … 213 rad>s?

Solution
The total energy dissipated in the 40 Ω resistor is

 W40Ω = 40L
∞

0
400e - 4t dt

 = 16,000 
e - 4t

-4
 `

0

∞
= 4000 J.
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We can check this total energy calculation with 
 Parseval’s theorem:

F(v) =
20

2 + jv
.

Therefore

0F(v) 0 =
2024 + v2

and

 W40Ω =
40
p

 L
∞

0

400
4 + v2  dv

 =
16,000

p
  a 1

2
  tan- 1 

v

2
 `

0

∞
b

 =
8000
p

  ap
2
b = 4000 J.

The energy associated with the frequency band 
0 … v … 213 rad>s is

 W40Ω =
40
p

 L
213

0

400
4 + v2  dv

 =
16,000

p
  a 1

2
  tan- 1 

v

2
 `

0

213

b

 =
8000
p

 ap
3
b =

8000
3

  J.

Hence, the percentage of the total energy associated 
with this range of frequencies is

h =
8000>3

4000
 * 100 = 66.67%.

EXAMPLE 17.7 Applying Parseval’s Theorem to an Ideal Bandpass Filter

The input voltage for an ideal bandpass filter is

v(t) = 120e - 24tu(t) V.

The filter passes all frequencies that lie between 24 
and 48 rad>s, without attenuation, and completely 
rejects all frequencies outside this passband.

a) Sketch 0V(v) 0 2 for the filter input voltage.

b) Sketch 0Vo(v) 0 2 for the filter output voltage.

c) What percentage of the total 1 Ω energy content 
of the input voltage is available at the output?

Solution

a) The Fourier transform of the filter input 
 voltage is

V(v) =
120

24 + jv
.

Therefore

0V(v) 0 2 =
14,400

576 + v2.

Figure 17.12 shows the sketch of 0V(v) 0 2 versus v.

b) The ideal bandpass filter rejects all frequencies 
outside the passband. The plot of 0Vo(v) 0 2 ver-
sus v looks just like the plot in Fig. 17.12 be-
tween -48 and -24 rad>s and between 24 and 
48 rad>s, and is zero for all other frequencies, as 
shown in Fig. 17.13.

c) The total 1 Ω energy for the input voltage is

 Wi =
1
p

 L
∞

0

14,400

576 + v2  dv =
14,400

p
a 1

24
 tan- 1 

v

24
`
0

∞
b

 =
600
p

  
p

2
= 300 J.

20
25

5

6020220240260 40

10
15

0

|V(v)|2

v (rad>s)

Figure 17.12 ▲ 0V(v) 0 2 versus v for Example 17.7.

0260 240 220 20 40 60

25
20
15
10
5

v (rad>s)

|Vo(v)|2

Figure 17.13 ▲ 0Vo(v) 0 2 versus v for Example 17.7.
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The total 1 Ω energy for the filter’s output is

 Wo =
1
p

 L
48

24

14,400

576 + v2  dv =
600
p

  tan- 1 
v

24
`
24

48

 =
600
p

  1tan- 12 - tan- 112 =
600
p

 a p

2.84
-

p

4
b

 = 61.45 J.

The percentage of the input energy available at 
the output is

h =
61.45
300

 * 100 = 20.48%.

EXAMPLE 17.8 Applying Parseval’s Theorem to a Low-Pass Filter

We can use Parseval’s theorem to calculate the 
energy available at a filter’s output even if the 
time-domain expression for vo(t) is unknown. 
Suppose the input voltage to the low-pass RC filter 
circuit shown in Fig. 17.14 is

vi(t) = 15e - 5tu(t) V.

a) What percentage of the input signal’s 1 Ω energy 
is available in the output signal?

b) What percentage of the output energy is  associated 
with the frequency range 0 … v … 10 rad>s?

Solution

a) The 1 Ω energy in the input signal is

Wi = L
∞

0
(15e - 5t)2 dt = 225 

e - 10t

-10
 `

0

∞
= 22.5 J.

The Fourier transform of the output voltage is

Vo(v) = Vi(v)H(v),

where

 Vi(v) =
15

5 + jv
,

 H(v) =
1>RC

1>RC + jv
=

10
10 + jv

.

Hence

 Vo(v) =
150

15 + jv2 110 + jv2 ,

 0Vo(v) 0 2 =
22,500

125 + v22 1100 + v22 .

The 1 Ω energy available in the filter’s output is

Wo =
1
p

 L
∞

0

22,500

125 + v22 1100 + v22   dv.

We can evaluate the integral using a sum of par-
tial fractions:

22,500

125 + v22 1100 + v22 =
300

25 + v2 -
300

100 + v2.

Then

 Wo =
300
p

 e L
∞

0

dv

25 + v2 - L
∞

0

dv

100 + v2 f

 =
300
p

 c 1
5
ap

2
b -

1
10

 ap
2
b d = 15 J.

The energy available in the output signal there-
fore is 66.67% of the energy available in the 
input signal; that is,

h =
15

22.5
 (100) = 66.67%.

10 kV

vo

1

2

vi

1

2

10 mF

Figure 17.14 ▲ The low-pass RC filter for Example 17.8.
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b) The output energy associated with the frequency 
range 0 … v … 10 rad>s is

 W′o =
300
p

 e L
10

0

dv

25 + v2 - L
10

0

dv

100 + v2 f

 =
300
p

 a 1
5

  tan- 1 
10
5

-
1
10

  tan- 1 
10
10

b =
30
p

 a 2p
2.84

-
p

4
b

 = 13.64 J.

The total 1 Ω energy in the output signal is 15 J, 
so the percentage associated with the frequency 
range 0 to 10 rad>s is 90.97%.

EXAMPLE 17.9 Calculating Energy Contained in a Rectangular Voltage Pulse

A voltage pulse, v(t), is shown in Fig. 17.15(a). Use 
Parseval’s theorem to calculate the fraction of the 
total energy associated with v(t) that lies in the fre-
quency range 0 … v … 2 p>t. Recall from Section 
17.1 that we found the Fourier transform of the volt-
age pulse to be

V(v) = Vmt 
 sin vt>2

vt>2
.

The Fourier transform of the voltage pulse is plot-
ted in Fig. 17.15(b).

Solution
To begin, substitute the Fourier transform of the 
voltage pulse into Eq. 17.16:

W =
1
p

 L
2p>t

0
Vm

2t2 sin2vt>2

(vt>2)2   dv.

To evaluate this integral, let x = vt>2, so 
dx = (t>2)dv. Note that when v = 2p>t, x = p.  
Using these substitutions, the energy equation 
 becomes

W =
2Vm

2t

p
 L

p

0

 sin 2x
x2   dx.

Now we can integrate by parts. Let u =  sin2x 
and dv = dx>x2, so du = 2 sin x cos x dx =  sin  2x dx  
and v = -1>x. Therefore,

 L
p

0

sin2x

x2   dx = -
sin2x

x
`
0

p

- L
p

0
-

1
x

  sin 2x dx

 = 0 + L
p

0

sin  2x
x

  dx

and

W =
4Vm

2t

p
 L

p

0

 sin  2x
2x

  dx.

To evaluate this integral, make another sub-
stitution of variables to get the form sin y>y. Let 
y = 2x so dy = 2 dx, and y = 2p when x = p. The 
resulting equation is

W =
2Vm

2t

p
 L

2p

0

 sin  y
y

  dy.

The integral’s value can be found using an on-
line calculator.1 Its value is 1.41815, so

W =
2Vm

2t

p
 (1.41815).

To find the total 1 Ω energy associated with v(t),  
use either the time-domain integral or the 
 frequency-domain integral in Eq. 17.14. The total 
energy is

Wt = Vm
2t.

0

v(t)

Vm

2t>2 t>2
t

(a)

V(v)

Vm t

24p
t

22p
t

2p
t

4p
t

(b)

0
v

Figure 17.15 ▲ The rectangular voltage pulse and its Fourier 
transform. (a) The rectangular voltage pulse. (b) The Fourier 
transform of v(t).

1http://www.wolframalpha.com/input/?i=integrate+sin+x+%2F+x+ 
from+0+to+2*pi

http://www.wolframalpha.com/input/?i=integrate+sin+x+%2F+x+ from+0+to+2*pi
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The fraction of the total energy associated with the 
band of frequencies between 0 and 2p>t is

 h =
W
Wt

 =
2Vm

2t11.418152
p1V m

2 t2

 = 0.9028.

Therefore, approximately 90% of the energy associ-
ated with v(t) is contained in the dominant portion 
of the amplitude spectrum.

Note that the plots in Fig. 17.15 show that as 
the width of the voltage pulse (t) becomes smaller, 
the dominant portion of the amplitude spectrum 
(that is, the spectrum from -2p>t to 2p>t) spreads 
out over a wider range of frequencies. This result 
agrees with our earlier comments about the oper-
ational transform involving a scale change—when 
time is compressed, frequency is expanded and vice 
versa. To transmit a single rectangular pulse with 
reasonable fidelity, the bandwidth of the system 
must be at least wide enough to accommodate the 
dominant portion of the amplitude spectrum. Thus, 
the cutoff frequency should be at least 2p>t rad>s,  
or 1>t Hz.

Objective 3—Understand Parseval’s theorem and be able to use it

 17.8 The voltage across a 50 Ω resistor is

v = 4te - tu(t) V.

What percentage of the total energy dissipated in the 
resistor can be associated with the frequency band 
0 … v … 13  rad>s?

Answer: 94.23%.

 17.9 Assume that the magnitude of the Fourier 
transform of v(t) is as shown. This voltage is 
applied to a 6 kΩ resistor. Calculate the total 
energy delivered to the resistor.

0

6

v (rad>s)

|V ( jv)|

22000p 2000p

Answer: 4 J.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problem 17.40.

Practical Perspective
Filtering Digital Signals
To understand the effect of transmitting a digital signal on a  telephone 
line, consider a pulse that represents a digital value of 1, as shown 
in Fig. 17.15(a), with Vm = 5 V and t = 1 ms. The Fourier trans-
form of this pulse is shown in Fig. 17.15(b), where the amplitude 
Vmt = 5 mV and the first positive zero-crossing on the frequency axis is 
2p>t = 6.28 Mrad>s = 1 MHz.

Note that the digital pulse representing the value 1 is ideally a sum 
of an infinite number of frequency components. But the telephone 
line cannot transmit all of these frequency components. Typically, the 
line has a bandwidth of 10 MHz, meaning that it is capable of trans-
mitting only those frequency components below 10 MHz. This causes 
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the original pulse to be distorted once it is  received by the computer 
on the other end of the telephone line, as seen in Fig. 17.16.

Vm 

0
t

v(t)

t>22t>2

Figure 17.16 ▲ The effect of sending a square voltage pulse through a bandwidth- 
limited filter, causing distortion of the resulting output signal in the time domain.

Summary
• The Fourier transform gives a frequency-domain 

description of an aperiodic time-domain function. 
Depending on the nature of the time-domain signal, 
one of three approaches to finding its Fourier transform 
may be used:

• If the time-domain signal is a well-behaved pulse of 
finite duration, the integral that defines the Fourier 
transform is used. (See page 690.)

• If the one-sided Laplace transform of f(t) exists and 
all the poles of F(s) lie in the left half of the s plane, 
F(s) may be used to find F(v). (See page 694.)

• If f(t) is a constant, a signum function, a step func-
tion, or a sinusoidal function, the Fourier transform is 
found by using a limit process. (See page 696.)

• Functional and operational Fourier transforms that are 
useful in circuit analysis are tabulated in Tables 17.1 and 
17.2. (See pages 698 and 703.)

• The Fourier transform accommodates both negative- 
time and positive-time functions and therefore is suited 
to problems whose signals start at t = - ∞ . In contrast, 
the unilateral Laplace transform is suited to problems 
with initial conditions and signals that exist for t 7 0. 
(See page 705 .)

• The Fourier transform of a response signal y(t) is

Y(v) = X(v)H(v),

where X(v) is the Fourier transform of the input signal 
x(t) and H(v) is the transfer function H(s) evaluated at 
s = jv. (See page 705.)

• The magnitude of the Fourier transform squared is 
a measure of the energy density (joules per hertz) in 
the frequency domain (Parseval’s theorem). Thus, the 
Fourier transform permits us to associate a fraction of 
the total energy contained in f(t) with a specified band 
of frequencies. (See page 709.)

Problems
Sections 17.1–17.2

 17.1  a) Find the Fourier transform of the function show 
in Fig.  P17.1.

b) Find F(v) when v = 0.

c) Sketch � F(v) �  versus v when A = 10 and 
t = 0.1. Hint: Remember that � F(v) �  is an even 
Function of v.

Figure P17.1  

2t>2

f(t)

A

t
0 t>2
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 17.8  Use the inversion integral (Eq. 17.4) to show that 
f - 152>jv6 = sgn(t). Hint: Use Problem 17.7.

 17.9  Find f(sin v0t) by using the approximating  
function

f(t) = e - P�t� sin v0t,

where P is a positive real constant.

 17.10  Show that if f(t) is an odd function,

 A(v) = 0,

 B(v) = -2L
∞

0
f(t) sin vt dt.

 17.11  Show that if f(t) is an even function,

 A(v) = 2L
∞

0
f(t) cos vt dt,

 B(v) = 0.

Section 17.6

 17.12  a) Show that f5df(t)>dt6 = jvF(v), where 
F1v2 = f5 f(t)6. Hint: Use the defining integral 
and integrate by parts.

b) What is the restriction on f(t) if the result given 
in (a) is valid?

c) Show that f5dnf(t)>dtn6 = (jv)nF(v), where 
F(v) = f5 f(t)6 .

 17.13  a) Show that

fe L
t

- ∞
f(x)dx f =

F(v)

jv
,

where F(v) = f5 f(x)6 . Hint: Use the defining 
integral and integrate by parts.

b) What is the restriction on f(x) if the result given 
in (a) is valid?

c) If f(x) = e - axu(x), can the operational trans-
form in (a) be used? Explain.

 17.14  a) Show that

f5 f(t>a) = aF(va)6 ,    a 7 0.

b) Give that f(at) = e
� t �
a  for a 7 0, sketch 

F(v) = f 5 f(at)6  for a = 0.5, 1.0, and 2.0. Do 
your sketches reflect the observation that com-
pression in the time domain corresponds to 
stretching in the frequency domain?

 17.2  The Fourier transform of f(t) is shown in Fig. P17.2.

a) Find f(t).

b) Evaluate f(0).

c) Sketch f(t) for -150 s … t … 150 s when A = 5p 
and v0 = 100 rad>s.

Figure P17.2  

A

2jA

v0>22v0>2
v

F(v)

 17.3  Use the defining integral to find the Fourier trans-
form of the following functions:

a) f(t) = A cos 
p

2
t,  -2 … t … 2;

f(t) = 0,      elsewhere.

b) f(t) =
A
t

 t + A,      -t … t … 0;

f(t) = -
2A
t

 t + A,    0 … t … t;

f(t) = 0,      elsewhere.

Sections 17.3–17.5

 17.4  Derive f5cos v0t6 .

 17.5  Find the Fourier transform of each of the  following 
functions. Hint: Use appropriate properties 
 wherever necessary.

a)  f(t) = e - 5 �t - 3 �  .

b)  f(t) = d(t + 0.5) - d(t - 0.5).

c)  f(t) = e-tjpt u(t).

d)  f(t) = 1>(a2 + t2), a 7 0.

e)  f(t) = 1.

 17.6  Using appropriate properties, find the Fourier trans-
form of

f(t) = L
t

-∞
e- at u(t) dt.

 17.7  If f(t) is a real, odd function of t, show that the inver-
sion integral reduces to

f(t) = -
1

2p
 L

∞

- ∞
B(v) sin vt dv.
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a) Use convolution in the frequency domain to 
find F(v).

b) What happens to F(v) as the width of f2(t)  
increases so that f(t) includes more and more  
cycles of f1(t)?

Section 17.7

 17.20   a) Use the Fourier transform method to find io(t) in 
the circuit shown in Fig.  P17.20 if vg = 60 sgn(t) V.

b) Does your solution make sense in terms of 
known circuit behavior? Explain.

PSPICE

MULTISIM

 17.15  Derive each of the following operational transforms:

a) f5 f(t - a)6 = e - jva F(v);

b) f5ejv0tf(t)6 = F(v - v0);

c) f5 f(t) cos v0t6 = 1
2 F(v - v0) + 1

2 F(v + v0).

 17.16  Given

y(t) = L
∞

- ∞
x(l)h(t - l) dl,

show that Y(v) = f5y(t)6 = X(v)H(v), where 
X(v) = f5x(t)6  and H(v) = f5h(t)6 . Hint: Use 
the defining integral to write

f5y(t)6 = L
∞

- ∞
c L

∞

- ∞
x(l)h(t - l) dl d e - jvt dt.

Next, reverse the order of integration and then 
make a change in the variable of integration; that is, 
let u = t - l.

 17.17  Given f(t) = f1(t)f2(t), show that

F(v) = (1>2p)L
∞

- ∞
F1(u)F2(v - u) du.

Hint: First, use the defining integral to express 
F(v) as

F(v) = L
∞

- ∞
f1(t)f2(t)e - jvt dt.

Second, use the inversion integral to write

f1(t) =
1

2p
 L

∞

- ∞
F1(u)ejvt du.

Third, substitute the expression for f1(t) into the 
defining integral and then interchange the order of 
integration.

 17.18  a) Show that

(  j)nJdnF(v)

dvn R = f5 tnf(t)6 .

b) Use the result of (a) to find each of the following 
Fourier transforms (assuming a 7 0):

f5 te-at u(t)6 ,

f5 � t � e-a �t�6 ,

f5 te-a �t�6 .

 17.19  Suppose that f(t) = f1(t)f2(t), where

 f1(t) =  cos v0t,

 f2(t) = 1, -t>2 6 t 6 t>2;

 f2(t) = 0, elsewhere.

Figure P17.20

1

2

480 V

vg 625 nF2.4 kV

1

2

vo

io

 17.21  Repeat Problem  17.20 except replace io(t) with vo(t).

 17.22   a) Use the Fourier transform method to find vo(t) in 
the circuit shown in Fig.  P17.22. The initial value 
of vo(t) is zero, and the source voltage is 50u(t) V.

b) Sketch vo(t) versus t.

PSPICE

MULTISIM

PSPICE

MULTISIM

Figure P17.22

2 H

400 V
1

2
vg

1

2

vo

 17.23  Repeat Problem  17.22 if the input voltage (vg) is 
changed to 25 sgn(t).

 17.24   a) Use the Fourier transform method to find io(t) in 
the circuit in Fig.  P17.24 if ig = 10 sgn(t).

b) Does your solution make sense in terms of 
known circuit behavior? Explain.

PSPICE

MULTISIM

PSPICE

MULTISIM

Figure P17.24

2

1

vo(t)100 Vig

io(t)

8 mF

 17.25  Repeat Problem  17.24 except replace io with vo.

 17.26  The voltage source in the circuit in Fig.  P17.26 is  
given by the expression

vg = 8 sgn(t) V.

PSPICE

MULTISIM

PSPICE

MULTISIM
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Figure P17.26

1

2

100 V 100 mH

vg

1

2

vo

io

62.5 mF

a) Find vo(t).

b) What is the value of vo(0-)?

c) What is the value of vo(0+)?

d) Use the Laplace transform method to find vo(t) 
for t 7 0+.

e) Does the solution obtained in (d) agree with 
vo(t) for t 7 0+ from (a)?

 17.27  Repeat Problem  17.26 except replace vo(t) with io(t).

 17.28   a) Use the Fourier transform to find vo in the cir-
cuit in Fig.  P17.28 if ig equals 2e-100 �t�   A.

b) Find vo(0-).

c) Find vo(0+).

d) Use the Laplace transform method to find vo for 
t Ú 0.

e) Does the solution obtained in (d) agree with vo 
for t 7 0+ from (a)?

PSPICE

MULTISIM

PSPICE

MULTISIM

Figure P17.28

500 V

1

2

vo 100 mFig

io

 17.29   a) Use the Fourier transform to find io in the circuit 
in Fig.  P17.28 if ig equals 2e-100 �t�   A.

b) Find io(0-).

c) Find io(0+).

d) Use the Laplace transform method to find io for 
t Ú 0.

e) Does the solution obtained in (d) agree with io 
for t 7 0+ from (a)?

 17.30  Use the Fourier transform method to find io in the 
circuit in Fig P17.30 if vg = 100 cos 1000t V

PSPICE

MULTISIM

Figure P17.30  

1

2

25 V

50 V

io

vg 10 mH

800 nF

 17.31   a) Use the Fourier transform method to find io in 
the circuit in Fig. P17.31 if vg = 125 cos 40,000t V.

b) Check the answer obtained in (a) by finding the 
steady-state expression for io using phasor do-
main analysis.

PSPICE

MULTISIM

Figure P17.31

1

2
vg

5 mH

20 mH 120 Vio

 17.32   a) Use the Fourier transform method to find vo 
in the circuit shown in Fig. P17.32. The voltage 
source generates the voltage

vg = 45e - 500 0t 0 V.

b) Calculate vo(0 - ), vo(0 + ), and vo(∞).

c) Find iL(0 - ); iL(0 + ); vC(0 - ); and vC(0 + ).

d) Do the results in part (b) make sense in terms of 
known circuit behavior? Explain.

PSPICE

MULTISIM

Figure P17.32

1

2
vo

vC

4 H 800 V
iL

vg

1 mF

1 2 1

2

 17.33  The voltage source in the circuit in Fig.  P17.33 is 
generating the signal

vg = 25 sgn(t) - 25 + 150e-100tu(t) V.

a) Find vo(0-) and vo(0+).

b) Find io(0-) and io(0+).

c) Find vo.

PSPICE

MULTISIM

Figure P17.33

1

2

25 V

vg

io

vo

1

2

0.2 mF
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 17.34   a) Use the Fourier transform method to find vo in 
the circuit in Fig. P17.34 when

vg = 10e2tu(- t) - 10e-2tu(t) V.

b) Find vo(0-).

c) Find vo(0 + ).

Figure P17.34  

1

2

20 V

111.11 mFvg vo

1

2

1 H

 17.35   a) Use the Fourier transform method to find vo in 
the circuit in Fig. P17.35 when

ig = 18e10tu(- t) - 18e - 10t u(t) A.

b) Find vo(0 - ).

c) Find vo(0 + ).

d) Do the answers obtained in (b) and (c) make 
sense in terms of known circuit behavior?  
Explain.

PSPICE

MULTISIM

Figure P17.35

1 Hig

10 mF

25 V

1

2

vo

 17.36  When the input voltage to the system shown in 
Fig.  P17.36 is 20u(t) V, the output voltage is

vo = [40 + 60e-100t - 100e-300t ] u(t) V.

What is the output voltage if vi = 20 sgn(t) V?

Figure P17.36

h(t)
vi(t)

(Input voltage)
vo(t)

(Output voltage)

c) Repeat (b) using frequency-domain integration.

d) Find the value of v1 if f(t) has 90% of the energy 
in the frequency band 0 … 0v 0 … v1.

 17.38  The circuit shown in Fig. P17.38 is driven by the current

ig = 12e - 10tu(t) A.

What percentage of the total 1 Ω energy content 
in the output current io lies in the frequency range 
0 … 0v 0 … 100 rad>s?

Figure P17.38

25 Vig 500 mH

io

 17.39  The input current signal in the circuit seen in  
Fig.  P17.39 is

ig = 10e - 50t u(t) mA, t Ú 0 +.

What percentage of the total 1 Ω energy content 
in the output signal lies in the frequency range 0 to 
100 rad>s?

Figure P17.39

2 kVig io 2.5 mF

 17.40  The input voltage in the circuit in Fig. P17.40 is 
vg = 30e - 0t 0 V.

a) Find vo(t).

b) Sketch 0Vg1v2 0  for -5 … v … 5 rad>s.

c) Sketch 0Vo(v) 0  for -5 … v … 5 rad>s.

d) Calculate the 1 Ω energy content of vg.

e) Calculate the 1 Ω energy content of vo.

f) What percentage of the 1 Ω energy content in vg 
lies in the frequency range 0 … 0v 0 … 2 rad>s?

g) Repeat (f) for vo.

Figure P17.40

1

2

20 V

vo80 Vvg

1

2

125 mF

Section 17.8

 17.37  It is given that F(v) = evu(-v) + e - vu(v).

a) Find f(t).

b) Find the 1 Ω energy associated with f(t) via 
time-domain integration.
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 17.41  The amplitude spectrum of the input voltage to the 
high-pass RC filter in Fig. P17.41 is

Vi(v) =
200
0v 0 , 100 rad>s … 0v 0 … 200 rad>s;

Vi(v) = 0,   elsewhere.

a) Sketch 0Vi1v2 0 2 for -300 … v … 300 rad>s.

b) Sketch 0Vo1v2 0 2 for -300 … v … 300 rad>s.

c) Calculate the 1 Ω energy in the signal at the  
input of the filter.

d) Calculate the 1 Ω energy in the signal at the out-
put of the filter.

Figure P17.41

0.5 mF

vovi 20 kV

1

2

1

2

 17.42  The input voltage to the high-pass RC filter circuit 
in Fig. P17.42 is

vi(t) = Ae - atu(t).

Let a denote the corner frequency of the filter, that 
is, a = 1>RC.

a) What percentage of the energy in the signal at 
the output of the filter is associated with the fre-
quency band 0 … 0v 0 … a if a = a?

b) Repeat (a), given that a = 13a.

c) Repeat (a), given that a = a>13.

Figure P17.42

C
vovi R

1

2

1

2
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18
CHAPTER 

Two-Port Circuits
We have frequently focused on the behavior of a circuit at 
a specified pair of terminals. We introduced the Thévenin and 
Norton equivalent circuits to simplify circuit analysis relative to 
one pair of terminals. But in some electrical systems, a signal is 
fed into one pair of terminals, processed by the system, and ex-
tracted at a second pair of terminals. We can simplify the analysis 
of such systems using two pairs of terminals, each representing 
the points, or ports, where signals are either input or output.

In this chapter, we present circuits that have one input and 
one output port. Figure 18.1 on page 722 illustrates the basic two-
port building block. We make several assumptions when using 
the two-port model in Fig. 18.1 to represent a circuit:

• There is no energy stored within the circuit.
• There are no independent sources within the circuit; depen-

dent sources, however, are permitted.
• The current into a given port equals the current out of that 

port; that is, i1 = i′1 and i2 = i′2.
• All external connections must be made to either the input 

port or the output port; no connections can be made be-
tween ports, that is, between terminals a and c, a and d, b 
and c, or b and d.

These assumptions limit the types of circuits that can be repre-
sented by a two-port model.

When we represent a circuit using a two-port model, we are 
only interested in the circuit’s terminal variables (i1, v1, i2, and 
v2). We cannot use the two-port model to find the currents and 
voltages inside the circuit. We have already used such terminal 
behavior when analyzing operational amplifier circuits. In this 
chapter, we formalize that approach by introducing the two-port 
parameters.

18.1 The Terminal Equations p. 722

18.2 The Two-Port Parameters p. 723

18.3  Analysis of the Terminated Two-Port 
 Circuit p. 731

18.4 Interconnected Two-Port Circuits p. 736

1 Be able to calculate any set of two-port  
parameters with any of the following 
methods:

• Circuit analysis;

• Measurements made on a circuit;

• Converting from another set of two- 
port parameters using Table 18.1.

2 Be able to analyze a terminated two- 
port circuit to find currents, voltages,  
impedances, and ratios of interest using 
Table 18.2.

3 Know how to analyze a cascade  
interconnection of two-port circuits.

CHAPTER OBJECTIVES



Practical Perspective
Characterizing an Unknown Circuit
Up to this point, whenever we wanted to create a model of 
a circuit, we needed to know what types of components 
make up the circuit, the values of those components, and 
the interconnections among those components. But what 
if we want to model a circuit that is inside a “black box,” 
where the components, their values, and their intercon-
nections are hidden?

In this chapter, we will discover that by making two 
simple measurements on such a black box, we can 
create a model consisting of just four values—the two-
port parameter model for the circuit. We can then use 

the two-port parameter model to predict the behavior 
of the circuit once we have attached a power source to 
one of its ports and a load to the other port.

In this example, suppose we have found a circuit, en-
closed in a casing, with two wires extending from each 
side, as shown below. The casing is labeled “amplifier,” 
and we want to determine whether or not it would be safe 
to use this amplifier to connect a cd player modeled as a 
2 V source to a speaker modeled as a 32 Ω resistor with 
a power rating of 100 W.

amplifier

HSNphotography/Shutterstock

Ensuper/Shutterstock
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18.1 The Terminal Equations
When we consider a circuit to be a two-port network, we want to relate 
the current and voltage at one port to the current and voltage at the other 
port. Figure 18.1 shows the reference polarities of the terminal voltages 
and the reference directions of the terminal currents. The references at 
each port are symmetric with respect to each other; that is, at each port 
the current is directed into the upper terminal, and at each port the volt-
age rises from the lower to the upper terminal.

The most general two-port network describes the circuit in the s do-
main. For purely resistive circuits, we can analyze the time-domain circuit 
to find its two-port network description. Two-port networks used to find 
sinusoidal steady-state responses can be constructed by finding the ap-
propriate s-domain expressions and then replacing s with jv, or by using 
phasor techniques directly. Here, we write all equations in the s domain; 
resistive networks and sinusoidal steady-state solutions become special 
cases. Figure 18.2 shows the basic building block in terms of the s-domain 
variables I1, V1, I2, and V2.

Only two of the four terminal variables are independent. Thus, for 
any circuit, once we specify two of the variables, we can find the two re-
maining unknowns. For example, knowing V1 and V2 and the circuit within 
the box, we can find I1 and I2. The two-port network description consists 
of two simultaneous equations. However, there are six different ways in 
which to combine the four variables:

 V1 = z11I1 +  z12I2,

  V2 = z21I1 + z22I2;  
(18.1)

 I1 = y11V1 + y12V2,

  I2 = y21V1 + y22V2; 
(18.2)

 V1 = a11V2 - a12I2,

  I1 = a21V2 - a22I2;  
(18.3)

 V2 = b11V1 - b12I1,

  I2 = b21V1 - b22I1;  
(18.4)

 V1 = h11I1 + h12V2,

  I2 = h21I1 + h22V2; 
(18.5)

 I1 = g11V1 + g12I2,

  V2 = g21V1 + g22I2.  
(18.6)

These six sets of equations may also be considered as three pairs of 
mutually inverse relations. The first set, Eqs. 18.1, gives the input and out-
put voltages as functions of the input and output currents. The second 
set, Eqs. 18.2, gives the inverse relationship, that is, the input and output 
currents as functions of the input and output voltages. Equations 18.3 and 
18.4 are inverse relations, as are Eqs. 18.5 and 18.6.

The coefficients of the current and/or voltage variables on the right-
hand side of Eqs. 18.1–18.6 are called the parameters of the two-port 
circuit. Thus, when using Eqs. 18.1, we refer to the z parameters of the 
circuit. Similarly, we refer to the y parameters, the a parameters, the b 
parameters, the h parameters, and the g parameters of the network.

CircuitInput
port

Output
port

1

2

v1

1

2

v2

i1
a

b

c

d
i91 i92

i2

Figure 18.1 ▲ The two-port building block.

s-domain
circuit

1

2

V1

1

2

V2

I1 I2

Figure 18.2 ▲ The s-domain two-port basic 
 building block.
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18.2 The Two-Port Parameters
We can determine the parameters for any circuit by computation or 
 measurement. The computations or measurements we need come from 
the parameter equations. For example, suppose we want to find the z 
 parameters for a circuit. From Eqs. 18.1,

 z11 =
V1

I1
`
I2 = 0

Ω, (18.7)

 z12 =
V1

I2
`
I1 = 0

Ω, (18.8)

 z21 =
V2

I1
`
I2 = 0

Ω, (18.9)

 z22 =
V2

I2
`
I1 = 0

Ω. (18.10)

Equations 18.7–18.10 reveal that the four z parameters can be described 
as follows:

• z11 is the impedance seen looking into port 1 when port 2 is open.
• z12 is a transfer impedance. It is the ratio of the port 1 voltage to the 

port 2 current when port 1 is open.
• z21 is a transfer impedance. It is the ratio of the port 2 voltage to the 

port 1 current when port 2 is open.
• z22 is the impedance seen looking into port 2 when port 1 is open.

Therefore, the impedance parameters may be either calculated or 
measured by first opening port 2 and determining the ratios V1>I1 and 
V2>I1, and then opening port 1 and determining the ratios V1>I2 and V2>I2.

Equations 18.7–18.10 show why the parameters in Eqs. 18.1 are called 
the z parameters. Each parameter is the ratio of a voltage to a current and 
therefore is an impedance with the dimension of ohms.

We use the same process to determine the remaining two-port pa-
rameters, which are either calculated or measured. Finding a two-port  
parameter requires that a port be either opened or shorted. The two-port 
parameters are either impedances, admittances, or dimensionless ratios. 
The dimensionless ratios are either ratios of two voltages or two currents. 
Equations 18.11–18.15 summarize these observations.

 y11 =
I1

V1
`
V2 = 0

S,    y12 =
I1

V2
`
V1 = 0

S,

  y21 =
I2

V1
`
V2 = 0

S,    y22 =
I2

V2
`
V1 = 0

S.  

(18.11)

 a11 =
V1

V2
`
I2 = 0

,    a12 = -
V1

I2
`
V2 = 0

Ω,

  a21 =
I1

V2
`
I2 = 0

S,    a22 = -
I1

I2
`
V2 = 0

.  

(18.12)

 b11 =
V2

V1
`
I1 = 0

,    b12 = -
V2

I1
`
V1 = 0

Ω,

  b21 =
I2

V1
`
I1 = 0

S,    b22 = -
I2

I1
`
V1 = 0

.  

(18.13)
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 h11 =
V1

I1
`
V2 = 0

Ω,    h12 =
V1

V2
`
I1 = 0

,

  h21 =
I2

I1
`
V2 = 0

,    h22 =
I2

V2
`
I1 = 0

S.  

(18.14)

 g11 =
I1

V1
`
I2 = 0

S,    g12 =
I1

I2
`
V1 = 0

,

  g21 =
V2

V1
`
I2 = 0

,    g22 =
V2

I2
`
V1 = 0

Ω.  

(18.15)

We also give descriptive names to the reciprocal sets of two-port pa-
rameters. The impedance and admittance parameters are grouped into the 
immittance parameters. An immittance is either an impedance or an ad-
mittance. The a and b parameters are called the transmission parameters 
because they describe the voltage and current at one end of the two-port 
network in terms of the voltage and current at the other end. The immit-
tance and transmission parameters are the natural choices for relating the 
two-port variables because they relate either voltage to current variables 
or input to output variables. In contrast, the h and g parameters relate an 
input voltage and output current to an output voltage and input current. 
Therefore, the h and g parameters are called hybrid parameters.

Example 18.1 calculates the z parameters for a resistive circuit by analyz-
ing the circuit. Example 18.2 illustrates how a set of measurements made at 
the terminals of a two-port circuit can be used to calculate the a parameters.

EXAMPLE 18.1 Finding the z Parameters of a Two-Port Circuit

Find the z parameters for the circuit shown in Fig. 18.3. Then,

V1 = Zeq(1) = 10 V

and

z11 =
V1

I1
`
I2 = 0

=
10
1

= 10 Ω.

Now use voltage division to find V2 for the circuit in 
Fig. 18.4, noting that the voltage across the series com-
bination of the 5 Ω and 15 Ω resistors is V1 = 10 V:

V2 =
15

15 + 5
 V1 = 7.5 V,

so

z21 =
V2

I1
`
I2 = 0

=
7.5
1

= 7.5 Ω.

1

2

V1 20 V

5 V

15 V

1

2

V2

I2I1

Figure 18.3 ▲ The circuit for Example 18.1.

2 2

V1 V2

I2 5 0

1 1

5 V

20 V1 A 15 V

Figure 18.4 ▲ The circuit used to find z11 and z21 
for the circuit in Fig. 18.3.

Solution
The circuit is purely resistive, so the s-domain cir-
cuit is also purely resistive. There are many ways to 
find the two-port parameter values. Here, we note 
that with port 2 open, that is, I2 = 0, we can apply a 
1 A current source at port 1 and use circuit analysis 
to find V1 and V2. With those two voltages, we can 
find z11 and z21. The circuit is shown in Fig. 18.4.

To find V1 for the circuit in Fig. 18.4, find 
the equivalent resistance seen by the 1 A current 
source:

Zeq = 20 } (5 + 15) = 10 Ω.
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22

V2V1

I1 5 0

11

5 V

15 V 1 A20 V

Figure 18.5 ▲ The circuit used to find z12 and z22 
for the circuit in Fig. 18.3.

Next we leave port 1 open, that is, I1 = 0, 
apply a 1 A current source at port 2, and use cir-
cuit  analysis to find V1 and V2. With those two volt-
ages, we can find z22 and z12. The circuit is shown in 
Fig. 18.5. To find V2 for the circuit in Fig. 18.5, find 
the  equivalent resistance seen by the 1 A current 
source:

Zeq = 15 } (5 + 20) = 9.375 Ω.

Then,

V2 = Zeq(1) = 9.375 V

and

z22 =
V2

I2
`
I1 = 0

=
9.375

1
= 9.375 Ω.

Now use voltage division to find V1 for the cir-
cuit in Fig. 18.5, noting that the voltage across the 

 series combination of the 5 Ω  and 20 Ω  resistors is 
V2 = 9.375 V:

V1 =
20

20 + 5
 V2 = 7.5 V,

so

z12 =
V1

I2
`
I1 = 0

=
7.5
1

= 7.5 Ω.

EXAMPLE 18.2 Finding the a Parameters from Measurements

A two-port circuit is operating in the sinu-
soidal steady state. With port 2 open, a volt-
age of 150 cos 4000t V is applied to port 1. 
Two measurements are made: the current into 
port 1 is 25 cos 14000t - 45°2  A, and the volt-
age across port 2 is 100 cos 14000t + 15°2  V. 
Then, port 2 is short-circuited, and a voltage 
of 30 cos 4000t V is applied to port 1. Two more 
measurements are made: the current into port 1 is 
1.5 cos 14000t + 30°2  A, and the current into port 
2 is 0.25 cos (4000t +  150°) A. Find the a param-
eters that describe the sinusoidal steady-state 
 behavior of the circuit.

Solution
Phasor-transforming the first set of measurements 
gives

 V1 = 150 l0° V,  I1 = 25 l-45° A,

 V2 = 100 l 15° V,  I2 = 0 A.

From Eqs. 18.12,

 a11 =
V1

V2
 `

I2 = 0
=

150l0°

100 l 15°
= 1.5 l-15°,

 a21 =
I1

V2
`
I2 = 0

=
25l-45°

100l 15°
= 0.25 l-60° S.

Phasor-transforming the second set of mea-
surements gives

 V1 = 30l0° V,  I1 = 1.5 l 30° A,

 V2 = 0 V,  I2 = 0.25 l 150° A.

Therefore

 a12 = -
V1

I2
`
V2 = 0

=
-30 l0°

0.25 l 150°
= 120 l 30° Ω,

 a21 = -
I1

I2
`
V2 = 0

=
-1.5 l 30°

0.25 l 150°
= 6 l 60°.
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Relationships Among the Two-Port Parameters
All six sets of two-port parameter equations relate to the same variables. 
Therefore, every set of two-port parameters must be related to every 
other set of these parameters. In other words, if we know one set of two-
port parameters, we can derive all the other sets from the known set. The 
equations used to calculate any single two-port parameter from any set of 
two-port parameters are given in Table 18.1.

We do not derive all the relationships listed in Table 18.1 because 
of the amount of algebra involved. To illustrate the general process, we 
derive the relationships between the z and y parameters and between the 
z and a parameters. To find the z parameters as functions of the y pa-
rameters, begin by solving Eqs. 18.2 for V1 and V2. We then compare the 
coefficients of I1 and I2 in the resulting expressions to the coefficients of I1 
and I2 in Eqs. 18.1. From Eqs. 18.2,

 V1 =
` I1 y12

I2 y22
`

` y11 y12

y21 y22
`

=
y22

∆y
 I1 -

y12

∆y
 I2,

 V2 =
` y11 I1

y21 I2
`

∆y
= -

y21

∆y
 I1 +

y11

∆y
 I2.

Comparing these expressions for V1 and V2 with Eqs. 18.1 shows

 z11 =
y22

∆y
,

 z12 = -
y12

∆y
,

 z21 = -
y21

∆y
,

 z22 =
y11

∆y
.

Objective 1—Be able to calculate any set of two-port parameters

 18.1 Find the y parameters for the circuit in Fig. 18.3.

Answer: y11 = 0.25 S,

y12 = y21 = -0.2 S,

y22 =
4
15

  S.

 18.2 Find the g and h parameters for the circuit in 
Fig. 18.3.

Answer:  g11 = 0.1 S; g12 = -0.75; g21 = 0.75; 
g22 = 3.75 Ω; h11 = 4 Ω; h12 = 0.8; 
h21 = -0.8; h22 = 0.1067 S.

 18.3 The following measurements were made on a 
two-port resistive circuit. With 50 mV applied to 
port 1 and port 2 open, the current into port 1 is 
5 mA, and the voltage across port 2 is 200 mV. 
With port 1 short-circuited and 10 mV applied 
to port 2, the current into port 1 is 2 mA, and the 
current into port 2 is 0.5 mA. Find the g parame-
ters of the network.

Answer: g11 = 0.1 mS;

 g12 = 4;

 g21 = 4;

 g22 = 20 kΩ.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 18.2, 18.4, and 18.10.
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TABLE 18.1 Parameter Conversion Table

z11 =
y22

∆y
=

a11

a21
=

b22

b21
=

∆h
h22

=
1

g11
b21 =

1
z12

= -
∆y

y12
=

a21

∆a
=

h22

h12
= -

g11

g12

z12 = -
y12

∆y
=

∆a
a21

=
1

b21
=

h12

h22
= -

g12

g11
b22 =

z11

z12
=

y22

y12
=

a11

∆a
=

∆h
h12

= -
1

g12

z21 =
-y21

∆y
=

1
a21

=
∆b
b21

= -
h21

h22
=

g21

g11
h11 =

∆z
z22

=
1

y11
=

a12

a22
=

b12

b11
=

g22

∆g

z22 =
y11

∆y
=

a22

a21
=

b11

b21
=

1
h22

=
∆g

g11
h12 =

z12

z22
= -

y12

y11
=

∆a
a22

=
1

b11
= -

g12

∆g

y11 =
z22

∆z
=

a22

a12
=

b11

b12
=

1
h11

=
∆g

g22
h21 = -

z21

z22
=

y21

y11
= -

1
a22

= -
∆b
b11

= -
g21

∆g

y12 = -
z12

∆z
= -

∆a
a12

= -
1

b12
= -

h12

h11
=

g12

g22
h22 =

1
z22

=
∆y

y11
=

a21

a22
=

b21

b11
=

g11

∆g

y21 = -
z21

∆z
= -

1
a12

= -
∆b
b12

=
h21

h11
= -

g21

g22
g11 =

1
z11

=
∆y

y22
=

a21

a11
=

b21

b22
=

h22

∆h

y22 =
z11

∆z
=

a11

a12
=

b22

b12
=

∆h
h11

=
1

g22
g12 = -

z12

z11
=

y12

y22
= -

∆a
a11

= -
1

b22
= -

h12

∆h

a11 =
z11

z21
= -

y22

y21
=

b22

∆b
= -

∆h
h21

=
1

g21
g21 =

z21

z11
= -

y21

y22
=

1
a11

=
∆b
b22

= -
h21

∆h

a12 =
∆z
z21

= -
1

y21
=

b12

∆b
= -

h11

h21
=

g22

g21
g22 =

∆z
z11

=
1

y22
=

a12

a11
=

b12

b22
=

h11

∆h

a21 =
1

z21
= -

∆y

y21
=

b21

∆b
= -

h22

h21
=

g11

g21

∆z = z11z22 - z12z21

∆y = y11 y22 - y12 y21

∆a = a11a22 - a12a21

∆b = b11b22 - b12b21

∆h = h11h22 - h12h21

∆g = g11g22 - g12g21

a22 =
z22

z21
= -

y11

y21
=

b11

∆b
= -

1
h21

=
∆g

g21

b11 =
z22

z12
= -

y11

y12
=

a22

∆a
=

1
h12

= -
∆g

g12

b12 =
∆z
z12

= -
1

y12
=

a12

∆a
=

h11

h12
= -

g22

g12

To find the z parameters as functions of the a parameters, we re-
arrange Eqs. 18.3 in the form of Eqs. 18.1 and then compare coefficients. 
From the second equation in Eqs. 18.3,

V2 =
1

a21
 I1 +

a22

a21
 I2.

Therefore, substituting this expression for V2 into the first equation of 
Eqs. 18.3 yields

V1 =
a11

a21
 I1 + a a11a22

a21
- a12bI2.

Comparing these expressions for V1 and V2 with Eqs. 18.1 gives

 z11 =
a11

a21
,

 z12 =
∆a
a21

.

 z21 =
1

a21
,

 z22 =
a22

a21
.

Example 18.3 illustrates the usefulness of the parameter conversion table.
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EXAMPLE 18.3 Finding h Parameters from Measurements and Table 18.1

Two sets of measurements are made on a two-
port resistive circuit. The first set is made with 
port 2 open, and the second set is made with port 2 
short-circuited. The results are as follows:

Port 2 Open Port 2 Short-Circuited

V1 = 10 mV V1 = 24 mV

I1 = 10 mA I1 = 20 mA

V2 = -40 V I2 = 1 mA

Find the h parameters of the circuit.

Solution
We can find h11 and h21 directly from the short- 
circuit test:

 h11 =
V1

I1
`
V2 = 0

 =
24 * 10-3

20 * 10-6 = 1.2 kΩ,

 h21 =
I2

I1
`
V2 = 0

 =
10-3

20 * 10-6 = 50.

The parameters h12 and h22 cannot be obtained di-
rectly from the open- circuit test. However, a check of  
Eqs. 18.7–18.15 indicates that the four a parameters 
can be derived from the test data. Therefore, h12 and 
h22 can be obtained through the conversion table. 
 Specifically,

 h12 =
∆a
a22

,

 h22 =
a21

a22
.

The a parameters are

 a11 =
V1

V2
`
I2 = 0

=
10 * 10-3

-40
= -0.25 * 10-3,

 a21 =
I1

V2
`
I2 = 0

=
10 * 10-6

-40
= -0.25 * 10-6 S,

 a12 = -
V1

I2
`
V2 = 0

= -
24 * 10-3

10-3 = -24 Ω,

 a22 = -
I1

I2
`
V2 = 0

= -
20 * 10-6

10-3 = -20 * 10-3.

The numerical value of ∆a is

 ∆a = a11a22 - a12a21

 = 5 * 10-6 - 6 * 10-6 = -10-6.

Thus

 h12 =
∆a
a22

 =
-10-6

-20 * 10-3 = 5 * 10-5,

 h22 =
a21

a22

 =
-0.25 * 10-6

-20 * 10-3 = 12.5 mS.

Objective 1—Be able to calculate any set of two-port parameters

 18.4 The following measurements were made on 
a two-port resistive circuit: With port 1 open, 
V2 = 15 V, V1 = 10 V, and I2 = 30 A; with 
port 1 short-circuited, V2 = 10 V, I2 = 4 A, and 
I1 = -5 A. Calculate the z parameters.

Answer:  z11 = 14>152  Ω;

z12 = 11>32  Ω;

z21 = -1.6 Ω;

z22 = 0.5 Ω.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 18.13.
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Reciprocal Two-Port Circuits
A two-port circuit is reciprocal if interchanging an ideal voltage source 
at one port with an ideal ammeter at the other port produces the same 
ammeter reading. A two-port circuit is also reciprocal if interchanging an 
ideal current source at one port with an ideal voltmeter at the other port 
produces the same voltmeter reading. Relationships exist among recipro-
cal two-port parameters, as shown in Table 18.2. For a reciprocal two-port 
circuit, only three calculations or measurements are needed to determine 
a set of parameters.

A reciprocal two-port circuit is symmetric if its ports can be inter-
changed without altering terminal current and voltage values. Figure 18.6 
shows four examples of symmetric two-port circuits. In these circuits, ad-
ditional relationships exist among the two-port parameters, as shown in 
Table 18.2. If a circuit is both reciprocal and symmetric, then only two 
calculations or measurements are necessary to determine all the two-port 
parameters. Example 18.4 determines whether a circuit is reciprocal and 
symmetric.

TABLE 18.2  Two-Port Parameter 
Relationships for  
Reciprocal Circuits

Reciprocal Circuits
z12 = z21

y12 = y21

a11a22 - a12a21 = ∆a = 1

b11b22 - b12b21 = ∆b = 1

h12 = -h21

g12 = -g21

Reciprocal and  Symmetric Circuits

z11 = z22

y11 = y22

a11 = a22

b11 = b22

h11h22 - h12h21 = ∆h = 1

g11 g22 - g12 g21 = ∆g = 1

Za Za

Zb

Zc

Zb

Zb

Zb

ZbZb

Za

Za

Za

Za

Za

V2V1

I2I1

I2I1

I2I1

I2I1

(a)

(d)(c)

(b)

1

2

1

2

V2V1

1

2

1

2

V1

1

2

V2

1

2

V2V1

1

2

1

2

Figure 18.6 ▲ Four examples of symmetric two-port circuits. (a) A symmetric tee.  
(b) A symmetric pi. (c) A symmetric bridged tee. (d) A symmetric lattice.

EXAMPLE 18.4 Determining Whether a Circuit Is Reciprocal and Symmetric

Consider the resistive circuit shown in Fig. 18.7.

a c

d d

60 V

20 V30 V

10 V

b

2

V1

I1 I2

1

2

V2

1

Figure 18.7 ▲ The circuit for Example 18.4.

a) Attach a 15 V source to the terminals a and 
d and calculate the reading on an ammeter 
 attached between terminals c and d. Then 
 attach a 15 V source to the terminals c and d and 
 calculate the reading on an ammeter  attached 
between terminals a and d. Is the circuit  
 reciprocal?

b) Find the y parameters for the circuit and deter-
mine whether or not it is symmetric.
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remembering that the ideal ammeter behaves 
like a short circuit. Then,

Vbd

60
+

Vbd

30
+

Vbd - 15
20

= 0,

so Vbd = 7.5 V. The ammeter current I is the 
sum of the current in the 30 Ω resistor and the 
current in the 20 Ω resistor:

I =
7.5
30

+
15
10

= 1.75 A.

Since both ammeter readings are the same, the 
circuit in Fig. 18.7 is reciprocal.

b) We can use the analysis results for the circuit in 
Fig. 18.8 to find two of the y parameters. Attaching 
the ammeter between nodes c and d is the same 
as setting V2 = 0 in Fig. 18.7. Also, I2 in Fig. 18.7 
equals -I in Fig. 18.8, and I1 in Fig. 18.7 is the sum 
of the currents in the 30 Ω and 20 Ω resistors in 
Fig. 18.8. Therefore,

 I2 = -I = -1.75 A,

 I1 =
15 - 5

30
+

15
10

=
55
30

  A,

so

 y11 =
I1

V1
`
V2 = 0

=
55>30

15
=

11
99

  S,

 y21 =
I2

V1
`
V2 = 0

=
-1.75

15
= -

7
60

  S.

We have already shown that the circuit in Fig. 18.7 
is reciprocal, so y12 = y21 = -7>60 S.

We can use the analysis results for the circuit 
in Fig. 18.9 to find y22, because attaching the am-
meter between nodes a and d is the same as setting 
V1 = 0 in Fig. 18.7. Also, I1 in Fig. 18.7 is the sum  
of the currents in the 10 Ω and 20 Ω resistors in 
Fig. 18.9. Therefore,

I1 =
15 - 7.5

20
+

15
10

= 1.875 A

so

y22 =
I2

V2
`
V1 = 0

=
1.875

15
= 0.125 S.

Note that y11 ≠ y22, so the circuit in Fig. 18.7 is 
not symmetric.

15 V

a c

d d

Ammeter 60 V

20 V30 V

10 V

b

1

2
I

Figure 18.9 ▲ The circuit shown in Fig. 18.7, with the  voltage 
source and ammeter interchanged.

Solution

a) A 15 V source is attached between nodes a and 
d, and an ammeter is attached between termi-
nals c and d. The resulting circuit is shown in 
Fig. 18.8. To find the ammeter current, begin by 
writing a KCL equation at node b to determine 
the voltage between nodes b and d, Vbd. Re-
member that an ideal ammeter behaves like a 
short circuit, so

1

2
15 V

a c

d d

I Ammeter60 V

20 V30 V

10 V

b

Figure 18.8 ▲ The circuit in Fig. 18.7, with a voltage source 
and an ammeter attached.

Vbd

60
+

Vbd - 15
30

+
Vbd

20
= 0,

and Vbd = 5 V. Therefore, the current I in the 
ammeter is the sum of the current in the 10 Ω 
resistor and the current in the 20 Ω resistor:

I =
5
20

+
15
10

= 1.75 A.

Now interchange the voltage source and am-
meter as shown in Fig. 18.9. Again, we write a KCL 
equation at node b to determine the voltage Vbd, 
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18.3 Analysis of the Terminated  
Two-Port Circuit

A terminated two-port circuit usually has a source attached at port 1 and 
a load attached at port 2, as shown in the s-domain circuit of Fig. 18.10. 
In this circuit, Zg is the internal source impedance, Vg the internal source 
voltage, and ZL is the load impedance. To analyze this circuit, we find the 
terminal currents and voltages as functions of the two-port parameters, 
Vg, Zg, and ZL.

Six characteristics of the terminated two-port circuit define its termi-
nal behavior:

• the input impedance Zin = V1>I1, or the admittance Yin = I1>V1;
• the output current I2;
• the Thévenin voltage and impedance (VTh, ZTh) with respect to port 2;
• the current gain I2>I1;
• the voltage gain V2>V1;
• the voltage gain V2>Vg.

The Six Characteristics in Terms of the z Parameters
To illustrate how these six characteristics are derived, we find their ex-
pressions using the z parameters of the two-port portion of the circuit. 
Table 18.3 summarizes the expressions involving the y, a, b, h, and g 
parameters.

We find the expression for each characteristic using one set of 
two-port equations, along with the two constraint equations im-
posed by the source applied at port 1 and the load applied at port 2.  
Using the z parameters, the circuit in Fig. 18.10 is described by the 
following four equations:

  V1 = z11I1 + z12I2, (18.16)

  V2 = z21I1 + z22I2, (18.17)

  V1 = Vg - I1Zg,  (18.18)

  V2 = -I2ZL.  (18.19)

Objective 1—Be able to calculate any set of two-port parameters

 18.5 The following measurements were made on a 
resistive two-port network that is symmetric 
and reciprocal: With port 2 open, V1 = 95 V 
and I1 = 5 A; with a short circuit across port 2, 

V1 = 11.52 V and I2 = -2.72 A. Calculate the 
z parameters of the two-port network.

Answer: z11 = z22 = 19 Ω, z12 = z21 = 17 Ω.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 18.14.

1

2

Zg

ZLVg

Two-port model
of a

network

I2I1

V1

1

2

V2

1

2

Figure 18.10 ▲ A terminated two-port model.
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TABLE 18.3 Terminated Two-Port Equations

z Parameters y Parameters

Zin = z11-  
z12z21

z22 + ZL
Yin = y11 -  

y12y21ZL

1 + y22 ZL

I2 =
-z21Vg

1z11 + Zg2 1z22 + ZL2 - z12z21
I2 =

y21Vg

1 + y22ZL + y11Zg + ∆yZgZL

VTh =
z21

z11 + Zg
 Vg VTh =

-y21Vg

y22 + ∆yZg

ZTh = z22-  
z12z21

z11 + Zg
ZTh =

1 + y11Zg

y22 + ∆yZg

I2

I1
=

-z21

z22 + ZL

I2

I1
=

y21

y11 + ∆yZL

V2

V1
=

z21ZL

z11ZL + ∆z

V2

V1
=

-y21ZL

1 + y22ZL

V2

Vg
=

z21ZL

1z11 + Zg2 1z22 + ZL2 - z12z21

V2

Vg
=

y21ZL

y12 y21 Zg ZL - 11 + y11Zg2 11 + y22ZL2

a Parameters b Parameters

Zin =
a11ZL + a12

a21ZL + a22
Zin =

b22ZL + b12

b21ZL + b11

I2 =
-Vg

a11ZL + a12 + a21Zg ZL + a22 Zg
I2 =

-Vg∆b

b11Zg + b21Zg ZL + b22 ZL + b12

VTh =
Vg

a11 +  a21Zg
VTh =

Vg∆b

b22 +  b21Zg

ZTh =
a12 + a22Zg

a11 + a21Zg
ZTh =

b11Zg + b12

b21Zg + b22

I2

I1
=

-1
a21ZL +  a22

I2

I1
=

- ∆b
b11 +  b21ZL

V2

V1
=

ZL

a11ZL + a12

V2

V1
=

∆bZL

b12 + b22ZL

V2

Vg
=

ZL

1a11 + a21Zg2ZL + a12 +  a22Zg

V2

Vg
=

∆bZL

b12 + b11Zg +  b22ZL + b21Zg ZL

h Parameters g Parameters

Zin = h11 -
h12h21ZL

1 + h22ZL

Yin = g11 -
g12g21

g22 + ZL

I2 =
h21Vg

11 + h22ZL2 1h11 +  Zg2 - h12h21ZL
I2 =

-g21Vg

11 + g11Zg2 1g22 + ZL2 - g12g21Zg

VTh =
-h21Vg

h22Zg + ∆h
VTh =

g21Vg

1 + g11Zg

ZTh =
Zg +  h11

h22Zg +  ∆h
ZTh = g22 -

g12g21Zg

1 + g11Zg

I2

I1
=

h21

1 + h22ZL

I2

I1
=

-g21

g11ZL + ∆g

V2

V1
=

-h21ZL

∆hZL +  h11

V2

V1
=

g21ZL

g22 + ZL

V2

Vg
=

-h21ZL

1h11 + Zg2 11 + h22ZL2 - h12h21ZL

V2

Vg
=

g21ZL

11 + g11Zg2 1g22 + ZL2 - g12g21Zg
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Let’s find the impedance seen looking into port 1, that is, Zin = V1>I1.  
In Eq. 18.17, replace V2 with -I2ZL and solve the resulting expression 
for I2:

 I2 =
-z21I1

ZL + z22
. (18.20)

Then substitute this equation into Eq. 18.16 and solve for Zin:

Zin = z11-  
z12z21

z22 + ZL
.

To find the output current I2, we first solve Eq. 18.16 for I1 after re-
placing V1 with the right-hand side of Eq. 18.18. The result is

 I1 =
Vg - z12I2

z11 + Zg
. (18.21)

We now substitute Eq. 18.21 into Eq. 18.20 and solve the resulting equa-
tion for I2:

I2 =
-z21Vg

(z11 + Zg)(z22 + ZL) - z12z21
.

The Thévenin voltage with respect to port 2 equals V2 when I2 = 0. 
With I2 = 0, Eq. 18.17 reduces to

 V2 0 I2 = 0 = z21I1. (18.22)

But when I2 = 0, Eq. 18.21 becomes I1 = Vg> 1z11 + Zg2 . Substituting 
this expression for I1 into Eq. 18.22 yields the open-circuit value of V2:

V2 0 I2 = 0 = VTh =
z21

Zg + z11
 Vg.

The Thévenin, or output, impedance is the ratio V2>I2 when Vg is re-
placed by a short circuit. When Vg is zero, Eq. 18.18 reduces to

 V1 = -I1Zg. (18.23)

Substituting Eq. 18.23 into Eq. 18.16 and solving for I1 gives

I1 =
-z12I2

z11 + Zg
.

Now use this expression to replace I1 in Eq. 18.17, resulting in

V2

I2
`
Vg = 0

= ZTh = z22 -
z12z21

z11 + Zg
.

The current gain I2>I1 comes directly from Eq. 18.20:

I2

I1
=

-z21

ZL + z22
.
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To derive the expression for the voltage gain V2>V1, we start by re-
placing I2 in Eq. 18.17 with its value from Eq. 18.19; thus

 V2 = z21I1 + z22a
-V2

ZL
b . (18.24)

Next, solve Eq. 18.16 for I1 as a function of V1 and V2:

z11I1 = V1 - z12a
-V2

ZL
b

or

 I1 =
V1

z11
+

z12V2

z11ZL
. (18.25)

Finally, replace I1 in Eq. 18.24 with Eq. 18.25 and solve the resulting 
 expression for V2>V1:

 
V2

V1
=

z21ZL

z11ZL + z11z22 - z12z21

 =
z21ZL

z11ZL + ∆z
.

To derive the voltage ratio V2>Vg, we first combine Eqs. 18.16, 18.18, 
and 18.19 to find I1 as a function of V2 and Vg:

 I1 =
z12V2

ZL(z11 + Zg)
+

Vg

z11 + Zg
. (18.26)

Then, starting with Eq. 18.17, use Eq. 18.26 to substitute for I1 and Eq. 18.19 
to substitute for I2. The result is an expression involving only V2 and Vg:

V2 =
z21z12V2

ZL(z11 + Zg)
+

z21Vg

z11 + Zg
-

z22

ZL
 V2,

which we can rearrange to get the desired voltage ratio:

V2

Vg
=

z21ZL

(z11 + Zg)(z22 + ZL) - z12z21
.

Example 18.5 illustrates the usefulness of the relationships listed in 
Table 18.3.
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EXAMPLE 18.5 Analyzing a Terminated Two-Port Circuit

We describe the two-port circuit shown in Fig. 18.11 
using its b parameters, whose values are

 b11 = -20,  b12 = -3000 Ω,

 b21 = -2 mS,  b22 = -0.2.

a) Find the phasor voltage V2.

b) Find the average power delivered to the 5 kΩ 
load.

c) Find the average power delivered to the input 
port.

d) Find the load impedance for maximum average 
power transfer.

e) Find the maximum average power delivered to 
the load in (d).

Then,

V2 = a 10
19

b500 = 263.16l0° V.

b) The average power delivered to the 5000 Ω  
load is

P2 =
0V2 0 2

2(5000)
=

263.162

2(5000)
= 6.93 W.

c) To find the average power delivered to the input 
port, we first find the input impedance Zin. From 
Table 18.3,

 Zin =
b22ZL + b12

b21ZL + b11

 =
1 -0.22(5000) - 3000

-2 * 10-3(5000) - 20

 =
400
3

= 133.33 Ω.

Now I1 follows directly:

I1 =
Vg

Zg + Zin
=

500
500 + 133.33

= 789.47 mA.

The average power delivered to the input port is

P1 =
0 I1 0 2 Zin

2
=

10.789472 21133.332
2

= 41.55 W.

d) The load impedance for maximum power trans-
fer equals the conjugate of the Thévenin imped-
ance seen looking into port 2. From Table 18.3,

 ZTh =
b11Zg + b12

b21Zg + b22

 =
1 -202(500) - 3000

1 -2 * 10-32(500) - 0.2

 =
13,000

1.2
= 10,833.33 Ω.

Therefore ZL = ZTh
* = 10,833.33 Ω.

1

2

500 V

5 kVV1 V2

I1 I2

[b]

2

1

2

1

500  08 V

Figure 18.11 ▲ The circuit for Example 18.5.

Solution

a) To find V2, we have two choices from the entries in Ta-
ble 18.3. We could find I2 and then find V2 from the 
relationship V2 = -I2ZL, or we could find the voltage 
gain V2>Vg and calculate V2 from the gain. Let’s use 
the latter approach. For the b-parameter values given, 
we have

 ∆b = b11b22 - b12b21

 = 1 -202 1 -0.22 - 1 -30002 1 -0.0022 = -2.

From Table 18.3,

 
V2

Vg
=

∆bZL

b12 + b11Zg + b22ZL + b21ZgZL

 =
1-22(5000)

-3000 + 1-202500 + 1-0.225000 + 3-0.002(500)(5000)4

 =
10
19

.
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e) To find the maximum average power delivered to 
ZL, we first find V2 from the voltage-gain expres-
sion V2>Vg. When ZL is 10,833.33 Ω, this gain is

 
V2

Vg
=

∆bZL

b12 + b11Zg + b22ZL + b21ZgZL

 =
1 -22 110,833.332

1 -30002 + 1 -202(500) + 1 -0.22 110,833.332 + 1 -0.0022(500)110,833.332

 = 0.8333.

Thus

V2 = 10.83332(500) = 416.67 V,

and

 PL1maximum2 =
1
2

 
416.672

10,833.33

 = 8.01 W.

Objective 2—Be able to analyze a terminated two-port circuit to find currents, voltages, and ratios of interest

 18.6 The a parameters of the two-port network 
shown are a11 = 5 * 10-4, a12 = 10 Ω, 
a21 = 10-6 S, and a22 = -3 * 10-2. The net-
work is driven by a sinusoidal voltage source 
having a maximum amplitude of 50 mV and an 
internal impedance of 100 + j0 Ω. It is termi-
nated in a resistive load of 5 kΩ.
a) Calculate the average power delivered to the 

load resistor.
b) Calculate the load resistance for maximum 

average power.
c) Calculate the maximum average power de-

livered to the resistor in (b).

1

2

Zg

ZLVg

Two-port model
of a

network

I2I1

V1

1

2

V2

1

2

Answer: (a) 62.5 mW;
(b) 70>6 kΩ;
(c) 74.4 mW.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 18.29, 18.31, and 18.33.

18.4 Interconnected Two-Port Circuits
Synthesizing a large, complex system is usually made easier by first 
designing subsections of the system and then interconnecting the sub-
sections. If the subsections are modeled by two-port circuits, we will 
need to analyze interconnected two-port circuits to complete the sys-
tem design.

Two-port subsystem circuits can be interconnected in five ways: (1) in 
cascade, (2) in series, (3) in parallel, (4) in series-parallel, and (5) in parallel- 
series. Figure 18.12 depicts these five basic interconnections.
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(a)

1

2

1

2

1 1

2 2

1 2

(b) (c)

(d) (e)

Figure 18.12 ▲ The five basic interconnections of two-port circuits. (a) Cascade.  
(b) Series. (c) Parallel. (d) Series-parallel. (e) Parallel-series.

We analyze and illustrate only the cascade connection in this section. 
The cascade connection is important because it occurs frequently in the 
modeling of large systems. The a parameters are best suited for describing 
the cascade connection. We analyze the cascade connection using the cir-
cuit shown in Fig. 18.13, where a single prime denotes a parameters in the 
first circuit and a double prime denotes a parameters in the second circuit. 
The output voltage and current of the first circuit are labeled V′2 and I′2, 
and the input voltage and current of the second circuit are labeled V′1 and 
I′1. The problem is to derive the a-parameter equations that relate V2 and 
I2 to V1 and I1. In other words, we want to construct the equations

  V1 = a11V2 - a12I2, 
(18.27)

 I1 = a21V2 - a22I2,

where the a parameters are given explicitly in terms of the a parameters of 
the individual circuits.

We begin the derivation by noting from Fig. 18.13 that

  V1 = a′11V′2 - a′12I′2, 
(18.28)

 I1 = a′21V′2 - a′22I′2.

The interconnection means that V′2 = V′1 and I′2 = -I′1. Substituting 
these constraints into Eqs. 18.28 yields

  V1 = a′11V′1 + a′12I′1, 
(18.29)

 I1 = a′21V′1 + a′22I′1.

Circuit 1 Circuit 2

a911

a921

a912

a922

a011

a021

a012

a022

1

2

1

2

1

2

V1 V91V92

1

2

V2

I2I1 I92 I91

Figure 18.13 ▲ A cascade connection.
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The voltage V′1 and the current I′1 are related to V2 and I2 through 
the a parameters of the second circuit:

  V′1 = a″11V2 - a″12I2, 
(18.30)

 I′1 = a″21V2 - a″22I2.

We substitute Eqs. 18.30 into Eqs. 18.29 to generate the relationships be-
tween V1, I1 and V2, I2:

 V1 = (a′11a″11 + a′12a″21)V2 - (a′11a″12 + a′12a″22)I2,

 I1 = (a′21a″11 + a′22a″21)V2 - (a′21a″12 + a′22a″22)I2.

By comparing these expressions for V1 and I1 to Eqs. 18.27, we get the 
desired expressions for the a parameters of the interconnected networks, 
namely,

  a11 = a′11a″11 + a′12a″21, (18.31)

  a12 = a′11a″12 + a′12a″22, (18.32)

  a21 = a′21a″11 + a′22a″21, (18.33)

  a22 = a′21a″12 + a′22a″22. (18.34)

If more than two units are connected in cascade, the a parameters of 
the equivalent two-port circuit can be found by successively reducing the 
original set of two-port circuits one pair at a time.

Example 18.6 illustrates how to use Eqs. 18.31–18.34 to analyze a cas-
cade connection with two amplifier circuits.

EXAMPLE 18.6 Analyzing Cascaded Two-Port Circuits

Two identical amplifiers are connected in cascade, 
as shown in Fig. 18.14. Each amplifier is described 
using its h parameters. The values are h11 = 1000 Ω, 
h12 = 0.0015, h21 = 100, and h22 = 100 mS. Find 
the voltage gain V2>Vg.

1

2

500 V

10 kV

1

2

Vg V2A1 A2

Figure 18.14 ▲ The circuit for Example 18.6.

Solution
The first step in finding V2>Vg is to convert from 
h parameters to a parameters. The amplifiers are 

identical, so one set of a parameters describes the 
amplifiers:

 a′11 =
- ∆h
h21

=
+0.05
100

= 5 * 10-4,

 a′12 =
-h11

h21
=

-1000
100

= -10 Ω,

 a′21 =
-h22

h21
=

-100 * 10-6

100
= -10-6 S,

 a′22 =
-1
h21

=
-1
100

= -10-2.

Next we use Eqs. 18.31–18.34 to compute the a pa-
rameters of the cascaded amplifiers:

 a11 = a′11a′11 +  a′12a′21

 = 25 * 10-8 + 1 -102 1 -10-62
 = 10.25 * 10-6,
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 a12 = a′11a′12 + a′12a′22

 = 15 * 10-42 1 -102 + 1 -102 1 -10-22
 = 0.095 Ω,

 a21 = a′21a′11 +  a′22a′21

 = 1 -10-62 15 * 10-42 + 1 -0.012 1 -10-62
 = 9.5 * 10-9 S,

 a22 = a′21a′12 + a′22a′22

 = 1 -10-62 1 -102 + 1 -10-22 2

 = 1.1 * 10-4.

From Table 18.3,

 
V2

Vg
=

ZL

1a11 + a21Zg2ZL + a12 + a22Zg

 =
104

310.25 * 10-6 + 9.5 * 10-9(500)4104 + 0.095 + 1.1 * 10-4(500)

 =
104

0.15 + 0.095 + 0.055

 =
105

3

 = 33,333.33.

Thus, an input signal of 150 mV is amplified to an output 
 signal of 5 V.

Objective 3—Know how to analyze a cascade interconnection of two-port circuits

 18.7 Each element in the symmetric bridged-tee 
circuit shown is a 15 Ω resistor. Two of these 
bridged tees are connected in cascade between 
a dc voltage source and a resistive load. The  
dc voltage source has a no load voltage of  
100 V and an internal resistance of 8 Ω. The 
load resistor is adjusted until maximum power 
is delivered to the load. Calculate (a) the load 
resistance, (b) the load voltage, and (c) the load 
power.

Zc

Zb

Za Za

I2I1

V2V1

1

2

1

2

Answer: (a) 14.44 Ω;
(b) 16 V;
(c) 17.73 W.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 18.38.

Practical Perspective
Characterizing an Unknown Circuit
We make the following measurements to find the h parameters for our 
“black box” amplifier:

• With Port 1 open, apply 50 V at Port 2. Measure the voltage at Port 1 
and the current at Port 2:

V1 = 50 mV; I2 = 2.5 A.

• With Port 2 short-circuited, apply 2.5 mA at Port 1. Measure the volt-
age at Port 1 and the current at Port 2:

V1 = 1.25 V; I2 = 3.75 A.
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Calculate the h parameters according to Eqs. 18.14:

 h11 = ` V1

I1
`
V2 = 0

=
1.25

0.0025
= 500 Ω;  h12 = ` V1

V2
`
I1 = 0

=
0.05
50

= 10-3;

 h21 = ` I2

I1
`
V2 = 0

=
3.75

0.0025
= 1500;  h22 = ` I2

V2
`
I1 = 0

=
2.5
50

= 50 mS.

Now we use the terminated two-port equations to determine whether 
or not it is safe to attach a 2 V(rms) source with a 100 Ω internal imped-
ance to Port 1 and use this source together with the amplifier to drive 
a speaker modeled as a 32 Ω resistance with a power rating of 100 W. 
Begin by finding the value of I2 from Table 18.3:

 I2 =
h21Vg

11 + h22ZL2 1h11 + Zg2 - h12h21ZL

 =
1500(2)

31 + 10.052(32)4 3500 + 1004 - (1500)110-32(32)

 = 1.98 A1rms2 .

Then, calculate the power delivered to the 32 Ω speaker:

P = RI2
2 = (32)11.982 2 = 126 W.

The amplifier would thus deliver 126 W to the speaker, which is rated at 
100 W, so it would be better to use a different amplifier or buy a more 
powerful speaker.

SELF-CHECK: Also try Chapter Problem 18.46

Summary
• The two-port model is used to describe the performance 

of a circuit in terms of the voltage and current at its 
input and output ports. (See page 722.)

• The model is limited to circuits in which

• no independent sources are inside the circuit be-
tween the ports;

• no energy is stored inside the circuit between the 
ports;

• the current into the port is equal to the current out of 
the port; and

• no external connections exist between the input and 
output ports.

(See page 720.)

• Two of the four terminal variables (V1, I1, V2, I2) are in-
dependent; therefore, only two simultaneous equations 
involving the four variables are needed to describe the 
circuit. (See page 722.)

• The six possible sets of simultaneous equations involving 
the four terminal variables are called the z-, y-, a-, b-, h-,  

and g-parameter equations. See Eqs. 18.1–18.6. (See  
page 722.)

• The equations are written in the s domain. The dc values 
of the parameters are obtained by setting s = 0, and the 
sinusoidal steady-state values are obtained by setting 
s = jv. (See page 722.)

• Any set of two-port parameters can be calculated or 
measured by invoking appropriate short-circuit and 
open-circuit conditions at the input and output ports. 
See Eqs. 18.7–18.15. (See pages 723 and 724.)

• The relationships among the six sets of two-port param-
eters are given in Table 18.1. (See page 727.)

• A two-port circuit is reciprocal if interchanging an ideal 
voltage source at one port with an ideal ammeter at the 
other port produces the same ammeter reading. The ef-
fect of reciprocity on the two-port parameters is given in 
Table 18.2. (See page 729.)

• A reciprocal two-port circuit is symmetric if its ports 
can be interchanged without disturbing the values of 
the terminal currents and voltages. The added effect 
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 18.7  Select the values of R1, R2, and R3 in the circuit 
in Fig. P18.7 so that h11 = 6 Ω, h12 = 0.5 Ω, 
h21 = -0.5 Ω, and h22 = 0.10 mS.

Figure P18.7

2 2

R1

R2 R3

I1

V1 V2

I2

1 1

 18.8  The operational amplifier in the circuit shown in 
Fig. P18.8 is ideal. Find the g parameters of the  circuit.

Figure P18.8

1

2 1

2

V2

1

2

V1

I1

500 V

1500 V1500 V

600 V

200 V
1VCC

2VCC
I2

 18.9  Find the h parameters for the operational amplifier 
circuit shown in Fig. P18.9.

Figure P18.9

2
1

V1

I1 I2

2

1

Vs

2

1

35 V 15 Vs V2

2

1

150 V

2 V 60 V

 18.10  Find the h parameters for the circuit in Fig. P18.10.

Figure P18.10

1
2

500 V

500 kV1025 V2 100 I1

I1

V1 V2

I2

1 1

22

Sections 18.1–18.2

 18.1  Find the h and g parameters for the circuit in 
Example 18.1.

 18.2  Find the y parameters for the circuit in Fig. P18.2.

Figure P18.2
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 18.3  Use the results obtained in Problem 18.2 to calcu-
late the z parameters for the circuit in Fig. P18.2.

 18.4  Find the z parameters for the circuit shown in 
Fig. P18.4.

Figure P18.4
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 18.5  Find the a parameters for the circuit shown in 
Fig. P18.5.

Figure P18.5
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 18.6  Find the z parameter for the circuit in Fig. P18.6.

Figure P18.6
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of symmetry on the two-port parameters is given in  
Table 18.2. (See page 729.)

• The performance of a two-port circuit connected to a 
Thévenin equivalent source and a load is summarized 
by the relationships given in Table 18.3. (See page 732.)

• Large networks can be divided into subnetworks by 
means of interconnected two-port models. The cas-
cade connection was used in this chapter to illustrate 
the analysis of interconnected two-port circuits. (See  
page 737.)

Problems
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Figure P18.19
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 18.20  a) Use the defining equations to find the s-domain 
expressions for the b parameters for the circuit 
in Fig. P18.20.

b) Show that the results obtained in (a) agree with 
the b-parameter relationships for a reciprocal 
symmetric network.

Figure P18.20
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 18.21  Find the frequency-domain values of the b parame-
ters for the two-port circuit shown in Fig. P18.21.

Figure P18.21
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 18.22  Find the g parameters for the two-port circuit shown 
in Fig. P18.21.

 18.23  Is the two-port circuit shown in Fig. P18.23 symmet-
ric? Justify your answer.

Figure P18.23

Za

Zc

Zb

Zb

I1

V1

1

2

V2

1

2

I2

 18.11  Use the results obtained in Problem 18.10 to calcu-
late the b parameters of the circuit in Fig. P18.10.

 18.12  Find the g parameters of the two-port circuit shown 
in Fig. P18.12.

Figure P18.12
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 18.13  The following direct-current measurements were 
made on the two-port network shown in Fig. P18.13.

Port 2 Open Port 2 Short-Circuited

V1 = 20 mV I1 = 200 mA

V2 = -5 V I2 = 50 mA

I1 = 0.25 mA V1 = 10 V

Calculate the g parameters for the network.

Figure P18.13
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 18.14  a) Use the measurements given in Problem 18.13 to 
find the y parameters for the network.

b) Check your calculations by finding the y param-
eters directly from the g parameters found in 
Problem 18.13.

 18.15  Derive the expressions for the h parameters as func-
tions of the g parameters.

 18.16  Derive the expressions for the b parameters as func-
tions of the h parameters.

 18.17  Derive the expressions for the g parameters as func-
tions of the z parameters.

 18.18  Find the s-domain expressions for the h parameters 
of the two-port circuit shown in Fig. P18.18.

Figure P18.18
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 18.19  Find the s-domain expressions for the z parameters 
of the two-port circuit shown in Fig. P18.19.
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Figure P18.30
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 18.31  The y parameters for the two-port amplifier circuit 
in Fig. P18.31 are

 y11 = 3 mS;   y12 = -1 mS;

 y21 = 200 mS;  y22 = -60 mS.

The internal impedance of the source is 1500 + j0 Ω, 
and the load impedance is 50,000 + j0 Ω. The ideal 
voltage source is generating a sinusoidal voltage

vg = 4012 cos 5000t V.

a) Find the rms value of V2.

b) Find the average power delivered to ZL.

c) Find the average power developed by the ideal 
voltage source.

Figure P18.31
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 18.32  For the terminated two-port amplifier circuit in 
Fig. P18.31, find:

a) the value of ZL for maximum average power 
transfer to ZL.

b) the maximum average power delivered to ZL.

c) the average power developed by the ideal volt-
age source when maximum power is delivered 
to ZL.

 18.33  The b parameters of the amplifier in the circuit 
shown in Fig. P18.33 are

 b11 = 15;       b12 = 2 kΩ;

 b21 = -2.25 S;    b22 = -50.

Find the ratio of the output power to that supplied 
by the ideal voltage source.

Section 18.3

 18.24  Derive the expression for the input impedance, 
Zin = V1>I1 for the circuit in Fig. 18.10 in terms of 
the b parameters.

 18.25  Derive the expression for the current gain I2>I1 of 
the circuit in Fig. 18.10 in terms of the g parameters.

 18.26  Derive the expression for the voltage gain V2>V1 of 
the circuit in Fig. 18.10 in terms of the y parameters.

 18.27  Find the Thévenin equivalent circuit with respect to 
port 2 of the circuit in Fig. 18.10 in terms of the z 
parameters.

 18.28  Derive the expression for the voltage gain V2>Vg of 
the circuit in Fig. 18.10 in terms of the h parameters.

 18.29  The following dc measurements were made on the 
resistive network shown in Fig. P18.29.

Measurement 1 Measurement 2

V1 = 0.5 V I1 = -30 mA

V1 = 250 V I2 = -30 mA

I1 = 200 mA V1 = 0 V

I2 = 0 A V2 = 250 V

A variable resistor Ro is connected across port 2 and 
adjusted for maximum power transfer to Ro. Find 
the maximum power.

Figure P18.29
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 18.30  The g parameters for the two-port circuit in 
Fig. P18.30 are

 g11 =
1
5

- j
1
5

 S;   g12 = -0.1 + j0.1;

 g21 = 0.1 - j0.5;  g22 = 2.5 + j1.5 Ω.

The load impedances ZL is adjusted for maximum 
average power transfer to ZL. The ideal voltage 
source is generating a sinusoidal voltage of

vg = 5212 cos 6000t V.

a) Find the rms value of V2.

b) Find the average power delivered to ZL.

c) What percentage of the average power developed 
by the ideal voltage source is delivered by ZL?
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 18.37  a) Find the s-domain expressions for the y parame-
ters of the circuit in Fig. P18.37.

b) Port 2 in Fig. P18.37 is terminated in a resistance 
of 1000 Ω, and port 1 is driven by a step volt-
age source v1(t) = 8u(t) V. Find v2(t) for t 7 0 if 
C = 20 nF and L = 60 mH.

Figure P18.37
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Section 18.4

 18.38  The g and h parameters for the resistive two-ports 
in Fig. P18.38 are given by

 g11 =
3
35

 S;       h11 = 5 kΩ;

 g12 =
20
7

;      h12 = -0.2;

 g21 =
800
7

;      h21 = -4;

 g22 =
50
7

 kΩ;  h22 = 200 mS;

Calculate vo if vg = 30 V dc.

Figure P18.38
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 18.39  The h parameters of the first two-port circuit in 
Fig. P18.39(a) are

 h11 = 1000 Ω;  h12 = 5 * 10-4;

 h21 = 40;      h22 = 25 mS.

The circuit in the second two-port circuit is shown 
in Fig. P18.39(b), where R = 72 kΩ. Find vo if 
vg = 9 mV dc.

Figure P18.33
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 18.34  The linear transformer in the circuit shown in 
Fig. P18.34 has a coefficient of coupling of 0.75. The 
transformer is driven by a sinusoidal voltage source 
whose internal voltage is vg = 80 cos 400t V. The 
internal impedance of the source is 5 + j0 Ω.

a) Find the frequency-domain a parameters of the 
linear transformer.

b) Use the a parameters to derive the Thévenin 
equivalent circuit with respect to the terminals 
of the load.

c) Derive the steady-state time-domain expression 
for v2.

Figure P18.34
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 18.35  The following measurements were made on a resis-
tive two-port network:

Condition 1 – create a short circuit at port 2 and 
apply 10 V to port 1:
Measurements: I1 = 2 A;  I2 = -2 A.
Condition 2 – create an open circuit at port 1 and 
apply 100 V to port 2:
Measurements: V1 = 500 V;  I2 = 4 A.

Find the maximum power that this two-port circuit 
can deliver to a resistive load at port 2 when port 1 
is driven by a 5 A dc current source with an internal 
resistance of 50 Ω.

 18.36  a) Find the z parameters for the two-port network 
in Fig. P18.36.

b) Find v2 for t 7 0 when vg = 20e-5tu(t) V.

Figure P18.36
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pedance of Zg ohms. Calculate the Thévenin equiv-
alent circuit with respect to port 2. Check your 
 results against the appropriate entries in Table 18.3.

Figure P18.42
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 18.43  a) Show that the circuit in Fig. P18.43 is also an 
equivalent circuit satisfied by the z-parameter 
equations.

b) Assume that the equivalent circuit in Fig. P18.43 
is terminated in an impedance of ZL ohms at port 
2. Find the input impedance V1>I1. Check your re-
sults against the appropriate entry in Table 18.3.

Figure P18.43
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 18.44  a) Derive two equivalent circuits that are satisfied 
by the y-parameter equations. Hint: Start with 
Eqs. 18.2. Add and subtract y21V2 to the first equa-
tion of the set. Construct a circuit that satisfies the 
resulting set of equations, by thinking in terms of 
node voltages. Derive an alternative equivalent cir-
cuit by first altering the second equation in Eq. 18.2.

b) Assume that port 1 is driven by a voltage source 
having an internal impedance Zg, and port 2 is 
loaded with an impedance ZL. Find the current 
gain I2>I1. Check your results against the appro-
priate entry in Table 18.3.

 18.45  a) Derive the equivalent circuit satisfied by the 
g-parameter equations.

b) Use the g-parameter equivalent circuit derived 
in part (a) and the h-parameter equivalent cir-
cuit derived in Problem 18.41 to solve for the 
output voltage vo in Problem 18.38.

 18.46  a) What conditions and measurements will allow you 
to calculate the b parameters for the “black box” 
amplifier described in the Practical Perspective?

b) What measurements will be made if the resulting 
b parameters are equivalent to the h parameters 
calculated in the Practical Perspective?

 18.47  Repeat Problem 18.46 for the y parameters.

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

Figure P18.39
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 18.40  The networks A and B in the circuit in Fig. P18.40 
are reciprocal and symmetric. For network A, it is 
known that a′11 = 5 and a′12 = 24 Ω.

a) Find the a parameters of network B.

b) Find V2 when Vg = 75l0 ∘ V,

Zg = 1l0 ∘ Ω, and ZL = 10l0 ∘ Ω.

Figure P18.40
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Sections 18.1–18.4

 18.41  a) Show that the circuit in Fig. P18.41 is an equiva-
lent circuit satisfied by the h-parameter equations.

b) Use the h-parameter equivalent circuit of (a) 
to find the voltage gain V2>Vg in the circuit in 
Fig. 18.14, using the h-parameter values given in 
Example 18.6.

Figure P18.41
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 18.42  a) Show that the circuit in Fig. P18.42 is an equiva-
lent circuit satisfied by the z-parameter equations.

b) Assume that the equivalent circuit in Fig. P18.42 is 
driven by a voltage source having an internal im-
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A
APPENDIX 

The Solution of Linear 
Simultaneous Equations
Circuit analysis frequently requires us to solve a set of linear simulta-
neous equations. We present several different solution methods here—
some that employ engineering calculators or personal computers, and 
others that require just a pencil and paper. Most of the methods begin 
by placing the system of equations in matrix form. You should review 
matrices and matrix arithmetic, topics found in most intermediate-level 
algebra texts.

A.1 Preliminary Steps
To solve a set of simultaneous equations, we begin by organizing the 
equations into a standard form. To do this, collect all terms containing 
an unknown variable on the left-hand side of each equation and place 
all constants on the right-hand side. Then, arrange the equations in a 
vertical stack such that each variable occupies the same horizontal po-
sition in every equation. For example, in Eqs. A.1, the variables i1, i2, 
and i3 occupy the first, second, and third position, respectively, on the 
left-hand side of each equation:

21i1 -   9i2 - 12i3 = -33,

 -3i1 +  6i2 -   2i3 = 3,  (A.1)

-8i1 -  4i2 + 22i3 = 50.

Once the equations are in this standard form, you can write the 
equations using matrix notation as

£
21 - 9 - 12
- 3 6 - 2
- 8 - 4 22

§ £
i1

i2

i3

§ = £
- 33

3
50

§ .

We can abbreviate the set of equations in matrix form as AX = B, 
where A is the matrix of coefficients that multiply the variables, X is 
the vector of the variables, and B is the vector of constants from the 
right-hand side of the equations. When written in this abbreviated form, 
we can solve for the vector of unknowns by finding the inverse of the A 
matrix and multiplying it by the B vector:

X = A- 1B.
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If any equation is missing one or more variables, the missing variables 
can be inserted by making their coefficients zero. Thus, Eqs. A.2 are writ-
ten in standard form as shown by Eqs. A.3:

2v1 - v2 = 4,

 4v2 + 3v3 = 16, (A.2)

7v1 + 2v3 = 5;

2v1 -   v2 + 0v3 = 4,

 0v1 + 4v2 + 3v3 = 16, (A.3)

7v1 + 0v2 + 2v3 = 5.

Equation A.3 is written using matrix form as

£
3 - 1 0
0 4 3
7 0 2

§ £
v1

v2

v3

§ = £
4
16
5
§ .

A.2 Calculator and Computer Methods
Most calculators recommended for engineering students can solve a set of 
simultaneous algebraic equations. Because there are many different calcu-
lators, it is impractical to provide directions or an example here. Instead, 
we provide the general steps for using your calculator to solve equations; 
you should refer to the manual for your specific calculator or search for 
instructions on the web.

1. Input the problem dimension by specifying the number of un-
knowns.

2. Create the A matrix, which is the matrix of coefficients that multi-
ply the unknowns on the left-hand sides of the equations.

3. Create the B array, which is the array of constants on the right-hand 
sides of the equations.

4. Use the “solve” function (which has different names for different 
calculators) for the matrix A and the array B, to calculate the array 
X that contains the values of the unknowns.

Most calculators can solve simultaneous equations that have real number 
coefficients and complex number coefficients. Some can even solve simul-
taneous equations whose coefficients include symbols.

There are many different computer programs that can solve a set of al-
gebraic equations. We present two examples: Excel, the spreadsheet applica-
tion, and MATLAB, the matrix-based programming language. You should 
explore the options available and pick the software that works best for you.

Using Excel
Figure A.1 uses Excel to solve the simultaneous equations given in  
Eqs. A.1. Note that Excel can only solve simultaneous equations whose 
coefficients are real numbers. To begin, enter the A matrix in a square 
collection of cells and enter the B vector in a column of cells. You can 
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>> syms 

>> eq1=21*i1 - 9*i2 - 12*i3 == -33;

>> eq2=-3*i1 + 6*i2 - 2*i3 ==3;

>> eq3=-8*i1 - 4*i2 + 22*i3 == 50;

>> [A,B] = equationsToMatrix([eq1, eq2, eq3], [i1, i2, i3])

A =

B =

-33

3

50

1

2

3

X =

>> X = linsolve(A,B)

[ 21, -9, -12]

[ -3,  6,  -2]

[ -8, -4, -22]

il i2 i3

Figure A.2 ▲ Using MATLAB to solve the simultaneous equations in Eqs. A.1.

Figure A.1 ▲ Using Excel to solve the simultaneous equations in Eqs. A.1.

label the matrix and vector, as shown in the figure, but this is not required. 
Then highlight a column of cells for the vector X, which will contain the 
values of the unknowns. The number of cells in this column must equal 
the number of unknowns. Type the following function in the function box:

=  MMULT(MINVERSE(start_cell, end_cell), b1:bn) 

and simultaneously press the Ctrl-Shift-Enter keys. This will enter 
the values for the X vector into the highlighted cells and also will sur-
round the function with braces, as shown in Fig. A.1. The function 
MINVERSE(start_cell, end_cell) calculates the inverse of a matrix. The 
matrix values occupy square collection of cells whose upper left cell is 
start_cell and whose lower right cell is end_cell. The MMULT(R, S) mul-
tiplies two matrices, R and S, supplied as arguments.

Using MATLAB
There are several ways to solve a system of simultaneous equations using 
MATLAB. Figure A.2 illustrates one method to solve Eqs. A.1. It begins 
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by defining the three unknown variables and the three simultaneous equa-
tions. Then, the function equationsToMatrix(eq, var) constructs the A 
matrix and the B vector from the equations supplied in the function’s first 
argument, using the variables specified in the function’s second argument. 
Finally, the function linsolve(A, B) calculates the values of the unknowns 
by  inverting the matrix supplied in the function’s first argument and then mul-
tiplying by the vector supplied in the function’s second argument. Note that, 
unlike Excel, the simultaneous equations specified in MATLAB can have 
complex numbers as coefficients on the left-hand side and constants on the 
right-hand side.

A.3 Paper-and-Pencil Methods
We present two methods that do not require an engineering calculator or 
computer software: back-substitution and Cramer’s method. Both meth-
ods are easy to use when solving two or three simultaneous equations. 
If you have four or more simultaneous equations, you should solve them 
with your calculator or computer because the paper-and-pencil methods 
are quite complicated. Both back-substitution and Cramer’s method work 
for equations with real numbers, with complex numbers, or even with 
symbols as coefficients and constants.

Back-Substitution
The back-substitution method picks one equation and solves it for one un-
known in terms of the remaining unknowns. The solution is used to eliminate 
that unknown in the remaining equations. This process is repeated until only 
one equation and one unknown remain. To illustrate, we will solve Eqs. A.2 
using back-substitution. Begin by solving the third equation for v3, to get

v3 = 2.5 - 3.5v1.

Now eliminate v3 in the remaining equations:

2v1 - v2 = 4,

4v2 + 3(2.5 - 3.5v1) = 16.

Next, solve the first of the two remaining equations for v2, to get

v2 = 2v1 - 4.

Eliminate v2 in the other equation:

4(2v1 - 4) + 3(2.5 - 3.5v1) = 16.

Simplify and solve for v1:

-2.5v1 = 24.5 so v1 =
24.5
-2.5

= -9.8 V.

Finally, use this value for v1 to find the remaining unknowns:

 v2 = 2v1 - 4 = 2(-9.8) - 4 = -23.6 V,

 v3 = 2.5 - 3.5v1 = 2.5 - 3.5(-9.8) = 36.8 V.

There is another way to solve a set of simultaneous equations with 
the back-substitution method. Begin by picking any two equations, and 
multiply one or both equations by a different constant such that when 
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the resulting equations are added together, one of the unknowns is elim-
inated. For example, consider the first two equations in Eqs. A.3. If we 
multiply the first equation by the constant 4 and add the resulting equa-
tion to the second equation, we eliminate v2:

8v1 - 4v2 + 0v3 = 16
+ 0v1 + 4v2 + 3v3 = 16

8v1 + 0v2 + 3v3 = 32.

Now multiply this new equation by 2, and multiply the third equation in 
Eqs. A.3 by -3. Then add the two equations together to eliminate v3:

16v1 + 6v3 = 64
+ -21v1 + -6v3 = -15

-5v1 + 0v3 =  49.

Therefore,

v1 =
49
-5

= -9.8 V.

We can substitute the value of v1 back into the first equation in Eqs. A.3 to 
find v2 and then substitute the value of v2 back into the second equation in 
Eqs. A.3 to find v3. You should complete these final steps to verify the values.

Cramer’s Method
We can also use Cramer’s method to solve a set of simultaneous equations. 
The value of each unknown variable is the ratio of two determinants. If we let 
N, with an appropriate subscript, represent the numerator determinant and ∆ 
represent the denominator determinant, then the kth unknown xk is

 xk =
Nk

∆
. (A.4)

The denominator determinant ∆ is the same for every unknown variable 
and is called the characteristic determinant of the set of equations. The 
numerator determinant Nk varies with each unknown.

The characteristic determinant is the determinant of the A matrix. 
For example, the characteristic determinant of Eqs. A.3 is

∆ = †
2 -1 0
0 4 3
7 0 2

† .

To find the determinant, rewrite the first two columns to the right of the 
determinant to get

∆ = †
2 -1 0
0 4 3
7 0 2

† 
2 -1
0 4
7 0

 .

There are now five columns. Sum the products of the left-to-right diago-
nals for the first three columns; then subtract the sum of products of the 
right-to-left diagonals for the last three columns:

∆ = (2 # 4 # 2) + (-1 # 3 # 7) + (0 # 0 # 0) - (0 # 4 # 7) - (2 # 3 # 0) - (-1 # 0 # 2)

= 16 - 21 + 0 - 0 - 0 - 0 = -5.
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Note that this shortcut method for finding a determinant works only for 
square matrices of dimension 3. To find the determinant for a matrix 
whose dimension is larger than 3, consult a reference on determinants.

To construct the numerator determinant Nk, replace the kth col-
umn in the characteristic determinant with the values in the B vector. 
For example, the numerator determinants for evaluating v1, v2, and v3 in  
Eqs. A.3 are

N1 = †
4 -1 0
16 4 3
5 0 2

†

= (4 # 4 # 2) + (-1 # 3 # 5) + (0 # 16 # 0) - (0 # 4 # 5) - (4 # 3 # 0) - (-1 # 16 # 2)

= 49,

N2 = †
2 4 0
0 16 3
7 5 2

†

= (2 # 16 # 2) + (4 # 3 # 7) + (0 # 0 # 5) - (0 # 16 # 7) - (2 # 3 # 5) - (4 # 0 # 2)

= 118,

and

N3 = †
2 -1 4
0 4 16
7 0 5

†

= (2 # 4 # 5)+ (-1 # 16 # 7) + (4 # 0 # 0) - (4 # 4 # 7) - (2 # 16 # 0) - (-1 # 0 # 5)

= -184.

Using Cramer’s method in Eq. A.4, we can solve for v1, v2, and v3:

v1 =
N1

∆
=

49
- 5

= -9.8 V,

v2 =
N2

∆
=

118
- 5

= -23.6 V,

and

v3 =
N3

∆
=

- 184
- 5

= 36.8 V.

A.4 Applications
The following examples demonstrate the various techniques for solving a 
system of simultaneous equations generated from circuit analysis.



752 The Solution of Linear Simultaneous Equations

EXAMPLE A.1

Use Cramer’s method to solve for the node volt-
ages v1 and v2 in Eqs. 4.1 and 4.2.

Solution
The first step is to rewrite Eqs. 4.1 and 4.2 in 
standard form. Collecting the coefficients of v1 
and v2 on the left-hand side and moving the con-
stant terms to the right-hand side of the equations 
gives us

1.7v1 - 0.5v2 = 10,

-0.5v1 +  0.6v2 =    2.

Rewriting this set of equations in AX = B format 
gives us

c 1.7 -0.5
-0.5 0.6

d  cv1

v2
d = c10

2
d .

Using Cramer’s method (Eq. A.4), we can 
write expressions for the unknown voltages:

v1 =
` 10 -0.5

2 0.6
`

` 1.7 -0.5
-0.5 0.6

`
,

v2 =
` 1.7 10
-0.5 2

`

` 1.7 -0.5
-0.5 0.6

`
.

The shortcut for calculating the determinant for a 
matrix of dimension 3 does not work for matrices 
of dimension 2. Instead, there is a different shortcut 
for these matrices. Starting at the top of the first col-
umn, find the product along the left-to-right diagonal. 
Then subtract the product along the right-to-left diag-
onal that starts at the top of the second column. Thus,

v1 =
` 10 -0.5

2 0.6
`

` 1.7 -0.5
-0.5 0.6

`
=

(10)(0.6) - (-0.5)(2)

(1.7)(0.6) - (-0.5)(-0.5)

=
6 + 1

1.02 - 0.25
= 9.09 V,

v2 =
` 1.7 10
-0.5 2

`

` 1.7 -0.5
-0.5 0.6

`
=

(1.7)(2) - (10)(-0.5)

(1.7)(0.6) - (-0.5)(-0.5)

=
3.4 + 5

1.02 - 0.25
= 10.91 V.

EXAMPLE A.2

Use Excel to find the three mesh currents in the cir-
cuit in Fig. 4.24.

Solution
The equations that describe the circuit in Fig. 4.24 
were derived in Example 4.7. There are three KVL 
equations:

5(i1 - i2) + 20(i1 - i3) - 50 = 0,

5(i2 - i1) + 1i2 + 4(i2 - i3) = 0,

20(i3 - i1) + 4(i3 - i2) + 15if = 0.

There is also a dependent source constraint equation:

if = i1 - i3.

Putting these four equations in standard form, we get

25i1 - 5i2 - 20i3 + 0if = 50,
-5i1 + 10i2 - 4i3 + 0if = 0,

-20i1 - 4i2 + 24i3 + 15if = 0,
i1 - 0i2 - i3 - if = 0.

Rewriting this set of equations in AX = B format 
gives us

≥
25 -5 -20 0
-5 10 -4 0
-20 -4 24 15

1 0 -1 -1

¥ ≥
i1

i2

i3

if

¥ = ≥
50
0
0
0

¥ .
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Figure A.3 ▲ Using Excel to solve the simultaneous equations in Example A.2.

EXAMPLE A.3

Use MATLAB to find the phasor mesh currents I1 
and I2 in the circuit in Fig. 9.40.

Solution
Summing the voltages around mesh 1 generates the 
equation

(1 + j2)I1 + (12 - j16)(I1 - I2) = 150l0°.

Summing the voltages around mesh 2 produces the 
equation

(12 - j16)(I2 - I1) + (1 + j3)I2 + 39Ix = 0.

The current controlling the dependent voltage 
source is

Ix = (I1 - I2).

Converting these three equations into standard 
form, we get

(13 + j14)I1 + (-12 + j16)I2 + 0Ix =150,
(-12 + j16)I1 + (13 + j13)I2 + 39Ix = 0,

I1 - I2 - Ix = 0.

The MATLAB commands used to solve this set of si-
multaneous equations are shown in Fig. A.4. Note the 

>> syms  

>> eq1 = complex(13,-14)*i1 + complex(-12,16)*i2 == 150;

>> eq2 = complex(-12,16)*i1 + complex(13,-13)*i2 + 39*ix == 0;

>> eq3 = i1 - i2 - ix ==0,

>> [A,B] = equationsToMatrix([eq1, eq2, eq3], [i1, i2, ix])

il i2 ix

A =

B =

150

0

0

[   13 - 14i, - 12 + 16i,  0]

[  -12 + 16i,   13 - 13i, 39]

[          1,         -1, -1]

>> X = linsolve(A,B)

X =

- 26 - 52i

- 24 - 58i

- 2 +   6i

Figure A.4 ▲ Using MATLAB to solve the simultaneous equations in Example A.3.

The Excel solution is shown in Fig. A.3. The mesh 
currents are i1 = 29.6 A, i2 = 26 A, and i3 = 28 A,  

and the controlling current for the dependent 
source is if = 1.6 A.
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use of the complex(a, b) function to construct the 
complex coefficients, where a is the real part of the co-
efficient and b is the imaginary part of the coefficient. 
MATLAB gives us the solution

I1 = (-26 - j52) = 58.14l -116.57° A,

I2 = (-24 - j58) = 62.77 l-122.48° A.

In the first three examples, the matrix elements have been numbers— 
real numbers in Examples A.1 and A.2, and complex numbers in 
Example  A.3. It is also possible for the elements to be symbols. 
Example A.4 illustrates the use of back substitution in a circuit problem 
where the elements in the coefficient matrix are symbols.

EXAMPLE A.4

Use back-substitution to derive expressions for the 
node voltages V1 and V2 in the circuit in Fig. A.5.

Vg V1

1

2

V2

1

2

1 2

1
sC

1
sC

1
sCR

R
1

2

Figure A.5 ▲ The circuit for Example A.4.

Solution
Summing the currents leaving nodes 1 and 2 gener-
ates the following set of equations:

V1 - Vg

R
+ V1sC + (V1 - V2)sC  = 0,

V2

R
+ (V2 - V1)sC + (V2 - Vg)sC = 0.

Let G = 1>R and collect the coefficients of V1 and 
V2 to get

(G + 2sC)V1 - sCV2  = GVg,

-sCV1 + (G + 2sC)V2 = sCVg.

Solve the first equation for V2 to get

V2 =
(G + 2sC)

sC
 V1 -  

G
sC

 Vg.

Substitute this expression into the second equation 
to eliminate V2:

-sCV1 + (G + 2sC) c (G + 2sC)

sC
 V1 -  

G
sC

 Vg d = sCVg.

Rearrange and simplify this equation to find the 
 expression for V1:

(G + 2sC)2 - (sC)2

sC
 V1 =

G(G + 2sC) + (sC)2

sC
 Vg ,

so

 V1 =
G(G + 2sC) + (sC)2

(G + 2sC)2 - (sC)2  Vg

 =
(G2 + 2sCG + s2C 2)

(G2 + 4sCG + 3s2C 2)
 Vg.

Finally, substitute this expression for V1 into the 
equation for V2; rearrange and simplify to find the 
expression for V2:

V2 =
(G + 2sC)

sC
 c (G2 + 2sCG + s2C 2)

(G2 + 4sCG + 3s2C 2)
 Vg d -  

G
sC

 Vg ,

so

V2 = c(G + 2sC)(G2 + 2sCG + s2C 2)-G(G2 + 4sCG+3s2C 2)

sC(G2 + 4sCG + 3s2C 2)
 dVg

=
2sC(G + sC)

(G2 + 4sCG + 3s2C 2)
 Vg.
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B 
APPENDIX 

Complex Numbers
Complex numbers allow us to find the square root of negative numbers. For 
example, consider the equation x2 + 8x + 41 = 0. From the quadratic for-
mula, we know that the two values of x that satisfy this equation are

x1,2 =
-8 { 282 - 4(41)

2
= -4 { 1-25.

Therefore, this equation has no solution in a number system that ex-
cludes complex numbers. Complex numbers, and the ability to manipu-
late them algebraically, are extremely useful in circuit analysis. 

B.1 Notation
There are two ways to designate a complex number: with the cartesian, 
or rectangular, form or with the polar, or trigonometric, form. In rectan-
gular form, a complex number is written as a sum of a real component 
and an imaginary component; hence

n = a + jb,

where a is the real component, b is the imaginary component, and j is, 
by definition, 1-1.1

In polar form, a complex number is written in terms of its magni-
tude (or modulus) and angle (or argument); hence

n = ceju

where c is the magnitude, u is the angle, e is the base of the natural log-
arithm, and, as before, j = 1-1. The symbol lu° is frequently used in 
place of eju, so the polar form can also be written as

n = clu .

When we write a complex number in polar form, we typically use the 
angle notation. But when we perform mathematical operations using 
complex numbers in polar form, we use the exponential notation be-
cause the rules for manipulating an exponential quantity are well 
known. For example, because (yx)n = yxn, then (eju)n = ejnu; because 
y - x = 1>yx, then e - ju = 1>eju; and so forth.

1You may be more familiar with the notation i = 1-1. In electrical engineering, i is used 
as the symbol for current, and hence in electrical engineering literature, j is used to denote 1-1.
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Since there are two ways of expressing the same complex number, we 
need to relate one form to the other. The transition from polar to rectan-
gular form makes use of Euler’s identity:

e { ju =  cos  u {  j  sin  u.

A complex number in polar form can be put in rectangular form by writing

ceju = c( cos  u +  jc  sin  u)

= c( cos  u +  jc  sin  u)

= a +  jb.

The transition from rectangular to polar form uses right triangle 
 geometry, namely,

 a +  jb = 12a2 + b22eju

 = ceju,

where

 tan  u = b>a.

The expression for tan u does not specify the quadrant where the angle u 
is located. We can determine the location of u using a graphical represen-
tation of the complex number.

B.2  The Graphical Representation of 
a Complex Number

A complex number is represented graphically on a complex-number 
plane, where the horizontal axis represents the real component and the 
vertical axis represents the imaginary component. The angle of the com-
plex number is measured counterclockwise from the positive real axis. 
The plot of the complex number n = a +  jb = c l  u, assuming that a and 
b are both positive, is shown in Fig. B.1.

b

0

c

a Re

Im

u

Figure B.1 ▲ The graphical representation of a 1 jb 
when a and b are both positive.

This plot makes very clear the relationship between the rectangular 
and polar forms. Any point in the complex-number plane is uniquely de-
fined by giving either its distance from each axis (that is, a and b) or its ra-
dial distance from the origin (c) and the angle with respect to the positive 
real axis, u.

It follows from Fig. B.1 that u is in the first quadrant when a and b are 
both positive, in the second quadrant when a is negative and b is positive, in 
the third quadrant when a and b are both negative, and in the fourth quad-
rant when a is positive and b is negative. These observations are illustrated 
in Fig. B.2, where we have plotted 4 + j3, -4 + j3, -4 - j3, and 4 - j3.u

3

4 Re

Re Re

Re

Im

Im Im

Im
36.8785 143.1385

323.1385216.8785

3

24

24
23

4
23

(a) (b)

(c) (d)

36.87841 j3 5 5

323.13842 j3 5 5

143.138241 j3 5 5

216.878242 j3 5 5

uu

u

Figure B.2 ▲ The graphical representation of four 
complex numbers.

Note that we can also specify u as a clockwise angle from the pos-
itive real axis. Thus, in Fig. B.2(c), we could also designate -4 - j3 as 
5l-143.13°. In Fig. B.2(d), we observe that 5 l323.13° = 5 l-36.87°. It is 
customary to express u in terms of negative values when u lies in the third 
or fourth quadrant, so that -180° … u … 180°.

The conjugate of a complex number is formed by reversing the sign 
of its imaginary component. Thus, the conjugate of a + jb is a - jb, and 
the conjugate of -a + jb is -a - jb. When we write a complex number in 
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polar form, we construct its conjugate by reversing the sign of the angle u.  
Therefore, the conjugate of clu is cl-u. The conjugate of a complex 
number is designated with an asterisk, so n* is understood to be the con-
jugate of n. Figure B.3 shows two complex numbers and their conjugates 
plotted on the complex-number plane. Note that conjugation reflects a 
complex number about the real axis.

u2n2 5 2a1jb5c

2u2n*
2 5 2a2jb5c 2u1n*

1 5 a2jb5c

u1n1 5 a1jb5c

2a a Re

Im

b

2b

u2
u1

2u1
2u2

Figure B.3 ▲ The complex numbers n1 and n2 and 
their conjugates n*1 and n*2.B.3 Arithmetic Operations

Addition (Subtraction)
When adding or subtracting complex numbers, we express the numbers in 
rectangular form. Addition involves adding the real parts of the complex 
numbers to form the real part of the sum and adding the imaginary parts 
to form the imaginary part of the sum. Thus, if we are given

n1 = 8 + j16

and

n2 = 12 - j3,

then

n1 + n2 = (8 + 12) + j(16 - 3) = 20 + j13.

Subtraction follows the same rule. Thus

n2 - n1 = (12 - 8) + j(-3 - 16) = 4 - j19.

If the numbers to be added or subtracted are given in polar form, they are 
first converted to rectangular form. For example, if

n1 = 10 l53.13°

and

n2 = 5 l-135°,

then

 n1 +  n2 = 6 + j8 - 3.535 - j3.535

 = (6 - 3.535) + j(8 - 3.535)

 = 2.465 +  j4.465 = 5.10 l61.10°,

and

 n1 - n2 = 6 + j8 - (-3.535 - j3.535)

 = 9.535 + j11.535

 = 14.966 l50.42°.
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Multiplication (Division)
When multiplying or dividing complex numbers, the numbers can be writ-
ten in either rectangular or polar form. In most cases, polar form is more 
convenient. As an example, let’s find the product n1n2 when n1 = 8 + j10 
and n2 = 5 - j4. Using rectangular form, we have

 n1n2 = (8 + j10)(5 - j4) = 40 - j32 + j50 + 40

 = 80 + j18

 = 82l12.68°.

If we use polar form, we find the product of two complex numbers by mul-
tiplying their magnitudes and adding their angles. For example,

 n1n2 = (12.81l51.34°)(6.40l-38.66°)

 = 82l12.68°

 = 80 + j18.

The first step in dividing two complex numbers in rectangular form 
is to multiply the numerator and denominator by the conjugate of the 
denominator. This makes the denominator a real number. We then di-
vide the real number into the new numerator. As an example, let’s cal-
culate n1>n2, where n1 = 6 + j3 and n2 = 3 - j1. We have

 
n1

n2
=

6 + j3
3 - j1

=
(6 + j3)(3 + j1)

(3 - j1)(3 + j1)

 =
18 + j6 + j9 - 3

9 + 1

 =
15 + j15

10
= 1.5 + j1.5

 = 2.12 l45°.

In polar form, we calculate n1>n2 by dividing the magnitudes and subtract-
ing the angles. For example,

 
n1

n2
=

6.71 l26.57°

3.16 l-18.43°
= 2.12 l45°

 = 1.5 + j1.5.

B.4 Useful Identities
In working with complex numbers and quantities, the following identities 
are very useful:

 { j2 = |1,

 (- j)(j) = 1,
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 j =
1
- j

,

 e { jp = -1,

 e { jp>2 = { j.

Given that n = a +  jb = clu, it follows that

 nn* = a2 + b2 = c2,

 n +  n* = 2a,

 n -  n* = j2b,

 n>n* = 1l2u.

B.5  The Integer Power of a Complex 
Number

To raise a complex number to an integer power k, begin by expressing the 
complex number in polar form. Then, to find the kth power of a complex 
number, raise its magnitude to the kth power and multiply its angle by k. Thus

 nk = (a + jb)k

 = (ceju)k = ckejku

 = ck( cos  ku +  j  sin ku).

For example,

 (2ej12°)5 = 25ej60° = 32ej60°

 = 16 + j27.71,
and

 (3 + j4)4 = (5ej53.13°)4 = 54ej212.52°

 = 625ej212.52°

 = -527 - j336.

B.6  The Roots of a Complex Number
To find the kth root of a complex number, we solve the equation

xk -  ceju = 0,

which is an equation of the kth degree and therefore has k roots.
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To find the k roots (x1, x2, …, xk), we first note that

ceju = cej(u +  2p) = cej(u +  4p) = c .

It follows that

 x1 = (ceju)1>k = c1>keju>k,

 x2 = [cej(u + 2p)]1>k = c1>kej(u + 2p)>k,

 x3 = [cej(u + 4p)]1>k = c1>kej(u + 4p)>k,

f.

We continue this process until the roots start repeating. This will happen 
when the multiple of p is equal to 2k. For example, let’s find the four roots 
of 81ej60°. We have

x1 = 811>4ej60>4 = 3ej15°,

x2 = 811>4ej(60 +  360)>4 = 3ej105°,

x3 = 811>4ej(60 +  720)>4 = 3ej195°,

x4 = 811>4ej(60 +  1080)>4 = 3ej285°,

x5 = 811>4ej(60 +  1440)>4 = 3ej375° = 3ej15°.

Here, x5 is the same as x1, so the roots have started to repeat. Therefore, 
we know the four roots of 81e j60° are the values given by x1, x2, x3, and x4.

Note that the roots of a complex number lie on a circle in the 
 complex-number plane. The radius of the circle is c1>k. The roots are uni-
formly distributed around the circle, and the angle between adjacent roots 
is 2p>k radians or 360>k degrees. The four roots of 81ej60° are plotted in 
Fig. B.4.

10583

28583

19583

1583

Re

Im

Figure B.4 ▲ The four roots of 81e j60°.
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C
APPENDIX More on Magnetically 

Coupled Coils and Ideal 
Transformers
C.1 Equivalent Circuits for 

Magnetically Coupled Coils
It is sometimes convenient to model magnetically coupled coils 
with an equivalent circuit that does not include magnetic coupling. 
Consider the two magnetically coupled coils shown in Fig. C.1. 
The resistances R1 and R2 represent the winding resistance of each 
coil. The goal is to replace the magnetically coupled coils inside the 
shaded area with a set of inductors that are not magnetically cou-
pled. Before deriving the equivalent circuits, we must point out an 
important restriction: The voltage between terminals b and d must 
be zero. In other words, we must be able to short together terminals 
b and d without disturbing the voltages and currents in the original 
circuit. This restriction is imposed because, while the equivalent cir-
cuits we develop have four terminals, two of those four terminals 
are shorted together. Thus, the same requirement is placed on the 
original circuits.

i1

R1

L1

M

L2 v2

1

2

v1

1

2

a

b

c

d

R1

i2

Figure C.1 ▲ The circuit used to develop an  
equivalent circuit for magnetically coupled coils.

We begin by writing the two equations that relate the terminal volt-
ages v1 and v2 to the terminal currents i1 and i2. For the given references 
and polarity dots,

 v1 = L1
di1

dt
 +  M

di2

dt
 (C.1)

and

 v2 = M
di1

dt
 +  L2

di2

dt
. (C.2)

The T-Equivalent Circuit
How can we arrange uncoupled inductors in a circuit that can be 
described by Eqs. C.1 and C.2? If we regard Eqs. C.1 and C.2 as 
mesh-current equations with i1 and i2 as the mesh currents, we need 
one mesh with a total inductance of L1 and a second mesh with a total 
inductance of L2. Also, the two meshes must have a common induc-
tance of M. The T-equivalent circuit shown in Fig. C.2 satisfies these 
requirements.

i1

R1 L22ML12M

M

i2
v1

1

2

v2

1

2

a

b

c

d

R2

Figure C.2 ▲ The T-equivalent circuit for the  
magnetically coupled coils of Fig. C.1.

You should verify that the equations relating v1 and v2 to i1 and i2 
reduce to Eqs. C.1 and C.2. Note the absence of magnetic coupling be-
tween the inductors and the zero voltage between b and d.
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The p-Equivalent Circuit
We can derive a p-equivalent circuit for the magnetically coupled coils 
shown in Fig. C.1 by solving Eqs. C.1 and C.2 for the derivatives di1>dt 
and di2>dt. We treat the resulting expressions as a pair of node-voltage 
equations. Find di1>dt and di2>dt using Cramer’s method:

 
di1

dt
=

` v1 M
v2 L2

`

` L1 M
M L2

`
=

L2

L1L2 - M2 v1 -  
M

L1L2 - M2 v2; (C.3)

 
di2

dt
=

` L1 v1

M v2
`

L1L2 - M2 =
- M

L1L2 - M2 v1 +
L1

L1L2 - M2 v2. (C.4)

Now we solve for i1 and i2 by multiplying both sides of Eqs. C.3 and C.4 by 
dt and then integrating:

 i1 = i1(0) +  
L2

L1L2 - M2 L
t

0
v1 dt -  

M

L1L2 -  M2 L
t

0
v2 dt (C.5)

and

 i2 = i2(0) -  
M

L1L2 - M2 L
t

0
v1 dt +  

L1

L1L2 - M2 L
t

0
v2 dt. (C.6)

If we regard v1 and v2 as node voltages, Eqs. C.5 and C.6 describe a circuit 
like the one shown in Fig. C.3.

To find LA, LB, and LC as functions of L1, L2, and M, write the equa-
tions for i1 and i2 in Fig. C.3 and compare them with Eqs. C.5 and C.6. 
Thus

 i1 = i1(0) +  
1

LA
 L

t

0
v1 dt +  

1
LB

 L
t

0
(v1 - v2) dt

 = i1(0) +  a 1
LA

 +  
1

LB
 b L

t

0
v1dt -  

1
LB

 L
t

0
v2dt

and

 i2 = i2(0) +  
1

LC
 L

t

0
v2dt +  

1
LB

 L
t

0
(v1 - v2) dt

 = i2(0) +  
1

LB
 L

t

0
v1dt +  a 1

LB
 +  

1
LC

 b L
t

0
v2dt.

LA

LB

i2(0) v2

1

2

v1

1

2

c

d

a

b

LCi1(0)

i1 i2

Figure C.3 ▲ The circuit used to derive the -equivalent circuit for magnetically 
 coupled coils.
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Incorporate the expressions for LA, LB, and LC into the circuit shown in 
Fig. C.3 to get the p-equivalent circuit for the magnetically coupled coils 
shown in Fig. C.1. The result is shown in Fig. C.4.

L1L22M2

M

L1L22M2

L22M

L1L22M2

L12M

R1

i2(0)v1

1

2

a

b

i1(0)
i1

R2

v2

1

2

c

d

i2

Figure C.4 ▲ The p-equivalent circuit for the magnetically coupled coils of Fig. C.1.

Note that the initial values of i1 and i2 are explicit in the p-equiva-
lent circuit but implicit in the T-equivalent circuit. If we want to find the 
 sinusoidal steady-state behavior of circuits containing mutual inductance, 
we can assume that the initial values of i1 and i2 are zero. We can thus 
eliminate the current sources in the p-equivalent circuit, and the circuit 
shown in Fig. C.4 simplifies to the one shown in Fig. C.5. i1

R1 R2

i2
v1

1

2

v2

1

2

a

b

c

d

L1L2 2 M2

L1 2 M

L1L2 2 M2

L2 2 M

L1L2 2 M2

M

Figure C.5 ▲ The p-equivalent circuit used for  
sinusoidal steady-state analysis.

The mutual inductance carries its own algebraic sign in the T- and p- 
equivalent circuits. In other words, if the magnetic polarity of the cou-
pled coils is reversed from that given in Fig. C.1, the algebraic sign of M 
reverses. A reversal in magnetic polarity requires moving one polarity 
dot without changing the reference polarities of the terminal currents and 
voltages.

Example C.1 illustrates the application of the T-equivalent circuit.

EXAMPLE C.1

a) Replace the magnetically coupled coils shown in 
Fig. C.6 with a T-equivalent circuit. Then find the 
phasor currents I1 and I2. The source frequency 
is 400 rad>s.

b) Repeat (a), but with the polarity dot on the sec-
ondary winding moved to the lower terminal.

Figure C.6 ▲ The frequency-domain equivalent circuit for Example C.1.

1
LB

=
M

L1L2 - M2,

1
LA

=
L2 - M

L1L2 - M2,

1
LC

=
L1 - M

L1L2 - M2.

Then

I1

j1200 V

V1

1

2

V2

1

2

a

b

300  08 V 2j2500 Vj1600 Vj3600 V

800 V500 V 200 Vj100 V 100 V

I2
1

2
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Solution

a) For the polarity dots shown in Fig. C.6, M has a 
value of +3 H in the T-equivalent circuit. There-
fore, the three inductances in the equivalent 
 circuit are

 L1 - M = 9 - 3 = 6 H;

 L2 - M = 4 - 3 = 1 H;

 M = 3 H.

Figure C.7 shows the T-equivalent circuit, and 
Fig. C.8 shows the frequency-domain equivalent 
circuit at a frequency of 400 rad>s.

6 H 1 H

3 H

Figure C.7 ▲ The T-equivalent circuit for the magnetically 
coupled coils in Example C.1.

j2400 j400

j1200

Figure C.8 ▲ The frequency-domain model of the equiva-
lent circuit at 400 rad>s.

Figure C.9 shows the original frequency- 
domain circuit with the magnetically coupled 
coils replaced by the T-equivalent circuit in 
Fig. C.8. To find the phasor currents I1 and I2,  
we first find the node voltage across the 1200 Ω 
inductive reactance. If we use the lower node as 
the reference, the single KCL equation is

500 V 200 V 100 V

j1200 V

j400 Vj 2400 Vj 100 V

300  08 V
800 V

2j2500 V

I1
I2

1

2
V

1

2

Figure C.9 ▲ The circuit of Fig. C.6, with the magnetically 
coupled coils replaced by their T-equivalent circuit.

V - 300
700 + j2500

+
V

j1200
+

V
900 - j2100

= 0.

Solving for V yields

V = 136 - j8 = 136.24 l-3.37° V. 

Then

I1 =
300 - (136 - j8)

700 + j2500
= 63.25 l-71.57° mA 

and

I2 =
136 - j8

900 - j2100
= 59.63 l63.43° mA. 

b) When the polarity dot is moved to the lower 
terminal of the secondary coil, M has a value of 
-3 H in the T-equivalent circuit. Before analyz-
ing the new T-equivalent circuit, we note that re-
versing the algebraic sign of M has no effect on 
the solution for I1 and shifts I2 by 180°. Therefore, 
we anticipate that

I1 = 63.25 l-71.57° mA 

and

I2 = 59.63 l-116.57° mA. 

Now let’s analyze the new T-equivalent cir-
cuit. With M = -3 H, the three inductances in 
the equivalent circuit are

 L1 - M = 9 - (-3) = 12 H;

 L2 - M = 4 - (-3) = 7 H;

 M = -3 H.

At an operating frequency of 400 rad>s, the 
 frequency-domain equivalent circuit requires two 
inductors and a capacitor, as shown in Fig. C.10.

j4800 V j 2800 V

2j1200 V

Figure C.10 ▲ The frequency-domain equivalent circuit for 
M 5 23 H and v 5 400 rad>s.

The resulting frequency-domain circuit for 
the original system appears in Fig. C.11. As be-
fore, we first find the voltage across the center 
branch, which contains a capacitive reactance of 
- j1200 Ω. If we use the lower node as the refer-
ence, the KCL equation is

500 V 200 V 100 V

2j1200 V

j2800 Vj4800 Vj100 V

800 V

2j2500 V

I1 I2

300  08 V
1

2
V

1

2

Figure C.11 ▲ The frequency-domain equivalent circuit for 
Example C.1(b).
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C.2 The Need for Ideal Transformers 
in the Equivalent Circuits

The inductors in the T- and p-equivalent circuits of magnetically coupled 
coils can have negative values. For example, if L1 = 3 mH, L2 = 12 mH, 
and M = 5 mH, the T-equivalent circuit requires an inductor of -2 mH,  
and the p-equivalent circuit requires an inductor of -5.5 mH. These 
 negative inductance values do not create a problem if you use the 
 equivalent circuits in computations. However, if you want to build  
the equivalent circuits using circuit components, the negative reactance 
can only be achieved using capacitors. But whenever the frequency of the 
sinusoidal source changes, you must change the capacitor used to gener-
ate the negative reactance. For example, at a frequency of 50 krad>s, a 
-2 mH inductor has an impedance of - j100 Ω. This impedance can be 
modeled with a 0.2 mF capacitor. If the frequency changes to 25 krad>s, 
the -2 mH inductive impedance changes to - j50 Ω and we need a 0.8 mF 
capacitor. If the frequency is varied continuously, using a capacitor to sim-
ulate negative inductance is impractical.

Instead of using capacitors to create negative reactance, you can 
 include an ideal transformer in the equivalent circuit. This doesn’t 
 completely solve the problem because ideal transformers can only 
be  approximated. However, in some situations the approximation is 
 satisfactory, so knowing how to use an ideal transformer in the T- and  
p-equivalent circuits of magnetically coupled coils is an important tool.

An ideal transformer can be used in two different ways in either 
the T-equivalent or the p-equivalent circuit. Figure C.12 shows the two 
arrangements for each type of equivalent circuit. To verify any of the 
equivalent circuits in Fig. C.12, we must show that the equations relat-
ing v1 and v2 to di1>dt and di2>dt are identical to Eqs. C.1 and C.2. To 
demonstrate, we validate the circuit shown in Fig. C.12(a); we leave it to 
you to verify the circuits in Figs. C.12(b), (c), and (d).

V - 300
700 + j4900

+
V

- j1200
+

V
900 + j300

= 0.

Solving for V gives

 V = -8 - j56

 = 56.57 l-98.13° V.

Then

 I1 =
300 - (-8 - j56)

700 + j4900

 = 63.25 l-71.57° mA.

and

 I2 =
-8 - j56

900 + j300

 = 59.63 l-116.57° mA.
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Figure C.12 ▲ The four ways of using an ideal transformer in the T- and p-equivalent 
circuit for magnetically coupled coils.

We redrew the circuit shown in Fig. C.12(a) as Fig. C.13, adding the 
variables i0 and v0 to aid the discussion. From this circuit,

i1
v1

1

2

v0

1

2

v2

1

2

N1 N2

Ideal

M
a

M
aL1 2

(a)

i2

i0

M
a

L2

a2 2

Figure C.13 ▲ The circuit of Fig. C.12(a) with i0 and 
v0 defined.

v1 = aL1 -
M
a
b  

di1

dt
+  

M
a

 
d
dt

 (i1 + i0)

and

v0 = aL2

a2
-

M
a
b  

di0

dt
+

M
a

 
d
dt

 (i0 +  i1).

The ideal transformer imposes constraints on v0 and i0:

v0 =
v2

a
;

i0 = ai2.

Substituting the constraint equations into the expressions for v1 and v0 
from the circuit gives

v1 = L1
di1

dt
+

M
a

 
d
dt

 (ai2)

and

v2

a
=

L2

a2  
d
dt

 (ai2) +
M
a

 
di1

dt
.

Simplifying, we get,

v1 = L1
di1

dt
+ M

di2

dt

i2

v1

1

2

v2

1

2

1 : a

Ideal

M
a

(a)

i1

L1 2 
M
a

L2

a2
M
a2

v1

1

2

v2

1

2

1 : a

Ideal

Ma

a2L1 2 Ma L2 2 Ma

(b)

i1

i2

1 : a

Ideal

(c)

v1

1

2

i1 i2

v2

1

2

L1L2 2 M2

a2L1 2 Ma

L2L1 2 M2

L2 2 Ma

L1L2 2 M2

Ma
1 : a

Ideal

(d)

v1

1

2

v2

1

2

i1 i2
a(L1L2 2 M2)

M

a2(L1L2 2 M2)
L2 2 Ma

a 2(L1L2 2 M2)
a2L1 2 Ma
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and

v2 = M
di1

dt
+ L2

di2

dt
.

These expressions for v1 and v2 are identical to Eqs. C.1 and C.2. Thus, the 
circuit shown in Fig. C.13 is equivalent to the magnetically coupled coils 
shown inside the box in Fig. C.1 because the terminal behavior of these 
two circuits is the same.

When we showed that the circuit in Fig. C.13 is equivalent to the mag-
netically coupled coils in Fig. C.1, we placed no restrictions on the turns 
ratio a. Therefore, an infinite number of equivalent circuits are possible. 
However, we can always find a turns ratio that makes all of the induc-
tances positive. Two values of a are of particular interest:

 a =
M
L1

, (C.7)

and

 a =
L2

M
. (C.8)

The value of a given by Eq. C.7 eliminates the inductances L1 - M>a 
and a2L1 - aM from the T-equivalent circuits and the inductances 
(L1L2 -  M2)>(a2L1 -  aM) and a2(L1L2 - M2)>(a2L1 - aM) from the 
p-equivalent circuits. The value of a given by Eq. C.8 eliminates the induc-
tances (L2>a2) -  (M>a) and L2 - aM from the T-equivalent circuits and 
the inductances (L1L2 - M2)>(L2 - aM) and  a2(L1L2 - M2)>(L2 - aM) 
from the p-equivalent circuits.

Also note that when a = M>L1, the circuits in Figs. C.12(a) and (c) 
are identical, and when a = L2>M, the circuits in Figs. C.12(b) and (d) 
are identical. Figures C.14 and C.15 summarize these observations. We 
can use the relationship M = k1L1L2 to derive the inductor values in 
Figs. C.14 and C.15 as functions of the self-inductances L1 and L2, and the 
coupling coefficient k. Then, the values of a given by Eqs. C.7 and C.8 will 
reduce the number of inductances needed in the equivalent circuit and 
guarantee that all the inductances will be positive.

The values of a given by Eqs. C.7 and C.8 can be determined exper-
imentally from the magnetically coupled coils. To find the ratio M>L1, 
drive the coil with N1 turns using a sinusoidal voltage source and leave 
the N2 coil open. Use a source frequency that guarantees vL1 W R1. 
Figure C.16 shows the resulting circuit.

Ideal

1 : a

v1

1

2

v2

1

2

i1 i2

L1

L1 2 1
k2
1

(a)

v1

1

2

v2

1

2

i1

i2

(b)

Ideal

1 : a

k2L2

(1 2 k2)L2

Figure C.14 ▲ Two equivalent circuits when  
a 5 MNL1.

Ideal

1 : a

k2L1
v1

1

2

v2

1

2

i2

(a)

i1

L1(1 2 k2)

v1

1

2

v2

1

2

i1 i2

(b)

Ideal

1 : a

L2

L2 2 1
k2
1

Figure C.15 ▲ Two equivalent circuits when  
a = L2NM.

V2

1

2

I1

1

2
V1

N1 N2

jwL1 jwL2

Figure C.16 ▲ Experimental determination of the 
ratio MNL1.

Because the N2 coil is open,

V2 = jvMI1.

Since vL1 W R1, the current I1 is

I1 =
V1

jvL1
.

Substituting the expression for I1 into the equation for V2 and rearranging 
yields

aV2

V1
 b

I2 = 0
=

M
L1

.

Thus, the ratio M>L1 equals the ratio of the terminal voltages when I2 = 0.
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To experimentally determine the ratio L2>M, reverse the procedure; 
that is, coil 2 is energized and coil 1 is left open. Then

L2

M
= aV2

V1
 b

I1 = 0
.

Example C.2 illustrates how to replace magnetically coupled coils 
with an equivalent circuit that includes an ideal transformer and positive 
inductor values.

EXAMPLE C.2

Consider the circuit we analyzed in part (b) of 
Example C.1, which replaced the magnetically cou-
pled coils in Fig. C.6 (with the polarity dot on the sec-
ondary winding moved to the bottom terminal) with 
a T-equivalent circuit. The equivalent circuit is shown 
in Fig. C.11 and must use a capacitor to represent the 
negative reactance. Repeat the analysis in Example 
C.1(b). but now replace the magnetically coupled 
coils with the equivalent circuit in Fig. C.14(a).

Solution
From Example C.1(b) we know that L1 = 9 H,
L2 = 4 H, and M = -3 H. We need to calculate 
the coupling coefficient k, the turns ratio a, and 
the inductor values for the equivalent circuit in  
Fig. C.14(a):

k =
M1L1L2

=
31(9)(4)

= 0.5,

a =
M
L1

=
-3
9

= -
1
3

,

L1a 1
k2 - 1b = 9a 1

0.52 - 1b = 27 H.

Note that in calculating the coupling coefficient, we 
ignore the sign of the mutual inductance because 
this sign represents the location of the polarity 
marks and has no effect on the amount of coupling 
between the coils.

Using the values we calculated, we can replace 
the magnetically coupled coils in Fig. C.6 with the 

equivalent circuit in Fig. C.14(a). Remember that 
the source frequency is 400 rad>sec. The result is 
the circuit in Fig. C.17. We have defined the cur-
rents and voltages for the ideal transformer, so we 
can write the equations for this circuit. There are 
three meshes, so we will write three KVL equations 
using the mesh currents I1, Ia, and Ib. Then we use 
the dot convention for ideal transformers to write 
the equations relating the phasor currents Ia and Ib, 
and the phasor voltages Va and Vb:

500 V 200 V

j3600 V

j10,800 Vj 100 V

300  08 V

I1 Ia

1

2
Va

1

2

100 V

800 V

2j2500 V

I2Ib

Vb

1

2

1 :21N3

Ideal

Figure C.17 ▲ The circuit of Fig. C.6, with the magnetically coupled coils replaced by the equivalent circuit in Fig. C.14(a)

 (700 + j3700)I1 - j3600Ia - 300 = 0,

 - j3600I1 - j14,400Ia + Va = 0,

 (900 - j2500)Ib + Vb = 0,

 Va =
Vb

- (1>3)
,

 Ia =
1
3

 Ib.

Solving for I1 and Ib,

 I1 = 0.02 - j0.06 = 63.25l-71.57° mA,

 Ib = 0.0267 + j0.0533 = 59.63l63.43° mA.

Because I2 = -Ib,

I2 = -0.0267 - j0.0533 = 59.63l-116.57° mA.

The values for I1 and I2 match those found in  
part (b) of Example C.1.
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D
APPENDIX 

The Decibel
The decibel was introduced by telephone engineers to characterize the 
power loss across the cascaded circuits used to transmit telephone sig-
nals. Figure D.1 defines the problem.

There, pi is the power input to the system, p1 is the power output of 
circuit A, p2 is the power output of circuit B, and po is the power output 
of the system. The power gain of each circuit is the ratio of the power 
out to the power in. Thus

sA =
p1

pi
, sB =

p2

p1
, and sC =

po

p2
.

The overall power gain of the system is the product of the individual 
gains, or

po

pi
=

p1

pi
 
p2

p1
 
po

p2
= sAsBsC.

We can replace the multiplication of power ratios with addition if we 
use the logarithm; that is,

log10
po

pi
= log10sA + log10sB + log10sC.

The log of a power ratio was named the bel, in honor of Alexander 
Graham Bell. Thus, we calculate the overall power gain, in bels, by 
summing the power gains, also in bels, of each segment of the trans-
mission system. In practice, the bel is an inconveniently large quantity. 
 One-tenth of a bel is a more useful measure of power gain—hence the 
decibel. The number of decibels equals 10 times the number of bels, so

Number of decibels = 10 log10
po

pi
.

When we use the decibel as a measure of power ratios, in some sit-
uations the resistance seen looking into the circuit equals the resistance 
loading the circuit, as illustrated in Fig. D.2. When the input resistance 
equals the load resistance, we can convert the power ratio to either a 
voltage ratio or a current ratio:

iin

Rin RL

Rin 5 RL

vin

1

2
vout

1

2
A

iout

Figure D.2 ▲ A circuit in which the input resistance 
equals the load resistance.

pi pop1 p2A B C

Figure D.1 ▲ Three cascaded circuits.

po

pi
=

vout
2 >RL

vin
2 >Rin

= avout

vin
 b

2

or

po

pi
=

iout
2 RL

i2
in >Rin 

= a iout

iin
 b

2

.
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These equations show that the number of decibels becomes

  Number of decibels = 20 log10
vout

vin
 (D.1)

 = 20 log10
iout

iin
.

The definition of the decibel used in Bode diagrams (see Appendix 
E) is borrowed from the results expressed by Eq. D.1, since these results 
apply to any transfer function involving a voltage ratio, a current ratio, a 
voltage-to-current ratio, or a current-to-voltage ratio. You should keep 
the original definition of the decibel firmly in mind because it is of funda-
mental importance in many engineering applications.

When you are working with transfer function amplitudes expressed in 
decibels, having a table that translates the decibel value to the actual value 
of the output/input ratio is helpful. Table D.1 gives some useful pairs. The 
ratio corresponding to a negative decibel value is the reciprocal of the 
positive ratio. For example, -3 dB corresponds to an output/input ratio 
of 1>1.41, or 0.707. Interestingly, -3 dB corresponds to the half-power 
frequencies of the filter circuits discussed in Chapters 14 and 15.

TABLE D.1 Some dB-Ratio Pairs

dB Ratio dB Ratio

0 1.00 30 31.62

3 1.41 40 100.00

6 2.00 60 103

10 3.16 80 104

15 5.62 100 105

20 10.00 120 106

The decibel is also used as a unit of power when it expresses the ratio 
of a known power to a reference power. Usually, the reference power is 
1 mW, and the power unit is written dBm, which stands for “decibels rel-
ative to one milliwatt.” For example, a power of 20 mW corresponds to 
{13 dBm.

AC voltmeters commonly provide dBm readings that assume not only 
a 1 mW reference power but also a 600 Ω reference resistance (a value 
commonly used in telephone systems). Since a power of 1 mW in 600 Ω 
corresponds to 0.7746 V (rms), that voltage is read as 0 dBm on the meter. 
For analog meters, there usually is exactly a 10 dB difference between 
adjacent ranges. Although the scales may be marked 0.1, 0.3, 1, 3, 10, and 
so on, in fact 3.16 V on the 3 V scale lines up with 1 V on the 1 V scale.

Some voltmeters provide a switch to choose a reference resistance (50, 
135, 600, or 900 Ω) or to select dBm or dBV (decibels relative to one volt).
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E
APPENDIX 

Bode Diagrams
The frequency response plot is a very important tool for analyzing a 
circuit’s behavior. Up to this point, we have shown qualitative sketches 
of the frequency response without discussing how to create these plots. 
The best way to generate and plot the amplitude and phase data is to 
use a computer; we can rely on it to give us accurate numerical plots of 
0H(jv) 0  and u(jv) versus v. But we can create preliminary sketches of 
the frequency response using Bode diagrams.

A Bode diagram is a graphical technique that approximates a sys-
tem’s frequency response. These diagrams are named to recognize the 
pioneering work of H. W. Bode.1 They are most useful for systems 
whose transfer function poles and zeros are reasonably well separated.

A Bode diagram consists of two separate plots: One shows how the 
transfer function amplitude varies with frequency, and the other shows 
how the transfer function phase angle varies with frequency. The Bode 
diagram plots are constructed using semilog graph paper to accommo-
date a wide range of frequencies. In both the amplitude and phase plots, 
the frequency is plotted on the horizontal log scale. The amplitude and 
phase angle are plotted on the linear vertical scale.

E.1 Real, First-Order Poles and Zeros
First, we consider a transfer function, H(s), with poles and zeros that are 
real and distinct. We introduce the procedure for constructing a Bode 
diagram using

H(s) =
K(s + z1)

s(s + p1)
,

from which

H(jv) =
K(jv + z1)

jv(jv + p1)
.

To begin, put the expression for H(jv) in a standard form, which we 
derive by dividing out the poles and zeros:

H(jv) =
Kz1(1 + jv>z1)

p1(jv)(1 + jv>p1)
.

Next we let Ko equal Kz1>p1, and express H(jv) in polar form:

 H(jv) =
Ko 0 1 + jv>z1 0lc1

( 0v 0l90°)( 0 1 + jv>p1 0lb1)

1See H. W. Bode, Network Analysis and Feedback Design (New York: Van Nostrand, 1945).
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2See Appendix D for more information regarding the decibel.

 =
Ko 0 1 + jv>z1 0
0v 0 0 1 + jv>p1 0  

l(c1 - 90° - b1) .

Therefore,

 0H(jv) 0 =
Ko 0 1 + jv>z1 0
v 0 1 + jv>p1 0 , (E.1)

 u(jv) = c1 - 90° - b1. (E.2)

By definition, the phase angles c1 and b1 are

c1 =  tan - 1v>z1;

b1 =  tan - 1v>p1.

The Bode diagram includes the plots of Eq. E.1 (amplitude) and Eq. E.2 
(phase) as functions of v.

E.2 Straight-Line Amplitude Plots
Notice from Eq. E.1 that the amplitude plot requires us to multiply and 
 divide values associated with the poles and zeros of H(s). We can trans-
form the multiplication and division into addition and subtraction if we 
express 0H(jv) 0  as a logarithmic value: the decibel (dB).2 The amplitude 
of H(jv) in decibels is

AdB = 20 log10 0H(jv) 0 .
Expressing Eq. E.1 in terms of decibels gives

 AdB = 20 log10
Ko 0 1 + jv>z1 0
v 0 1 + jv>p1 0  (E.3)

 = 20 log10Ko + 20 log10 0 1 +  jv>z1 0

 -  20 log10v - 20 log10 0 1 +  jv>p1 0 .
To construct a plot of Eq. E.3 versus frequency v, we plot each term 

in the equation separately and then combine the separate plots graphi-
cally. The terms in Eq. E.3 are easy to plot because they can be approxi-
mated by straight lines.

The plot of 20 log10Ko is a horizontal straight line because Ko is not a 
function of frequency. The value of this term is positive for Ko 7 1, zero 
for Ko = 1, and negative for Ko 6 1.

Two straight lines approximate the plot of 20 log10 0 1 + jv>z1 0 . For 
small values of v, the magnitude 0 1 + jv>z1 0  is approximately 1, and 
therefore

20 log10 0 1 + jv>z1 0 S 0 as v S 0.
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For large values of v, the magnitude 0 1 +  jv>z1 0  is approximately v>z1,  
and therefore

20 log10 0 1 + jv>z1 0 S 20 log10(v>z1) as v S ∞ .

On a log frequency scale, 20 log10(v>z1) is a straight line with a slope of 
20 dB>decade (a decade is a 10-to-1 change in frequency). This straight 
line intersects the 0 dB axis at v = z1. This value of v is called the corner 
frequency. Thus, two straight lines can approximate the amplitude plot of 
a first-order zero, as shown in Fig. E.1.

25

1 2 3 4 5 6 7
v (rad s)

8 910 20 30 40 50

0

5

10
AdB

15

20

25

Decade

20 dBNdecade

10z1z1

20 log10 z1
v

Figure E.1 ▲ A straight-line approximation of the amplitude plot of a first-order zero.

The plot of -20 log10v is a straight line having a slope of 
-20 dB>decade that intersects the 0 dB axis at v = 1.

 Two straight lines approximate the plot of -20 log10 0 1 + jv>p1 0  and 
intersect on the 0 dB axis at v = p1. For large values of v, the straight 
line 20 log10(v>p1) has a slope of -20 dB>decade. Figure E.2 shows the 
straight-line approximation of the amplitude plot for a first-order pole.

1 2 3 4 5 6 7 8
v (rad s)

910 20 30 40 50

–20

–15

–10

–5

0

5

AdB

p1 10p1–20 log10 p1
v

–20 dBNdecade

Figure E.2 ▲ A straight-line approximation of the amplitude plot of a first-order pole.

Figure E.3 shows a plot of Eq. E.3 for Ko = 110, z1 = 0.1 rad>s, and 
p1 = 5 rad>s. Each term in Eq. E.3 is also plotted in Fig. E.3, so you can 
verify that the individual terms sum to create the plot of the transfer func-
tion’s amplitude, labeled 20 log10 0H(jv) 0 .
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20 log10 1 1 j z1
v

220 log10 1 1 j p1
v

220 log10v

10

50
20 log10 |H(jv)|

20 log10 Ko

40

30

20
AdB

0

210

220
0.05 0.1 0.5 1.0 5

v (radNs)
10 50 100 500

20 log10 |H(jv)|

Figure E.3 ▲ A straight-line approximation of the amplitude plot for Eq. E.3.

Example E.1 constructs a straight-line amplitude plot for a transfer 
function with first-order poles and zeros.

EXAMPLE E.1

For the circuit in Fig. E.4:

11 V

100 mH

vi

1

2

vo

10 mF

1

2

Figure E.4 ▲ The circuit for Example E.1.

a) Find the transfer function, H(s) = Vo(s)>Vi(s).

b) Construct a straight-line approximation of the 
Bode amplitude plot.

c) Calculate 20 log10 0H(jv) 0  at v = 50 rad>s and 
v = 1000 rad>s. Identify these two values on the 
plot you constructed in (b).

d) If vi(t) = 5 cos (500t + 15°) V, use the Bode plot 
you constructed to predict the amplitude of vo(t) 
in the steady state.

Solution
a) Transform the circuit in Fig. E.4 into the  

s-domain and then use voltage division to get

H(s) =
(R>L)s

s2 + (R>L)s +
1

LC
 
.

Substituting the numerical values from the circuit, 
we get

H(s) =
110s

s2 + 110s + 1000
=

110s
(s + 10)(s + 100)

.

b) Write H(jv) in standard form:

H(jv) =
0.11jv

[1 + j(v>10)][1 + j(v>100)]
.

The expression for the amplitude of H(jv) in 
decibels is

 AdB = 20 log10 0H(jv) 0
 = 20 log100.11 +  20 log10 0 jv 0

-  20 log10 ` 1 + j
v

10
 ` - 20 log10 ` 1 + j

v

100
 ` .

Figure E.5 shows the straight-line plot. Each 
term contributing to the overall amplitude is also 
plotted and identified.

c) We have

 H(j50) =
0.11(j50)

(1 + j5)(1 + j0.5)

 = 0.9648l-15.25°,

 20 log10 0H(j50) 0 = 20 log10 0.9648

 = -0.311 dB;
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Figure E.5 ▲ The straight-line amplitude plot for the transfer func-
tion of the circuit in Fig. E.4.

These two magnitude values are plotted in 
Fig. E.5.

d) The frequency of vi is 500 rad>sec. As we can see 
from the Bode plot in Fig. E.5, the value of AdB 
at v = 500 rad>s is approximately -12.5 dB. 
Therefore,

0H(j500) 0 = 10(-12.5>20) = 0.24

and

Vo = 0H(j500) 0Vi = (0.24)(5) = 1.19 V.

To calculate the actual value of 0H(jv) 0 , substitute 
v = 500 into the equation for 0H(jv) 0 :

H(j500) =
0.11(j500)

(1 + j50)(1 + j5)
= 0.22l-77.54°.

Thus, the actual output voltage magnitude for 
the specified signal source at a frequency of 
500 rad>s is

Vo = 0H(j500) 0Vi = (0.22)(5) = 1.1 V.

 H(j1000) =
0.11(j1000)

(1 + j100)(1 + j10)

 = 0.1094l-83.72°;

 20 log10 0.1094 = -19.22 dB.

E.3 More Accurate Amplitude Plots
We can make the straight-line plots for first-order poles and zeros more 
accurate by correcting the amplitude values at the corner frequency, one-
half the corner frequency and twice the corner frequency. At the corner 
frequency, the actual value in decibels is

AdBc
= {20 log10 0 1 + j1 0

 = {20 log1012

 ≈ {3 dB.

The actual value at one-half the corner frequency is

 AdBc>2
= {20 log10 ` 1 + j

1
2

 `

 = {20 log10A5
4

 ≈ {1 dB.

At twice the corner frequency, the actual value in decibels is

 AdB2c
= {20 log10 0 1 +  j2 0

 = {20 log1015

 ≈ {7 dB.
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In these three equations, the plus sign applies to a first-order zero, 
and the minus sign applies to a first-order pole. The straight-line approx-
imation of the amplitude plot is 0 dB at both the corner frequency and 
at one-half the corner frequency, and is {6 dB at twice the corner fre-
quency. Hence, the corrections are {3 dB at the corner frequency and 
{1 dB at both one-half the corner frequency and twice the corner fre-
quency. Figure E.6 summarizes these corrections.

AdB

vc
2

vc 2vc

225

220

215

210

25

10

15
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25

0

5

21 dB

1 dB1 dB
3 dB

21 dB

23 dB

Figure E.6 ▲ Corrected amplitude plots for a first-order zero and pole.

If the poles and zeros of H(s) are widely separated, you can include 
these corrections into the overall amplitude plot and produce a reason-
ably accurate curve. However, if the poles and zeros are close together, 
the overlapping corrections are difficult to evaluate, so estimating the am-
plitude characteristic using the uncorrected straight-line plot is a better 
choice. Use a computer to create an accurate amplitude plot in the fre-
quency range of interest.

E.4 Straight-Line Phase Angle Plots
We can also use straight-line approximations to plot the transfer function 
phase angle versus frequency. Using the transfer function phase angle in 
Eq. E.2, we know that the phase angle associated with the constant Ko is 
zero, and the phase angle associated with a first-order zero or pole at the 
origin is a constant {90°. For a first-order zero or pole not at the origin, 
the straight-line approximations are as follows:

• For frequencies less than one-tenth the corner frequency, the phase 

angle is approximated by zero.
• For frequencies greater than 10 times the corner frequency, the 

phase angle is approximated by {90°.
• Between one-tenth the corner frequency and 10 times the corner 

frequency, the phase angle plot is a straight line with the value 0° at 

one-tenth the corner frequency,  {45° at the corner frequency, and 

{90° at 10 times the corner frequency.
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Throughout, the plus sign applies to the first-order zero and the minus 
sign to the first-order pole. Figure E.7 depicts the straight-line approxima-
tion for a first-order zero and pole. The dashed curves show the exact plot 
of the phase angle versus frequency. Note how closely the straight-line 
plot approximates the actual phase angle plot. The maximum deviation 
between the straight-line plot and the actual plot is approximately 6°.
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Straight-line approximation

u (v) 2b1 5 2tan21 (vNp1)
Actual

Straight-line approximation

c1 5 tan21 (vNz1)
Actual

Figure E.7 ▲ Phase angle plots for a first-order zero and pole.

We construct a phase angle plot using a straight-line approximation 
in Example E.2.

EXAMPLE E.2

a) Make a straight-line phase angle plot for the 
transfer function in Example E.1.

b) Compute the phase angle u(jv) at v = 50, 500, 
and 1000 rad>s. Add these phase angle values to 
the plot you constructed in (a).

c) Using the results from Example E.1(e) and  
Example E.2(b), compute the steady-state out-
put voltage if the source voltage is given by 
vi(t) = 10 cos (500t - 25°) V.

Solution
a) From Example E.1,

H(jv) =
0.11(jv)

[1 +  j(v>10)][1 +  j(v>100)]

=
0.11 0 jv 0

0 1 +  j(v>10) 0 0 1 +  j(v>100) 0  l(c1 - b1 - b2).

Therefore,

u(jv) = c1 - b1 - b2,

where
c1 = 90°,

b1 = tan- 1(v>10),  and 

b2 = tan- 1(v>100). 

We construct the straight-line approximation of 
u(jv) by adding c1 = 90° and the straight-line 
approximations for –b1 and –b2, all of which are 
depicted in Fig. E.8.

b) From the transfer function we have

 H( j50) = 0.96l-15.25°,

 H(j500) = 0.22l-77.54°,

 H(j1000) = 0.11l-83.72°.
Thus,

u(j50) = -15.25°,

u(j500) = -77.54°,
and

u(j1000) = -83.72°.
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Figure E.8 ▲ A straight-line approximation of u(v) for  
Example E.2.

These three phase angles are identified in Fig. E.8.

c) The frequency of the input voltage is 500 rad>sec.  
Therefore,

 Vo = 0H(j500) 0Vi

 = (0.22)(10)

 = 2.2 V,

and

 uo = u(j500) + ui

 = -77.54° - 25°

 = -102.54°.

Thus,

vo(t) = 2.2 cos(500t - 102.54°) V.

E.5 Bode Diagrams: Complex Poles 
and Zeros

We now consider how to construct a Bode diagram when the transfer 
function has complex poles and zeros. Let’s focus on constructing the am-
plitude and phase angle plots for a transfer function with a pair of com-
plex poles. Once you understand the rules for handling complex poles, 
you can apply these rules, with minor adjustments, to create plots for a 
pair of complex zeros.

The complex poles and zeros of H(s) always appear in conjugate 
pairs. When H(s) has complex poles, the first step in constructing a Bode 
diagram for H(s) is to combine the conjugate pair into a single quadratic 
term. Thus, for

H(s) =
K

(s +  a - jb)(s +  a +  jb)
,

we first rewrite the product (s + a - jb)(s + a + jb) as

(s +  a)2 +  b2 = s2 +  2as +  a2 +  b2.

When making Bode diagrams, we write the quadratic term in a more con-
venient form:

s2 +  2as +  a2 +  b2 = s2 +  2zvns +  vn
2.

Comparing the two forms shows that

vn
2 = a2 + b2

and

zvn = a.
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The term vn is the corner frequency of the quadratic term, and z is the 
damping coefficient of the quadratic term. If z 6 1, the roots of the qua-
dratic term are complex, and if z Ú 1, the roots are real. Assuming that 
z 6 1, we rewrite the transfer function as

H(s) =
K

s2 +  2zvns +  vn
2 .

We then write the transfer function in standard form by dividing through 
by v2

n, so

H(s) =
K

vn
2   

1
1 +  (s>vn)2 + 2z(s>vn)

,

from which

H(jv) =
Ko

1 -  (v2>vn
2) +  j(2zv>vn)

,

where

Ko =
K

vn
2 .

We replace the ratio v>vn by a new variable, u. Then

H(jv) =
Ko

1 -  u2 +  j2zu
.

Now we write H(jv) in polar form:

H(jv) =
Ko

0 (1 -  u2) +  j2zu 0lb1
,

from which

 AdB = 20 log10 0H(jv) 0

 = 20 log10Ko -  20 log10 0 (1 -  u2) +  j2zu 0 ,
and

u(jv) = -b1 = -  tan - 1 2zu

1 - u2.

E.6 Straight-Line Amplitude Plots  
for Complex Poles

The expression -20 log10 0 1 -  u2 +  j2zu 0  represents the quadratic term’s 
contribution to the amplitude of H(jv). Because u = v>vn, u S 0 as 
v S 0, and u S ∞  as v S ∞ . To see how the term behaves as v ranges 
from 0 to ∞ , we note that

 -20 log10 0 (1 -  u2) +  j2zu 0 = -20 log102(1 -  u2)2 +  4z2u2 

(E.4)= -10 log10[u
4 +  2u2(2z2 -  1) +  1].
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Then, as u S 0,

-10 log10[u
4 + 2u2(2z2 - 1) + 1] S 0,

and as u S ∞ ,

-10 log10[u
4 + 2u2(2z2 - 1) + 1] S  -40 log10u.

From these limiting expressions, we see that the approximate ampli-
tude plot consists of two straight lines. For v 6 vn, the straight line 
lies along the 0 dB axis, and for v 7 vn, the straight line has a slope of 
-40 dB>decade. These two straight lines join on the 0 dB axis at u = 1 or 
v = vn. Figure E.9 shows the straight-line approximation for a quadratic 
term with z 6 1.
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0
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240 dBNdecade

AdB

vn 10vn

v (rad s)

Figure E.9 ▲ The amplitude plot for a pair of 
 complex poles.

E.7  Correcting Straight-Line Amplitude 
Plots for Complex Poles

Corrections to the straight-line amplitude plot for a pair of complex poles 
depend on the damping coefficient z. Figure E.10 shows the effect of z 
on the amplitude plot. Note that when z is very small, a large peak in the 
amplitude occurs in the neighborhood of the corner frequency vn(u = 1).  
When z Ú  1>12, the corrected amplitude plot lies entirely below the 
straight-line approximation. The straight-line amplitude plot can be cor-
rected by locating four points on the actual curve. These four points cor-
respond to (1) one-half the corner frequency, (2) the frequency at which 
the amplitude reaches its peak value, (3) the corner frequency, and (4) the 
frequency at which the amplitude is zero.

At one-half the corner frequency (point 1), the actual amplitude is

 AdB(vn>2) = -10 log10(z
2 + 0.5625). (E.5)
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Figure E.10 ▲ The effect of z on the amplitude plot.

The amplitude peaks (point 2) at a frequency of

 vp = vn21 - 2z2, (E.6)

and it has a peak amplitude of

 AdB(vp) = -10 log10[4z
2(1 - z2)]. (E.7)

At the corner frequency (point 3), the actual amplitude is

 AdB(vn) = -20 log102z. (E.8)

The corrected amplitude plot crosses the 0 dB axis (point 4) at

 vo = vn22(1 - 2z2) = 12vp. (E.9)

Figure E.11 shows these four points.
Evaluating Eq. E.4 at u = 0.5 and u = 1.0, respectively, yields Eqs. E.5  

and E.8. Equation E.9 results from finding the value of u that makes 
u4 + 2u2(2z2 - 1) + 1 = 1. To derive Eq. E.6, differentiate Eq. E.4 with 
respect to u and find the value of u where the derivative is zero. To derive 
E.7, find the value of u for the frequency in Eq. E.6, then evaluate Eq. E.4 
at that value of u.

Example E.3 illustrates the amplitude plot for a transfer function with 
a pair of complex poles.
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vnN2 vp vn v0

Figure E.11 ▲ Four points on the corrected 
 amplitude plot for a pair of complex poles.
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EXAMPLE E.3

Compute the transfer function for the circuit shown 
in Fig. E.12.

50 mH 1 V

vi
1

2
vo

1

2

8 mF

Figure E.12 ▲ The circuit for Example E.3.

a) Find the value of the corner frequency in radians 
per second.

b) Find the value of Ko.

c) Find the value of the damping coefficient.

d) Make a straight-line amplitude plot for frequen-
cies from 10 to 500 rad>s.

e) Calculate the actual amplitude in decibels at 
vn>2, vp, vn, and vo. Use these values to correct 
the plot in (d).

f) Using the corrected amplitude plot, describe 
the type of filter represented by the circuit in 
Fig. E.12 and estimate its cutoff frequency, vc.

Solution
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220
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2 3

4

Figure E.13 ▲ The amplitude plot for Example E.3.

e) The actual amplitudes are

AdB(vn>2) = -10 log10(0.6025) = 2.2 dB,

vp = 5010.92 = 47.96 rad>s,

 AdB(vp) = -10 log10(0.16)(0.96) = 8.14 dB,

 AdB(vn) = -20 log10(0.4) = 7.96 dB,

 vo = 12vp = 67.82 rad>s,

 AdB(vo) = 0 dB.

Figure E.13 shows these four points, identified as 
follows: 

• Point 1 has the coordinates (25 rad>s, 2.2 dB), 
• Point 2 has the coordinates (47.96 rad>s,  

8.14 dB), 
• Point 3 has the coordinates (50 rad>s, 7.96 dB), 

and 
• Point 4 has the coordinates (67.82 rad>s, 0 dB). 

Figure E.13 also shows the corrected plot, which 
is the dashed line that passes through these four 
points.

f) The amplitude plot in Fig. E.13 identifies the cir-
cuit as a low-pass filter. At the cutoff frequency, 
the magnitude of the transfer function, 0H(jvc) 0 , 
is 3 dB less than the maximum magnitude. From 
the corrected plot, the cutoff frequency appears 
to be about 55 rad>s, almost the same as that pre-
dicted by the straight-line Bode diagram.

Transform the circuit in Fig. E.12 to the s- 
domain and then use voltage division to get

H(s) =

1
LC

 

s2 +  aR
L

 bs +  
1

LC
 
.

Substituting the component values,

H(s) =
2500

s2 + 20s + 2500
.

a) From the expression for H(s), vn
2 = 2500; there-

fore, vn = 50 rad>s.

b) By definition, Ko is 2500>vn
2, or 1.

c) The coefficient of s in the denominator equals 
2zvn; therefore

z =
20

2vn
= 0.20.

d) See Fig. E.13.
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E.8  Phase Angle Plots for Complex 
Poles

The phase angle plot for a pair of complex poles is a plot of 
u(jv) = -  tan - 1[2zu>(1 - u2)]. The phase angle is zero at zero fre-
quency and is -90° at the corner frequency. It approaches -180° as v 
(and, therefore, u) becomes large. As in the case of the amplitude plot, z 
determines the exact shape of the phase angle plot. Figure E.14 shows the 
effect of z on the phase angle plot.
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21808
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u
2 4 8
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2158

0

158

z 5 0.1

z 5 0.3

u (v)

Figure E.14 ▲ The effect of z on the phase angle  
plot.

We can make a straight-line approximation of the phase angle plot for 
a pair of complex poles. We do so by drawing three line segments:

• For v … (4.81- z)vn, draw a horizontal line at 0°;

• For v Ú (4.81z)vn, draw a horizontal line at –180°;
• For (4.81- z)vn … v … (4.81z)vn, draw a straight line connecting the 

0° phase angle at (4.81- z)vn to the –180° phase angle at (4.81z)vn.  

This line passes through –90° at vn and has a slope of -132>z 

 degrees/decade (-2.3>z rad/decade).

Figure E.15 depicts the straight-line approximation for z = 0.3 and 
shows the actual phase angle plot. We see that the straight line is a good 
approximation of the actual curve near the corner frequency, but the 
error is quite large near the two points where the straight lines intersect. 
In Example E.4, we summarize our discussion of Bode diagrams.
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1.0 2.0
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u

Figure E.15 ▲ A straight-line approximation of the phase 
angle for a pair of complex poles.



 E.8 Phase Angle Plots for Complex Poles 783

EXAMPLE E.4

a) Compute the transfer function, H(s), for the cir-
cuit shown in Fig. E.16.

vi

40 mF

1 V

1

2

vo

250 mH

1

2

Figure E.16 ▲ The circuit for Example E.4. 

b) Make a straight-line amplitude plot of 
20 log10 0H(jv) 0 .

c) Use the straight-line amplitude plot to determine 
the type of filter represented by this circuit and 
then estimate its cutoff frequency.

d) Find the actual cutoff frequency.

e) Make a straight-line phase angle plot of H(jv).

f) Using the plot in (e), find the phase angle at the 
estimated cutoff frequency found in (c).

g) Find the phase angle at the actual cutoff frequen-
cy found in (d).

Solution

a) Transform the circuit in Fig. E.16 to the s-domain 
and then use voltage division to get

H(s) =

R
L

 s +  
1

LC
 

s2 +  
R
L

 s +  
1

LC
 
.

Substituting the component values from the cir-
cuit gives

H(s) =
4(s + 25)

s2 + 4s + 100
.

b) The first step in making Bode diagrams is to put 
H(jv) in standard form. Because H(s) contains a 
quadratic factor, we first check the value of z. We 
find that z = 0.2 and vn = 10, so

H(s) =
s>25 +  1

1 +  (s>10)2 +  0.4(s>10)
,

from which

H( jv) =
0 1 +  jv>25 0 lc1

0 1 -  (v>10)2 +  j0.4v>10 0lb1
 .

Note that for the quadratic term, u = v>10. The am-
plitude of H(jv) in decibels is

AdB = 20 log10 0 1 + jv>25 0

- 20 log10 c ` 1 - a v

10
 b

2

+  j0.4a v

10
 b ` d ,

and the phase angle is

u(jv) = c1 - b1,

where

c1 =  tan - 1(v>25),

b1 =  tan - 1 0.4(v>10)

1 - (v>10)2.

Figure E.17 shows the amplitude plot and includes the 
plots of the two terms that make up AdB.
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Figure E.17 ▲ The amplitude plot for Example E.4.

c) The straight-line amplitude plot in Fig. E.17 indi-
cates that the circuit is a low-pass filter. At the cutoff 
frequency, the amplitude of H(jv) is 3 dB less than 
the amplitude in the passband. From the plot, we 
predict that the cutoff frequency is approximately 
13 rad>s.

d) To solve for the actual cutoff frequency, replace s with 
jv in H(s), compute the expression for 0H(jv) 0 , set 
0H(jvc) 0 = 11>12 2Hmax = 1>12, and solve for vc.  

First,

H(jv) =
4(jv) + 100

(jv)2 + 4(jv) + 100
.
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Then,

0H(jvc) 0 =
2(4vc)

2 +  10022(100 - vc
2)2 +  (4vc)

2
=

112
.

Solving for vc gives us

vc = 16 rad>s.

e) Figure E.18 shows the phase angle plot, as well as plots 
of the two angles c1 and –b1. Note that the straight-
line segment of u(v) between 1.0 and 2.5 rad>s does 
not have the same slope as the segment between 
2.5 and 100 rad>s.

c1(v)

u (v)

2b1(v)

21808

21358

2908

2458

08

458

908

1358

1 10 100 100050050
v (radNs)

u (v)

5

Figure E.18 ▲ The phase angle plot for Example E.4. 

f) From the phase angle plot in Fig. E.18, we estimate  
the phase angle at the estimated cutoff frequency of  
13 rad>s to be -65°.

g) We can compute the exact phase angle at the actual 
cutoff frequency by substituting s = j16 into the trans-
fer function H(s):

H(j16) =
4(j16 + 25)

(j16)2 + 4(j16) + 100
.

Computing the phase angle, we see

u(jvc) = u(j16) = -125.0°.

Note the large error in the predicted angle. In general, 
straight-line phase angle plots do not give satisfactory 
results in the frequency band where the phase angle is 
changing. The straight-line phase angle plot is useful 
only in predicting the general behavior of the phase 
angle, not in estimating actual phase angle values at 
particular frequencies.
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F 
APPENDIX 

An Abbreviated Table of 
Trigonometric Identities

1. sin(a {  b) = sina cosb { cosa sinb

2. cos(a {  b) = cosa cosb |  sina sinb

3. sina +  sinb = 2 sin 
a + b

2
 cos 

a - b

2

4. sina -  sinb = 2 cosaa + b

2
 b  sinaa - b

2
 b

5. cosa +  cosb = 2 cosaa + b

2
 b  cos aa - b

2
 b

6. cosa -  cosb = -2 sinaa + b

2
 b  sin aa - b

2
 b

7. 2 sina sinb = cos(a - b) - cos(a + b)

8. 2 cosa cosb = cos(a - b) + cos(a + b)

9. 2 sina cosb = sin(a + b) + sin(a - b)

10. sin2a = 2 sina cosa

11. cos2a = 2 cos2a -  1 = 1 -  2 sin2a

12. cos2a =
1
2

+
1
2

 cos2a

13. sin2a =
1
2

-
1
2

 cos2a

14. tan(a {  b) =
tana {  tanb

1 |  tana tanb

15. tan2a =
2 tana

1 -  tan2a
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G 
APPENDIX 

An Abbreviated Table of 
Integrals

1. Lxeaxdx =
eax

a2  (ax - 1)

2. Lx2eax dx =
eax

a3  (a2x2 - 2ax + 2)

3. Lx sinax dx =
1
a2 sinax -

x
a

 cosax

4. Lx cosax dx =
1
a2 cosax +

x
a

 sinax

5. Leax sinbx dx =
eax

a2 + b2 (a sinbx - b cosbx)

6. Leax cosbx dx =
eax

a2 + b2 (a cosbx + b sinbx)

7. L
dx

x2 + a2 =
1
a

 tan- 1 
x
a

8. L
dx

(x2 + a2)2 =
1

2a2 a x

x2 + a2 +
1
a

 tan- 1 
x
a

 b

9. Lsinax sinbx dx =
 sin(a - b)x

2(a - b)
-

sin(a + b)x

2(a + b)
 , a2 ≠ b2

10. Lcosax cosbx dx =
sin(a - b)x

2(a - b)
+

sin(a + b)x

2(a + b)
 , a2 ≠ b
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11. Lsinax cosbx dx = -
cos(a - b)x

2(a - b)
-

cos(a + b)x

2(a + b)
 , a2 ≠ b2

12. Lsin2ax dx =
x
2

-
 sin2ax

4a

13. Lcos2ax dx =
x
2

+
 sin2ax

4a

14. L
∞

0

a dx

a2 + x2 = •
p
2  , a 7 0;
0, a = 0;

-p
2  , a 6 0

15. L
∞

0

sinax
x

 dx = e
p
2  , a 7 0;
-p
2  , a 6 0

16. Lx2 sinax dx =
2x

a2  sinax -
a2x2 - 2

a3  cosax

17. Lx2 cosax dx =
2x

a2  cosax +
a2x2 - 2

a3  sinax

18. Leax sin2 bx dx =
eax

a2 + 4b2 c 1a sinbx - 2b cosbx2  sinbx +
2b2

a
 d

19. Leax cos2 bx dx =
eax

a2 + 4b2 c 1a cosbx + 2b sinbx2  cosbx +
2b2

a
 d
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H
APPENDIX 

Common Standard 
Component Values

Resistors (5% tolerance)[Ω]

10 100 1.0 k 10 k 100 k 1.0 M

120 1.2 k 12 k 120 k

15 150 1.5 k 15 k 150 k 1.5 M

180 1.8 k 18 k 180 k

22 220 2.2 k 22 k 220 k 2.2 M

270 2.7 k 27 k 270 k

33 330 3.3 k 33 k 330 k 3.3 M

390 3.9 k 39 k 390 k

47 470 4.7 k 47 k 470 k 4.7 M

560 5.6 k 56 k 560 k

68 680 6.8 k 68 k 680 k 6.8 M

Capacitors

10 pF 22 pF 47 pF

100 pF 220 pF 470 pF

0.001 mF 0.0022 mF 0.0047 mF

0.01 mF 0.022 mF 0.047 mF

0.1 mF 0.22 mF 0.47 mF

1 mF 2.2 mF 4.7 mF

10 mF 22 mF 47 mF

100 mF 220 mF 470 mF

Inductors

Value Current Rating

10 mH 3 A

100 mH 0.91 A

1 mH 0.15 A

10 mH 0.04 A
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Chapter 1
 1.1 249.6 gigawatt-hours

 1.6 a) 3.456 s

b) 175,000 cell lengths/week

 1.12 a) -100 W; power is being delivered by the box

b) Leaving

c) Gain

 1.19 a) 937.5 mW

b) 1.875 mJ

 1.24 a) 102 mW

b) 4.29 J

 1.34 aPdel = aPabs = 2280 W

Chapter 2
 2.6 a) 20 V

b) 8 W (absorbed)

 2.12 a) -5 mA

b) 50 mW

c) 5 mA; 50 mW

 2.15 100 Ω resistor

 2.19 a) 2.93 A, 0.7 A

b) 351.6 V

c) aPdel = aPabs = 1050 W

 2.29 a) 10 A in parallel with 5 Ω

b) 80 W

 2.33 45 V, 8.75 W

 2.42 1800 W, which is 1>2 the power for the circuit in 
Fig. 2.41

Chapter 3
 3.5 a) 9.5 kΩ, 0.78 kΩ, 22.2 Ω, 85.34 Ω

b) 42.1 mW, 1.14 W, 220.5 W, 34.13 mW

 3.12 a) 41.66 V

b) 20.83 mA

c) 5 W

Answers to Selected Problems

 3.14 a) 1008 Ω , 336 Ω

b) 3 W

 3.26 a) 150 mA

b) 5.4 V

c) 3.6 V

d) 1 V

 3.34 2.8 A

 3.37 a) 49,980 Ω

b) 4980 Ω

c) 230 Ω

d) 5 Ω

 3.51 a) 900 Ω

b) 25 mA

c) 800 Ω, 180 mW

d) 900 Ω, 90 mW

 3.60 a) 97.70 Ω

b) 45.166 W

 3.62 1.18 A, 391.34 W

 3.73 a) 0.2, 0.75

b) 384, 200

Chapter 4
 4.2 a) 8

b) 3

c) 4

d) Top-most and left-most meshes cannot be used, 
as they both contain current sources

 4.5 a) i4 + i6 - i5 - I = 0

b) derivation

 4.11 a) 8 A, 2 A, 6 A, 2 A, 4 A

b) 360 W

 4.13 120 V, 96 V

 4.18 1.35 kW
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 4.22 a) -37.5 V, 75 W

b) -37.5 V, 75 W

c) Part (b), fewer equations

 4.32 a) 0.1 A, 0.3 A, 0.2 A

b) 0.38 A, 0.02 A, -0.36 A

 4.40 2700 W

 4.43 a) 2.71 mA

b) 2 mW

c) 5.16 mW

 4.49 740 W

 4.54 a) Mesh current method

b) 0.09 mW

c) No

d) 222 mW

 4.62 a) -0.85 A

b) -0.85 A

 4.68 8 mA down in parallel with 10 kΩ

 4.72 a) 29.262 V

b) -8.55%

 4.79 150 Ω

 4.88 2.5 Ω and 22.5 Ω

 4.93 a) 25 V

b) 31.25 W

 4.105 39.583 V, 102.5 V

Chapter 5
 5.5 -15 V

 5.11 a) 0 … s … 0.40

b) 556.25 mA

 5.13 0 … Rf … 60 kΩ

 5.20 a) 10.54 V

b) -4.55 V … vg … 4.55 V

c) 181.76 kΩ

 5.27 a) -15.1 V

b) 34.3 kΩ

c) 250 kΩ

 5.30 a) 16 V

b) -4.2 V … vb … 3.8 V

 5.34 2994 Ω … Rx … 3006 Ω

 5.44 a) -19.9844

b) 736.1 mV

c) 5003.68 Ω

d) -20, 0, 5000 Ω

 5.49 a) 2 kΩ

b) 12 mΩ

Chapter 6
 6.2 a) i = 0 t 6 0

i = 4t A 0 … t … 25 ms

i = 0.2 - 4t A 25 … t … 50 ms

i = 0 50 ms … t

b) v = 0 t 6 0

v = 2 V 0 6 t 6 25 ms

v = -2 V 25 6 t 6 50 ms

v = 0 50 ms 6 t

p = 0 t … 0

p = 8t  W 0 … t … 25 ms

p = 8t - 0.4 W 25 6 t … 50 ms

p = 0 50 ms … t

w = 0 t … 0

w = 4t2 J 0 … t … 25 ms

w = 4t2 - 0.4t

        + 10 * 10-3 J     25 … t … 50 ms

w = 0 50 ms … t

 6.21 a) -50 * 104t + 15 V

b) 106t V

c) 1.6 * 106t - 12 V

d) 52 V

e) 

0
0

10
20
30
40
50
60

10 20 30 40 50

t (ms)

v (V)

 6.27 10/3 nF with an initial voltage drop of 15 V; 10 mF 
with an initial voltage drop of 25 V

 6.31 a) -20e-25t V, t Ú 0

b) -16e-25t + 21 V, t Ú 0

c) -4e-25t - 21 V, t Ú 0
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d) 320 mJ

e) 2525 mJ

f) 2205 mJ

g) 2525 - 320 = 2205

 6.39 a) 0.2
di2

dt
+ 10i2 = -0.5

dig

dt

b) 0.2
di2

dt
+ 10i2 = 5e-10t and -0.5

dig

dt
= 5e-10t

c) (-53.125e-10t + 6.25e-50t) V, t Ú 0

d) -46.875 V

 6.45 a) 0.95

b) 24 mH

c) 2.5

 6.50  0.8 nWb>A, 1.2 nWb>A
 6.53 a) (2.1, 4.3); (3.2, 2.5); (2.1, 2.5); (3.2, 4.3)

b) Zoom in

c) Zoom out

Chapter 7
 7.3 a) 1 A

b) 2 ms

c) 1e-500t A, t 7 0;  -160e-500t V, t Ú 0 + ;

-90e-500t V, t Ú 0 +

d) 34.6%

 7.9 a) 0 A, 100 mA, 0 V

b) 400 mA, 100 mA, –20 V

c) 500 mA, 0 A, 0 V

d) 0.1e-4000t A

e) (0.5 - 0.1e-4000t) A

f) -20e-4000t V

 7.19 a) -8.89e-2402t A t Ú 0

b) 131.59 mJ

c) 1.498t

 7.23 a) 59.4e-1000t V, t Ú 0

b) 9.9e-1000t mA, t Ú 0 +

 7.29 a) 8 kΩ

b) 0.25 mF

c) 2 ms

d) 648 mJ 

e) 1139 ms

 7.36 a) 100e-4000t A, t Ú 0 + ; 140 + 8e-4000t2  V, t Ú 0 +

b) 40V, – 40 V

 7.47 52 ms

 7.53 a) 100 V

b) -80 V

c) 1000 mS

d) 910.93 mS

 7.57 1-50 + 80e-200t2  V, t Ú 0

 7.60 3.67 ms

 7.68 a) 40 - 40e-5000t mA, t Ú 0

b) 10e-5000t V, t Ú 0 +

c) 16 - 16e-5000t mA, t Ú 0

d) 24 - 24e-5000t mA, t Ú 0

e) Yes

 7.72 -14.34 V

 7.80 -5 V, 0 … t … 5 s;

  -5e-0.1(t - 5) V, 5 s … t 6 ∞

 7.88 83.09 ms

 7.94 a) 
1

RC L
t

0
(vb - va)dy

b) Output is the integral of the difference between 
vb and va, scaled by a factor of 1>RC

c) 120 ms

 7.105 73 beats per minute

Chapter 8
 8.2 31.67e-500t - 6.67e-2000t V, t Ú 0

 8.7 a) 1.25 H, 125 mF, -200 V>s, 5 V

b) (2000t - 75)e-80t mA, t Ú 0 +

 8.11 100e-400t cos 300t -

800e-400t sin 300t V,            t Ú 0

 8.13 -  300e-250t + 400e-1000t V,   t Ú 0

 8.28 4 + 1.86e-501.4t - 3.86e-1276.3t A, t Ú 0

 8.39 8 kΩ, 2 H, 7.5 mA, 0

 8.50 (20 - 10,000te-500t - 20e-500t) V, t Ú 0

 8.56 a) 25e-30,000t sin 40,000t V

b) 23.18 ms

c) 9.98 V

d) 100.73e-6000t sin 49,638.7t V, 29.22 ms, 83.92 V
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 8.63 a) 0 … t … 0.5- s: vo1 = -1.6t V, vo = 10t2 V

0.5 +  s … t … tsat: vo1 = (0.8t - 12) V, 

vo = (-5t2 + 15t - 3.75) V

b) 3.5 s

 8.64 0 … t … 0.5 s: vo1 = (-0.8e-t + 0.8e-2t) V, 

  vo = (10 - 20e-t + 10e-2t) V

t Ú 0.5 s: vo1 = (0.4 - 0.91e-2(t - 0.5)) V, 

vo = (-5 + 19.42e-(t - 0.5) - 12.87e-2(t - 0.5)) V
 8.67 a) 6.33 pF

b) 5.03 sin(4p * 109t) V, t Ú 0

Chapter 9
 9.3 a) 25 V

b) 200 Hz

c) 1256.64 rad>s

d) 1.0472 rad

e) 60°

f) 5 ms

g) 416.67 ms

h) 25 cos 400pt V

i) 2.29 ms

 9.9 a) 3-17.94e-5333.33t +

 150 cos 14000t - 96.87°24  mA, t Ú 0
b) Transient: -17.94e-5333.33t mA 

Steady-state: 150 cos14000t - 96.87°2  mA

c) 38.44 mA

d) 150 mA, 4000 rad/s, -96.87°

e) Current lags voltage by 36.87°

 9.11 a) 28.38 cos(200t + 170.56°)

b) 141.33 cos(50t - 94.16°)

c) 16.7 cos(5000t + 170.52°)

d) 0

 9.12 a) 200 Hz

b) -90°

c) 2.5 Ω

d) 40l-90°

e) j2.5 Ω

 9.15 a) 
j25 V25 V

I

2608
1

2

2j62.5 V
V25

b) 554.7l-3.69°

c) 554.7 cos1500t - 3.69°2   mA

 9.17 a) 160 + j120 mS

b) 160 mS

c) 120 mS

d) 10 A

 9.29 -120 cos 8000t V

 9.35 500 rad>s

 9.42 2>3 Ω

 9.48 (-80 + j40) V in parallel with  (30 + j10) Ω

 9.54 188.43l-42.88° V

 9.64 -25 sin 5000t V

 9.77 a) 0.3536

b) 2 A

 9.82 1250l-45° Ω

 9.84 a) 247 + j 7.25 V

b) - j32 Ω, 241 + j8  V

c) -26.90 Ω

 9.88 a) 0 A

b) 0.436l0° A

c) Yes

Chapter 10
 10.1 a) 129.41 W(abs), 482.96 VAR(abs)

b) -11.65 W(del), 43.47 VAR(abs)

c) -63.39 W(del), -135.95 VAR(del)

d) 257.12 W(abs), -306.42 VAR(del)

 10.2 a) No [40.1 A(rms)]

b) Yes [66.2 A(rms)]

 10.8 8 mW

 10.14 a) 15.81 V(rms)

b) 62.5 W



 Answers to Selected Problems 793

 10.17 a) 227.81l2.52° V(rms); 24.54l24.05° V(rms)

b) 

250

08 V

101.88

jXIl

RIl

Il

24.54

–36.878A

24.058 V

250

(R 5 1æ)

(X 5 2æ)

(R 5 1æ)

(X 5 2æ)

10.97

jXIl
RIl

Il
236.878A

227.81 08 V
2.528 V

 10.27 a) 0.96 (lag), 0.28; 0.6 (lead), -0.8; 0.8 (lead), -0.6

b) 0.74 (lead), -0.67

 10.41 a) 2000 - j2000 Ω

b) 3.125 mW

c) R = 1.8 kΩ and C = 47 nF gives 3.03 mW

 10.49 a) 360 mW

b) 4000 Ω, 0.1 mF

c) 443.1 mW

d) 450 mW

e) 4000 Ω, 66.67 nF

f) Yes

 10.52 a) 12.03l54.3 (rms)

b) 10.33 W

c) 0.88 %

 10.60 a) 125

b) 26.28125 W

 10.67 a) 15.63 kWh

b) 11.72 kWh

c) 9.16 kWh

d) 6.64 kWh

Chapter 11
 11.1 a) abc

b) acb

 11.11 a) 15.24 A(rms)

b) 6583.94 V(rms)

 11.12 a) 3.95l-18.4° A (rms), 3.95l101.6° A (rms),

3.95l-138.4° A (rms)

b) 216.51l-30° V (rms), 216.51l90° V (rms),

216.51l-150° V (rms)

c) 123.16l-1.45° V (rms), 123.16l118.55° V (rms),  
123.16l-121.45° V (rms)

d) 213.31l-31.45° V (rms), 213.31 l88.55° V (rms),  
213.31l-151.45° V (rms)

 11.15 21.64l121.34° A(rms)

 11.16 174.84l33.39° V (rms)

 11.25 11257.2l40.72° VA

 11.27 a) 3352.33l17.35° VA

b) 692.82 V (rms)

 11.35 6990.62 V(rms)

 11.45 a) proof

b) 2592 var, -2592 var, 3741.23 var, -4172.80 var

 11.54 a) 16.71 μF

b) 50.14 μF

Chapter 12
 12.3 a) -3(t + 5)u(t + 5) + 30u(t) + 3(t -  5)u (t -  5)

b) 5(t + 4)u(t + 4) - 10(t + 2)u(t + 2) +
10(t -  2)u(t - 2) - 5(t - 4)u(t - 4)

 12.10 
1
4

 12.20 a) 
4

(s - 3)(s +  5)

b) 
1
2

 [
1
s
 -  

s cos 2
s2 + 4

+
4 sin 2
s2 + 4

]

c) 
1
2

 c 1
s + 1

+
s + 1

(s + 1)2 + 16
d

d) 
1
s

+
4

(s - 2)2 +
8

(s - 4)3

e) 
1
2

 log { 2s2 + 4
s  }

 12.22 a) -
a

s + a

b) 
s

1s + a2 2

c) 
a2

s + a

d) 
a2

s + a
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 12.26 
80000

(s + 2000)(s + 8000)

 12.40 a) 3e-t + 5e-2t + 2e-4t4u(t)

b) 310 + 5e-2t - 8e-3t + e-5t4u(t)

 12.41 a) 0.53(t -  4) u(t -  4)+(t -  8) u(t -  8)4
b) 5t +  1.5(t -  1)2 u(t -  1) -  3u(t -  2)

c) 4t2 -  (t -  1)2 u(t -  1) -  4 
(t-2)2u(t-2)

2
 +  

(t-3)2u(t-3)

2
d) Sinpt[u(t - 0.5) - u(t - 1)]

 12.42 b) 360 - 40te-2t - 60e-2t4u(t)

c) 312te-t + 0.6e-t 
+ 3.35e-3tcos(4t + 100.305°)4u(t)

 12.43 b) 310te-t cos(t - 90°) + 10e-t cos(t - 90°)4u(t)

d) 5d′(t) - 15d(t) + 310e-2t - 4e-5t4u(t)

 12.50 a) 8, 0

b) 8, 10

c) 22, 0

d) 250, 490

 12.54 zero at -3 rad>s, poles at 0 and two at -2 rad>s;
zero at -5 rad>s, poles at (-3 + j4) rad>s, 
(-3 - j4) rad>s and two at -1 rad>s

 12.57 0.8282

Chapter 13

 13.4 a) 
3s2 + 47190s + 9.52 * 1084

s

b) zeros at -23.59 * 103 + j 29.94 * 109rad>s, 
-23.59 * 103-  j 29.94 * 109rad>s; Pole at 0

 13.5 a) 
19.8 * 109s

s2 + 1.98 * 106s + 99 * 1010

b) zero at z1 5 0; 
Poles at 
-990 + j 100 krad>s,-  990 -  j100 krad>s

 13.9 a) 

0.3 S

150 V3328
S

75
S Io

1

2

b) 
250

(s + 23.27)(s + 476.73)
c) (0.551e-23.27t -  0.551e-476.73t)u(t) A

 13.16 a) 31 - 1137.98e-175t cos (139t +

 151.62°)4u(t) A

  b) 3127.16 e-175t cos (139t + 66.84°)] u(t) V

c) Yes

 13.19 344 cos1100t - 153°2 +

 52e-20.83t cos135.10t + 39.7°2 4  mA

 13.35 a)

  

R 1/sC

IL

csLgC s v

r

1

2

where R = 1 kΩ, C = 6.25 nF, 
r = -240 V, L = 16 mH, p = -0.24 A

b) 
-240(s + 160,000)

s2 + 160,000s + 1010

c) 
0.24(s + 97,500)

s2 + 160,000s + 1010

d) 3400e-80,000t cos(60,000t + 126.87°)4u(t) V

e) 30.5e-80,000t cos(60,000t - 16.26°)4u(t) A

 13.36 3 18.27 * 10-52e-99t - e-250t4u1t2  A

 13.38 396e-5t - 96e-20t4u(t) V

 13.43 a) 
32 * 104(s + 320)

s(s + 400)(s + 600)

b) 3426.67 + 320e-400t - 746.67e-600t4u(t) V

 13.50 a) 
25

s + 25
; no zeros, pole at -25 rad>s

b) 
s

s + 25
; zero at 0, pole at -25 rad>s

c) 
s

s + 2000
; zero at 0, pole at -2000 rad>s

d) 
2000

s + 2000
; no zeros, pole at -2000 rad>s

e) 
0.2 s

s + 3200
; zero at 0, pole at -3200 rad>s

 13.55 a) 
-104(s + 5000)

s(s + 25,000)

b) zero at -5000 rad>s, poles at 0  
and -25,000 rad>s

c) 3 -2000t - 0.32 + 0.32e-25,000t4u(t) V

 13.62 e-t V, 0 … t … 1 s; (1 - e)e-t V, 1 s … t …  ∞  

 13.80 4.4 cos(20t - 33.57°) V

 13.90 a) 0.6 A

b) -0.2 A
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c) 0.4 A

d) -0.2 A

e) 0.4e-106tu1t2  A

f) -0.4e-106tu1t2  A

g) 3 1 -1.6 * 10-32d1t2 4 - 31600e-106tu1t2 4  V

 13.94 a) 0A, 2522 A

b) 
1449p(122.9222s - 3000p22)

(s + 1475p)(s2 + 14,400p2)

 +  
30022

(s + 1475p)
, [178.8222e-1475pt

 + 122.0622 cos(120pt + 6.85°)] V,

30022 V

c) 122.0622 cos(120pt + 6.85°) V

d) 
v0 (V)

t (ms)

500

400

300

200

100

0

2100

2200

2.5 7.5 10 12.5 15 17.5 205

Chapter 14
 14.1 a) 3819.72 Hz

b) 0.7071l-  45°, 0.9923l-  7.125°,

 0.124l-  82.875°

c) 14.142 cos(24,000t - 45°) V, 
 19.846 cos(3000t - 7.125°) V, 

2.48 cos(192,000t - 82.875°) V

 14.7 a) 31.42 Ω

b) 3419.98 Hz

c) With 33 Ω resistor, 5252.11 Hz

 14.13 a) 5.305 kΩ

b) 333.86 Hz

 14.17 a) 150 Ω

b) 680 kΩ

 14.25 a) 5 kΩ, 50 mH

b) 3.52 kHz, 2.88 kHz

c) 636.62 Hz

 14.34 4 kΩ

 14.42 a) 397.89 Ω, 3.17 mH

b) 4.42 kHz, 3.62 kHz

c) 800 Hz

 14.51 a) 0.39 H, 0.1 mF

b) � V697 Hz � = � V941 Hz � = 0.707 � Vpeak � ;

� V770 Hz � = � V852 Hz � = 0.948 � Vpeak �

c) 0.344 � Vpeak �

Chapter 15
 15.1 a) 67.16 Ω, 212.21 Ω

b) 

212.21 V 

vo

1

2

67.16 V 
2

1

750 nF

vi

1

2

 15.8 a) 4.08 kΩ, 22.94 kΩ

b) 

22.94 kV

vo

1

2

4.08 kV
2

1
3.9 nF

vi

1

2

 15.15 a) 1 H, 0.05 Ω, 1 F

b) 2.5 H, 5 kΩ, 250 pF

c) 

vo

1

2

2.5 H

vi

1

2

5 kV

250 pF

 15.23 a) 20 mH, 2.5 mF

b) 13.42 cos(10,000t - 166.57°) mA

 15.30 57.49 Hz, 1500 Hz, 20.44 Ω, 553.59 Ω

 15.31 RL = 7.142 kΩ, RH = 877.19 Ω, and if 
  Ri = 1 kΩ then Rf = 5 Ω
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 15.34 a) 3

b) -32.65 dB

 15.58 a) R1 = 2 Ω , R2 = 20>790 Ω , R3 = 40 Ω

b) 

2

1

10 nF

10 nF

63.64 V

40.29 V

kV

1

2

vi

1

2

vo

 15.60 a) See component values in part (b)

b) 

2

1

2

1

39.8 V

79.6 V

77.6 V

2 V79.6 V

0.5 mF

1

2

1 mF

0.5 mF

vi

1

2

vo

c) 
s2 + 64 * 106p2

s2 + 800ps + 64 * 106p2

 15.62 R1 = 100 kΩ, R2 = 400 kΩ, C1 = 7.96 nF

Chapter 16
 16.1 a) 785.4 rad>s, 78.54 krad>s

b) 125 Hz, 12.5 Hz

c) 25 V, 0

d) aka =
100
pk

 sin 
pk
2

, bka = 0;

akb =
120
pk

 sin 
pk
2

, k odd, akb = 0;

for k even, bkb =
120
pk

 31-cos(kp) 4  

for k odd, bkb = 0 for k even

e) 25 +  
100
p a

∞

n = 1
a 1

n
 sin 

np
2

 cos nv0tb  V,

120
p a

∞

n = 1,3,5 
 
1
n

 asin 
np
2

 cos nv0t + 2 sin nwotb  V

 16.3 
75
p

+ 12.5 cos vot -

  
150
p a

∞

n = 2,4,6
 
cos1np>22cos1nvot2

11 -  n22  V

 16.11 a) 2 p rad>s

b) yes

c) No

d) Yes

 16.22 a) 6.36 a
∞

n = 1,3,5,c

2(np)2 + 4

n2  cos (nv0t - un) A 

   un = tan-1(np
2 )

b) 14.8 A

 16.28 a) [1.9999 cos(200t + 0.48°)+0.6662 cos (600t +
177.85°) + 0.286 cos(1400t - 176.66°) V

b) Fifth harmonic

 16.35 1.85 W

 16.39 a) 117.55 V(rms)

b) -2.04%

c) 69.2765 V(rms), -0.0081%

 16.44 C0 =
Vm

2
, Cn =

Vm

n212p22 31 + j2pn - C -j2pn4 , 

   n = {1, {2, {3, c

 16.50 a) 

122.988

101.988 97.268
908 908 908

140
u8

120

100

80

60

40

20

0
0 3v0 4v02v0v0 5v0 6v0

nv0

3v0 4v02v0v0 5v0 6v0
nv0

An(mA)

26.03 19.1 15.4 12.73

38.2

90.56

180

0

50

0

100

150

200
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b) 

n65431 226 25 24 23 21 022

150
u8

122.488

101.988 97.268

2122.488

2101.988297.268

908 908 908

2150
290829082908

45.2845.28

19.119.1 13.0213.02 9.559.55 7.77.7 6.376.37

6 n5430 1 226 25 24 23 2122

|Cn|(mA)

100

200

180

 16.57 a) 
400
313

, 2000 rad>s, 16 * 108 rad2>sec2

b) 3 -80 cos v0t - 0.50 cos(3v0t + 91.07°)

 +  0.17 cos(5v0t + 90.60°)4  V

Chapter 17

 17.1 a) j
-2A
t

`vt cos1vt>22- 2 sin1vt>22
v2 `

b) 0

c) 

250210021502200 50 100 150 2000

3

2

5

4

|F(v)|

1

v

 17.5 a) 
10e-j3v

25 + v2

b) 2 j sinv

c) 
1

1 + j 2p (f + 0.5)

d) ap
a
be-a|v|

e) 2 p d(v)

 17.19 a) 
t

2
# sin3(v + v0)(t>2)4

(v + v0)(t>2)

   +  
t

2
# sin3(v - v0)(t>2)4

(v - v0)(t>2)
b) F(v) S p3d(v - v0) + d(v + v0)4

 17.28 a) 3416.67e-20t - 250e-100t4u(t) +  
166.67e100t u(- t) V

b) 166.67 V

c) 166.67 V

d) 1416.67e-20t - 250e-100t2u1 t2V

e) Yes

 17.30 0.024 cos11000t + 90°2  A

 17.40 a) 3(-24e-t + 32e-5t>2)u(t) + 8etu(- t)4  V

b) 

v

0

10

20

30

60

–1–2–3–4–5 1 2 3 4 5

Vg(v)

50

40

c) 

0

10

50

2122232425 1 2 3 4 5

40

30

20

Vo(v)

v

d) 900 J

e) 320 J

f) 95.95%

g) 99.75%
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Chapter 18
 18.2  y11 =  0.159S; y12 =  -0.114S;

  y21 = -0.114S, y22 = 0.129S

 18.10 h11 = 500 Ω; h12 = 10-5;

  h21 = 100; h22 = 2 mS

 18.13 g11 = 12.5 mS; g12 = 1.5;

  g21 = -250; g22 = 50 MΩ

 18.14 a) y11 = 20 mS; y12 = 30 nS;

   y21 = 5 mS; y22 = 20 nS

b) y11 = 20 mS; y12 = 30 nS;
y21 = 5 mS; y22 = 20 nS

 18.21 b11 = 0.656 + j0.105; b12 = 7.69 Ω;

  b21 = -0.08S; b22 = 1

 18.31 a) -100 V(rms)

b) 200 mW

c) 1.6 μW

 18.33 217.29

 18.38 3750 V
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A
a-, b-, and c-phase voltage references, 442
ac circuits, balancing power in, 419–420
Active circuit elements, 58
Active filter circuits, 600–645

advantages of, 600, 636
bandpass filters, 608–611, 626–627, 

628–630, 636–637
bandreject filters, 611–615, 626, 

630–633, 636–637
bass volume control, 601, 633–635
block diagram for, 609
Bode plots for, 602–603, 608, 

611–612, 615–616, 630, 633
broadband (low-Q) filters,  

609–615, 636
Butterworth filters, 619–628, 636–637
cascading filters, 609–611, 615–619, 

636–637
first-order, 602–605, 636
fourth-order, 617–618, 622–623
higher-order, 615–628, 636
high-pass filters, 604–605, 626, 636
low-pass filters, 602–603, 607, 

615–619, 621–623, 636
narrowband (high-Q) filters, 

628–633, 637
op amp filters, 603–605, 607,  

608–628, 636
prototypes, 603–605, 636
scaling, 605–608, 636

Active high-Q filter response, 647, 
675–677

Addition/subtraction operations, 482, 
701, 757

Admittance (Y), 364, 389
Ammeter, 98, 99–100, 108
Amplification ratio, 227–228
Amplifier circuit analysis, 75, 130–131, 

139, 153–154, 280–282, 284,  
331–336, 338. See also Operational 
amplifiers 

cascading connections, 331–336, 338
integrating-amplifier, 280–282, 284, 

331–336, 338
Kirchhoff’s laws for, 75
mesh-current method, 139
node-voltage method, 130–131
Ohm’s law for, 75

resistor-inductor-capacitor (RLC) 
circuits for, 331–336, 338

Thévenin equivalent circuits for, 
153–154

Amplitude plots, 772–776, 779–781
accuracy of, 775–776
complex poles, 779–781
corrections to, 780–781
straight-line, 772–776, 779–781

Amplitude spectrum, 673–675, 678, 
691–692

Fourier series and, 673–675, 678
Fourier transform transition of, 

691–692
Amplitude, 348
Analog-to-digital converters (ADCs), 

207, 227–228
Analog meters, 99–100, 108
Analysis methods, 125, 127, 130, 133, 

135, 138, 182, 252, 258, 262, 266, 
270, 308, 311, 315, 320, 327, 515

analyzing a circuit with an ideal op 
amp, 182

basics version of the mesh-current 
method, 133

basic version of the node-voltage 
method, 125

complete form of the mesh-current 
method, 138

complete form of the node-voltage 
method, 130

finding the RC natural response, 258
finding the RC step response, 266
finding the RL and RC natural and 

step response, 270
finding the RL natural response, 252
finding the RL step response, 262
Laplace-transform circuit analysis 

method, 515
modified step 3 for the mesh- 

current method, 135
modified step 3 for the node- 

voltage method, 127
natural response of an overdamped 

or underdamped parallel RLC 
circuit, 311

natural response of an overdamped 
parallel RLC circuit, 308

natural response of parallel RLC 
circuits, 315

natural response of series RLC 
circuits, 327

step response of parallel RLC 
circuits, 320

Angular frequency (v), 348
Appliance power ratings, 409–410
Artificial pacemaker design, 249, 283
Attenuation, 564
Average power (P), 405–412, 417, 

422, 429, 453–454, 458–461, 463, 
667–669, 678

absorbed, 422
appliance power ratings, 409–410
balanced three-phase circuits, 

453–454, 458–461, 463
calculations for, 405–410, 417, 429, 

453–454, 667–669
Fourier series applications,  

667–669, 678
maximum power transfer (Pmax), 422
measurement of, 458–461, 463
periodic functions ( f(t)) and, 

667–669, 678
power factor (pf) for, 407, 429
root-mean-square (rms) value for, 

410–412
sinusoidal steady-state circuits, 

405–410, 417, 422, 429
wye (Y) loads, 453–454

B
Back-substitution method, 749–750, 754
Balanced three-phase circuits, 440, 

444–445, 463. See also Three-
phase circuits

Bandpass filters, 566–567, 578–588, 
593, 608–611, 626–627, 628–630, 
636–637, 710–711

active, 608–611, 626–627, 628–630, 
636

bandwidth (b) for, 578, 581–582, 
584, 593

block diagram for, 609
Bode plot for, 608, 629
broadband, 609–611, 636
Butterworth, 626–627, 636
cascaded, 609–611
center frequency (vo) for, 578, 

580–582, 593

Index
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Bandpass filters (Continued)
cutoff frequency (vc) for, 580–581, 

584
design of, 583–585
frequency and time domain 

 relationships, 587–588
frequency of, 566–567
frequency response plot, 567
narrowband, 628–630, 637
op amp filters, 608–611, 626–627, 636
parallel RLC circuit, 583–585
parameters of, 578
Parseval’s theorem for, 710–711
qualitative analysis, 579
quality factor (Q) for, 578, 582, 584
quantitative analysis, 579–582
resonant frequency (vo) for, 578
series RLC circuit, 579–583, 585–587
transfer function (H(s)) for, 587

Bandreject filter, 566–567, 588–591, 593, 
611–615, 626, 630–633, 636–637

active, 611–615, 626, 630–633, 
636–637

Bode plots for, 612, 633
broadband, 611–615, 636
Butterworth, 626
center frequency (vo) for, 590
cutoff frequency (vc) for, 590
design of, 590–591
frequency of, 566–567
frequency response plot, 567
narrowband, 630–633, 637
op amp filters, 611–615, 636
parallel RLC circuit, 591
qualitative analysis, 588–589
quantitative analysis, 589–590
series RLC circuit, 588–591
transfer function (H(s)) for, 589, 591

Bandwidth (b), 578, 581–582, 584,  
590, 593

Bass volume control circuit analysis, 
601, 633–635

Bilateral configurations, 143–144
Black box concept, 88
Block diagrams, 609
Bode plots (diagrams), 602–604, 

608, 611–612, 615–616, 630, 633, 
771–784

active filter analysis using, 602–604, 
608, 611–612, 616

amplitude plots, 772–776, 779–781
bandpass filters, 608, 630
bandreject filters, 611–612, 633
broadband (low-Q) filters, 609, 

611–612
cascading filters, 615–616
complex poles, 778–784
complex zeros, 778–779

corner frequency for, 775–776
high-pass filters, 604
low-pass filters, 602–604, 616
magnitude plots, 615–616
narrowband (high-Q) filters, 630, 633
phase angle plots, 776–778, 782–784
real, first-order poles and zeros, 

771–772
straight-line plots, 772–784

Branches, 122–124
Broadband (low-Q) filters, 609–615, 

636
bandpass, 609–611, 636
bandreject, 611–615, 636
Bode plots for, 609, 611–612

Butterworth filters, 619–628, 636–637
bandpass, 626–627, 636
bandreject, 626, 636
cascading, 619–628, 636–637
circuit analysis, 619, 621–623
high-pass, 626, 636
low-pass, 619, 621–623
order of, 624–625
transfer functions (H(s)) for, 

620–621
transition region, 624–625

C
Capacitance (C), 211, 217, 223–226, 

237–238, 239
equivalent, 224–225
series–parallel combinations, 

223–226
touch screens values of, 211, 237–238

Capacitive circuits, power for, 407
Capacitors, 210, 217–221, 223–224, 

226–227, 239, 357–358, 389, 
513–514, 542–543, 549, 788

circuit analysis of, 217–221, 542–543
circuit component values, 788
circuit parameter of, 217
current to voltage (i–v) relation-

ships, 218
displacement current, 217–218
duality (symmetry) of, 226–227, 239
energy in, 210, 219, 239
equivalent circuits for, 224–225, 

513–514, 549
impulse function (Kd(t)) for, 542–543
in series, 223
Laplace transform method for, 

513–514, 542–543, 549
multiple, 224–225
parallel, 223–224
passive behavior of, 210, 239
phasor relationships, 357–358, 389
power in, 210, 218–219, 239

s domain representation,  
513–514, 549

symbols for, 217
voltage to current (v–i) relation-

ships, 218, 357–358, 389
Cascading connections, 331–336, 

338, 609–611, 615–628, 636–637, 
736–739

active filters, 609–611, 615–628, 
636–637

bandpass filters, 609–611
Bode magnitude plot for, 616
Butterworth filters, 619–628, 

636–637
fifth-order, 621
fourth-order filters, 617–618
high-pass filters, 626, 636
identical first-order filters, 615–619
integrating-amplifiers, 331–336, 338
low-pass filters, 615–619, 621–623, 636
op amp filters, 615–619
two-port circuits, 736–739

Center frequency (vo), 578, 580–582, 
590, 593

Characteristic determinant, 750–751
Characteristic equations, 303–304, 321, 

325, 327–329, 337
parallel RLC circuits, 303–304,  

321, 337
series RLC circuits, 325, 327–329

Circuit analysis, 39–43, 68–76, 96–98, 
103–108, 120–177, 178–209, 248, 
252, 258, 262, 266, 269–270,  
274–282, 284, 301, 336–337, 
346–401, 510–563, 564–599, 601, 
633–635, 705–707, 709–713

amplifiers, 75, 130–131, 139, 153–154
bass volume control, 601, 633–635
circuit design and, 39–40
circuit models for, 41
clock for computer timing, 301, 

336–337
component models for, 41
current division, 97–98, 107–108, 

364
delta-to-wye (Δ-to-Y) transforma-

tions, 103–106, 108, 366–368
dependent sources and, 73–76, 

126–128, 135–136, 150
Fourier transforms for, 705–707, 

709–713
frequency-selective circuits,  

564–599
household distribution, 347,  

387–388
ideal basic circuit element, 42
ideal circuit components, 39–40
integrating-amplifiers, 280–282, 284
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Kirchhoff’s laws for, 68–72, 515
Laplace transform in, 510–563
Laplace transform method for, 

515–516, 549
maximum power transfer, 120, 

154–156, 163
mesh-current method, 120, 132–143, 

162–163, 382–375
natural response method, 248, 252, 

258, 269–270, 284
node-voltage method, 120, 124–132, 

140–143, 162–163, 372–373
nonplanar circuits for, 122
Norton equivalent circuits for, 120, 

148–151, 163
Ohm’s law for, 70–71, 514
operational amplifiers (op amps), 

178–209
passive sign convention for, 42–43
physical prototypes, 40
planar circuits for, 122
resistive circuits, 96–98, 107–108, 

121, 143–146, 159–162
s domain, 514–516, 549
sensitivity analysis, 121, 159–162
sequential switching and, 274–278, 

284
simultaneous equations for,  

122–124
sinusoidal steady-state, 346–401
source transformation, 120, 143–146, 

149, 162, 368–371
step response method, 248, 262, 266, 

269–270, 284
superposition, 120, 157–159, 163
surge suppressors and, 511, 548
terminal behavior and, 146–154, 

180–184
terminals, 146–154
Thévenin equivalent circuits for, 

120, 146–154, 163
transformers, 375–384, 389
voltage division, 96–98, 107, 362

Circuit components, 39–41, 65, 352, 
606, 788

electrical behavior of, 65
ideal, 39–40
models, 41, 65
scale factors, 606
steady-state current, 352
transient current, 352
values, 788

Circuit elements, 54–85, 222–237, 239, 
512–514, 549

active, 58
capacitance (C), 223–226, 239, 

513–514, 549
current sources, 56–59, 78

dependent sources, 56, 59, 73–76, 78
electrical radiator examples of, 55, 

76–77
electrical sources, 56
equivalent circuits in s domain, 

513–514, 549
in series, 69, 78
inductance (L), 222–237, 239, 

512–513, 549
Kirchhoff’s laws for, 67–72, 73–75, 

78
Laplace transform method and, 

512–515
loops (closed path), 68, 78
model construction, 64–66
nodes, 67, 78
Ohm’s law for, 60–61, 70–71,  

73–75, 78, 512
passive, 58
resistance (R), 60–63, 512, 549
s domain representation, 512–514, 

549
symbols for, 56–57
voltage sources, 56–59, 78

Circuit models, 41, 55, 60–66, 75–77, 
182–183, 195–198, 200–201,  
720, 740

advantage of, 41
amplifier, 75
approximation for, 66
construction of, 64–66, 71–72
electrical behavior of components, 65
electrical effects from, 65
electrical radiator, 55, 76–77
flashlight (electrical system), 64–66, 

67–69
operational amplifiers (op amps), 

182–183, 195–198, 200–201
resistors, 60–63
terminal measurements for, 66, 

71–72
two-port, 720, 740

Circuit theory, 35–36
Circuits, 30–53, 60–63, 86–119, 473, 

502–504, 511, 548, 565, 592
analysis of, 39–40
current (i), 40–41, 43–45, 61
current-divider, 95, 107
delta-to-wye (Δ-to-Y) equivalent, 

103–106, 108
electrical charge, 40–41
electrical effects, 35
electrical engineering and, 30–37
energy and, 43–45
frequency ( f ) and, 35
ideal basic element, 42–43
International System of Units (SI) 

for, 37–39

lumped-parameter systems, 35–36
magnetic coupling, 35
net charge, 35
open, 65
passive sign convention for, 42–45
power, 31, 43–48, 61–62
pushbutton telephone, 565, 592
resistive, 60–63, 86–119
short, 65
surge suppressors for, 511, 548
transient effects on, 473, 502–504
voltage (v), 40–41, 43–45, 62
voltage-divider, 92–94, 107
Wheatstone bridge, 101–103, 108

Clock for computer timing, circuit 
analysis of, 301, 336–337

Closed path (loop), 68, 78
Coefficient of coupling, 235–236,  

239
Common mode input, 192
Common mode rejection ratio 

(CMRR), 193–195, 201
Communication systems, 32–33
Complex numbers, 755–760

addition/subtraction of, 757
arithmetic operations, 757–758
graphical representation of,  

756–757
identities for, 758–759
integer power of, 759
multiplication/division of, 757
notation for, 755–756
polar form, 755–756
rectangular form, 755–756
roots of, 759–760

Complex power, 412–421, 429,  
454–455

apparent power (magnitude),  
413, 429

balanced three-phase circuits, 
454–455

balancing power in ac circuits, 
419–420

calculations for, 412–421, 429
defined, 412
delta (Δ) loads, 454–455
parallel loads and, 418–419
phasors for, 415–416
power calculations for, 412–421, 

429, 454–455
power triangle relationship, 413
units for, 412–413, 429
wye (Y) loads, 454

Computer systems, 33
Condition of equivalence, 144
Conductance (G), 61, 364
Continuous functions, 474–475
Control systems, 33
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Convolution, 533–539, 549, 702–703
Fourier operational transforms, 

702–703
frequency domain, 703
integral, 533–539, 549, 703
memory, concept of using, 538–539
output signal from, 537–538
time domain, 702
transfer function (H(s)) in,  

533–539, 549
weighting function and, 538

Cosine functions, 659–660, 678, 
697–698

Cramer’s method, 750–752
Critically damped response, 314–317, 

319–321, 325–327, 328–329, 337
natural response, 314–317, 325–328, 

337
parallel RLC circuits, 314–317, 

319–321, 337
series RLC circuits, 325, 325–327, 

329
step response, 319–321, 328–329

Current (i), 40–45, 61, 67–68, 69, 78, 
86, 98–101, 108, 180–184, 200, 
212–214, 217–221, 250–252, 
258, 317–318, 346, 348–349, 352, 
355–361, 381–383, 445, 446–447, 
450–451, 463, 667–669

balanced three-phase circuits, 445, 
446–447, 450–451, 463

capacitors, 217–221
defined, 41
displacement, 217–218
dot convention for, 382–383
electric charge and, 40–42
Fourier series applications, 667–669,
frequency domain and, 355–361, 

381–383
ideal transformer ratios, 381–383
inductor relationships, 212–214
initial inductor (I0), 251
input constraint, 182
Kirchhoff’s current law (KCL), 

67–68, 69, 78, 360–361
line, 445, 446–447, 450–451, 463
measurement of, 86, 98–101, 108
natural response and, 250–252, 258
Ohm’s law for, 61, 78
op-amp terminals, 180–184, 200
periodic, 667–669
phase, 446–447, 450–451, 463
polarity of, 382–383
polarity reference, 42
power and energy relationship to, 

43–45
resistor power in terms of, 61
resistor-capacitor (RC) circuit 

 expression, 258

resistor-inductor (RL) circuit 
 expression, 250–252

sinusoidal source, 348–349
steady-state analysis and behavior 

of, 346, 352, 355–361, 381–383
steady-state component, 352
step response inductor, 317–318
transient component, 352

Current coil, 458, 463
Current-divider circuit, 95, 107
Current division, 97–98, 107–108, 364

frequency domain, 364
resistive circuit analysis, 97–98, 

107–108
Current sources, 56–59, 78
Current to voltage (i–v) relationships, 

213–214, 218
Cutoff frequency (vc), 568–570, 572, 

580–581, 584, 590, 592
bandpass filters, 580–581, 584
bandreject filter, 590
bandwidth (b) relationship to, 581
center frequency (vo) relationship 

to, 581
defined, 568–570, 592
half-power frequency, 569
low-pass filters, 568–570, 572
RL circuit filters, 572
RLC circuit filters, 581, 584

D
d’Arsonval meter movement, 99
Damped radian frequency (vd), 310, 

321, 327, 329
Decaying exponential function, 480
Decibels (dB), 769–770
Delta (Δ) interconnection, 104
Delta (Δ) loads, 454–455
Delta-to-wye (Δ-to-Y) transforma-

tions, 103–106, 108, 366–368
equivalent circuits, 103–106, 108
frequency domain, 366–368

Dependent sources, 56, 59, 73–76, 
126–128, 135–136, 150, 158–159

analysis of circuits with, 73–76, 
126–128, 135–136, 158–159

circuit elements as, 56, 78
interconnections of, 59
mesh-current method for, 135–136
node-voltage method for, 126–128
Ohm’s law for, 73–75
superposition for, 158–159
Thévenin equivalent circuits of, 150

Derived units, 38
Difference-amplifier circuit, 190–195, 201

common mode input, 192
common mode rejection ratio 

(CMRR) for, 193–195, 201

differential mode input, 192
ideal op-amp model for, 190–195, 

201
negative feedback in, 190

Differential mode input, 192
Differentiation, operational trans-

forms for, 482–483, 701
Digital meters, 101, 108
Digital signal filtering, 689, 713–714
Direct approach for Fourier series, 

663–665
Dirichlet’s conditions, 649
Discontinuities of circuits, 475–478, 

504. See also Impulse function; 
Step function

Discontinuous functions, 474–475
Displacement current, 217–218
Domain translation, Laplace trans-

form for, 484–485
Dot convention, 227–229, 239, 

382–383
ideal transformers, 382–383
mutual inductance, 227–229, 239
polarity and, 227–229, 239, 382–383
procedure for determining, 228–229

Duality, 132, 226–227, 239. See also 
Symmetry

Dual-tone multiple-frequency 
(DTMF) design, 565

Dynamo, 56

E
Effective value, 411
Efficiency, power system optimization 

for, 154
Electric power transmission and 

 distribution, 441, 461–463
Electrical charge, 40–41
Electrical engineering, 30–37

balancing power, 31
circuit theory for, 35–36
communication systems, 32–33
computer systems, 33
control systems, 33
interaction of systems, 34
power systems, 33
problem-solving strategy, 36–37
profession of, 30
signal-processing systems, 33

Electrical radiator circuits, 55, 76–77
Electrical sources, 56. See also Sources
Electrodynamic wattmeter, 458–461, 

463
Energy, 43–45, 210, 215–217, 219,  

235–237, 239, 254, 258, 402, 
707–713, 714

capacitors and, 210, 219, 239
inductors and, 210, 215–217, 239
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mutual inductance and, 235–237, 239
natural response and, 254, 258
power and, 43–45
Parseval’s theorem for, 707–713, 

714
power calculations for delivery  

of, 402
resistor-capacitor (RC) circuit 

 expression, 258
resistor-inductor (RL) circuit 

 expression, 254
storage in magnetically coupled 

coils, 235–237, 239
Equivalent capacitance (Ceq), 225
Equivalent circuits, 89–90, 222–225, 

446–449, 463, 512–514, 549, 
761–768

capacitance (Ceq), 224–225,  
513–514, 549

ideal transformers in, 765–768
inductance (Leq), 222–223, 224, 

512–513, 549
magnetically coupled coils and, 

761–765
π-equivalent circuit, 762–763
resistance (Req), 89–90, 512, 549
s domain representation, 512–514, 

549
single-phase, 446–449, 463
T-equivalent circuit, 761

Equivalent inductance (Leq), 224
Essential branches and nodes, 122–124
Even periodic function, 653–654
Exponential form of Fourier series, 

670–672, 678

F
Faraday’s law, 231–232
Feedback, see Negative feedback
Feedback resistors, 333–336, 338
Filters, 564, 566–567. See also  Active 

filter circuits;  Frequency; 
 Frequency-selective circuits

Final-value theorem, 500–502, 505
First-order active filters, 602–605, 636

Bode plots for, 602–604
frequency response plots for, 

602–603
high-pass filters, 604–605, 636
low-pass filters, 602–603, 636
op amp filter design, 603,  

604–605
prototypes, 603–605, 636

First-order circuits, 248, 250, 284. See 
also Resistor- capacitor (RC) 
circuits; Resistor-inductor (RL) 
circuits

Flashlight (electrical system) circuit 
model, 64–66, 67–69

Fourier coefficients, 649–658, 677
even-function symmetry, 653–654
Fourier series of periodic function 

found with, 658
Fourier series of triangular wave-

form using, 651–652
half-wave symmetry, 655–656
odd-function symmetry, 654–655
periodic functions ( f (t)) for,  

649–658
quarter-wave symmetry, 656–657
symmetry effects on, 653–658, 677
trigonometric form of, 650–652

Fourier series, 646–687
active high-Q filter response, 647, 

675–677
amplitude spectrum, 673–675, 678
average-power calculations,  

667–669, 678
direct approach, 663–665
exponential form of, 670–672, 678
Fourier coefficients, 649–658, 677
fundamental frequency (v0), 649, 677
harmonic frequency, 649, 677
periodic functions (f(t)), 646, 

648–650, 667–670, 677
periodic response and, 646, 648
periodic voltage applications, 

659–665, 667–669, 673–675
phase spectrum, 673–675, 678
phasor domain circuit transforma-

tion, 659–660, 678
quality factor (Q), 647
RC circuit application, 661–665
root-mean-square (rms) value, 

669–670, 678
sine and cosine terms for,  

659–660, 678
steady-state response and, 649–650, 

661–666, 678
symmetry functions, 653–658, 677
waveforms, 646, 648, 651–657, 661, 

663–664, 678
Fourier transform, 688–719

amplitude spectrum, 691–692
circuit applications, 705–707, 

709–713
convergence of integral, 692–694
derivation of, 690–692
digital signal filtering, 689, 713–714
frequency-domain (F(v)), 690–691, 

699–700
frequency-domain representation, 

688, 714
integrals used in, 690, 692–694, 

699–700

inverse, 691
Laplace transforms for, 694–696
limiting values, 690–691, 693–698
mathematical properties of,  

699–700
operational transforms, 700–704
Parseval’s theorem for, 707–713, 714
periodic to aperiodic transition, 688, 

691, 714
periodic voltage pulse from, 691
steady-state response from, 706
time-domain (f(t)), 690–691, 

699–700
transient response from, 705–706

Fourth-order filters, 617–618, 622–623
Frequency (v), 352, 389, 566–570, 572, 

578, 580–582, 592–593, 649, 677
bandpass filter, 566–567
bandreject filter, 566–567
center (vo), 578, 580–582, 593
cutoff (vc), 568–570, 572, 580–581, 

590, 592
fundamental (v0), 649, 677
half-power, 569
harmonic, 649, 677
high-pass filter, 566
infinite, 572
low-pass filter, 566–570, 572
passband, 566, 592
passive filters, 567, 577, 587, 593
resonant (vo), 578
steady-state response, 352, 389
stopband, 566, 592
zero, 572

Frequency domain, 355–385, 389, 
474, 485, 488–502, 504–505, 573, 
587–588, 688, 690–691, 699–700, 
702–703, 714

bandpass filters, 587–588
convolution in, 703
current division in, 364
delta-to-wye (Δ-to-Y) transforma-

tions, 366–368
final-value theorem for, 500–502, 505
Fourier transform (F(v)), 688, 

690–691, 699–700, 702–703, 714
frequency-selective circuit analysis, 

573, 587–588
impedance (Z) and, 358–359, 

361–366, 368–371, 389
initial-value theorem for, 500–502, 505
inverse Laplace transforms for, 

488–498, 504
Kirchhoff’s laws in, 360–361
Laplace transform (F(s)), 474, 485, 

488–502, 504–505
low-pass filters, 573
node-voltage method in, 372–373
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Frequency domain (Continued)
Norton equivalent circuits for, 

368–369
operational Laplace transform  

for, 485
operational transforms, 702–703
parallel impedance combination, 

363, 365
partial fraction expansion, 489–498
passive circuit elements in, 355–359
phasor transforms and, 353, 355–359
poles of F(s), 498–500, 504
rational functions (F(s)) and,  

488–498
series impedance combination, 

362–363, 365
source transformations for,  

368–371
steady-state circuit analysis in, 

355–385, 389
Thévenin equivalent circuits for, 

368–369, 371
time domain (t) relationships, 474, 

500–502, 505, 573
translation in, 485, 702
voltage division in, 362
voltage to current (v–i) relation-

ships in, 358–359
zeros of F(s), 498–500, 504

Frequency of lumped-parameter 
systems, 35

Frequency response, 564
Frequency response plots, 566–567, 

602–604, 608, 612
bandpass filter, 567
bandreject filter, 567
Bode plots, 602–604, 608, 612
first-order active filters, 602–604
high-pass filter, 566, 604
ideal, 566–567
low-pass filter, 566, 603
magnitude plot, 566
phase angle plot, 566

Frequency scaling, 606, 636
Frequency-selective circuits, 564–599

attenuation of, 564
bandpass filters, 578–588, 593
bandreject filters, 588–591, 593
center frequency (vo) for, 578, 

580–582, 593
cutoff frequency (vc) for, 568–570, 

572, 580–581, 584, 590, 592
filter categories, 566–567
filters as, 564, 592
frequency and time domain rela-

tionships, 573, 587–588
high-pass filters, 573–578, 592–593
low-pass filters, 567–573, 592

parallel RLC, 583–585, 591
pushbutton telephone circuits,  

565, 592
qualitative analysis, 567–569, 572, 

574, 579, 588–589
quantitative analysis, 570–571, 

574–575, 579–582, 589–590
series RC, 571–572, 574–575
series RL, 567–568, 570–571, 

575–576
series RLC, 579–583, 585–587, 

588–591
transfer function (H(s)) for, 573, 

577, 587, 589, 591
Functional Laplace transforms (t), 

475, 480–481, 504
Fundamental frequency (v0), 649, 677

G
Gain, 181
Galvanometer, 101
Generator, 56
Graphical representation of complex 

numbers, 756–757

H
Half-power frequency, 569
Half-wave periodic function, 655–656
Harmonic frequency, 649, 677
High-pass filters, 566, 573–578, 

592–593, 604–605, 626, 636
active, 604–605, 626, 636
Bode plot for, 604
Butterworth, 626, 636
cascading, 626, 636
design of, 575–576, 604–605
first-order, 604–605, 636
frequency of, 566
frequency response plots for,  

566, 604
frequency-selective circuit analysis, 

566, 573–578, 592–593
loading, 576
op amp filter design, 604–605
prototypes, 604–605, 636
qualitative analysis, 574
quantitative analysis, 574–575
second-order, 626, 636
series RC circuits, 574–575
series RL circuits, 575–576
transfer function (H(s)) for, 577, 

593
Household appliance ratings, 409–410
Household distribution circuit, 347, 

387–388
Hybrid parameters, 724, 725

I
Ideal basic circuit element, 42–43
Ideal transformers, 379–384, 389, 

425–426, 765–768
current (i) ratios, 381–383
dot convention for, 382–383
equivalent circuits with, 765–768
frequency domain analysis, 379–384
impedance matching using, 384
limiting values of, 379–381
maximum power transfer in, 425–426
polarity of voltage and current, 

382–383
steady-state analysis of, 379–384, 389
symbol for, 382
voltage (v) ratios, 381–383

Ideal versus realistic op-amp models, 
201, 42–43

Identities for complex numbers, 
758–759

Immitance, 724
Impedance (Z), 358–359, 361–366, 

368–371, 376–377, 389, 421–425, 450
admittance (Y) and, 364, 389
balanced three-phase circuits, 450
conductance (G) and, 364
current division and, 364
defined, 358
frequency domain simplifications, 

358–359, 361–366, 368–371, 389
linear transformer circuit analysis 

using, 376–377, 389
maximum power transfer conditions 

and restrictions from, 421–425
parallel combination, 363, 365
passive circuit elements, 358–359
phasors and, 358–359
reactance and, 359
reflected (Zr), 376–377, 389
self-, 376
series combination, 362–363, 365
source transformations using, 368–371
steady-state analysis using, 358–359, 

361–366, 389, 376–377
susceptance (B) and, 364
voltage division and, 362
voltage to current (v–i) relation-

ships and, 358–359
wye- and delta-connected relation-

ships, 450
Impedance matching, 384
Improper rational functions, 488, 

497–498
Impulse function (Kd(t)), 477–479, 

504, 542–548, 549
capacitor circuit analysis, 542–543
circuit analysis using, 542–548, 549
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derivatives of, 479
discontinuities of circuits and, 

477–478
impulsive sources, 545–548
inductor circuit analysis, 543–545
Laplace transform method and, 

542–548, 549
Laplace transform of, 478–479
sifting property, 478–479
strength (K) of, 477, 504
switching operations, 542–545
unit impulse function (d(t)), 477, 504
variable parameter function, 

477–478
voltage drop and, 544–545

Independent sources, 56, 59, 78
Induced voltage, 227–229, 231–232, 239
Inductance (L), 212, 222–237, 239, 

375–376, 379–380
circuit parameter of, 212
equivalent, 222–223, 224
mutual, 210, 227–237, 239
series–parallel combinations, 

222–226
self-, 227–228, 231–232, 234–235, 

239, 375–376, 379–380
steady-state transformer analysis 

and, 375–376, 379–380
Inductive circuits, power for, 406–407
Inductor current, 317–318
Inductors, 210, 212–217, 222–223,  

226–227, 239, 356–357, 389, 
512–513, 543–545, 549, 788

circuit analysis of, 212–217, 543–545
circuit component values, 788
current to voltage (i–v) relation-

ships, 213–214
duality (symmetry) of, 226–227, 239
energy in, 210, 215–217, 239
equivalent circuits for, 222–223, 224, 

512–513, 549
impulse function (Kd(t)) for, 

543–545
in series, 222
Laplace transform method for, 

512–513, 543–545, 549
magnetic field and, 212
multiple, 222–223, 224
parallel, 222–223
passive behavior of, 210, 239
phasor relationships, 356–357, 389
power in, 210, 214–215, 239
s domain representation,  

512–513, 549
symbols for, 212
voltage to current (v–i) relation-

ships, 212–213, 356–357, 389
Infinite frequency, 572

Initial-value theorem, 500–502, 505
Input constraints, 181–182, 200
In-series circuit elements, 69, 78. See 

also Series- connected circuits
Instantaneous power, 404–405, 406, 

429, 455–456
balanced three-phase circuits, 

455–456
calculations for, 404–405, 406, 429, 

455–456
sinusoidal steady-state circuits, 

404–405, 406, 429
time-invariant, 455–456

Instantaneous real power, 406
Integer power of complex numbers, 759
Integrals, 474, 483–484, 533–539, 

549, 690–691, 692–694, 699–700, 
786–787

convergence of, 692–694
convolution, 533–539, 549
Fourier transforms, 690, 692–694, 

699–700
frequency-domain function (F(v)) 

and, 699–700
Laplace transforms, 474, 483–484
table of, 786–787
time-domain function (F(t)) and, 

699–700
transfer function (H(s)) use of, 

533–539, 549
Integrating-amplifier, 280–282, 284, 

331–336, 338
cascading connections, 331–336, 338
feedback resistors and, 333–336, 338
first-order circuit analysis, 280–282, 

284
second-order circuit analysis, 

331–336, 338
step response of, 333

Integration, operational transforms 
for, 701

Interconnections, 58–59, 64–65, 86, 
88–92, 103–106, 107–108

circuit model creation for, 64–65
delta (Δ), 104
delta-to-wye (Δ-to-Y) equivalent 

circuits, 103–106, 108
dependent sources, 59
independent sources, 59
parallel-connected resistors, 86, 

89–92, 107
pi (π), 104
pi-to-tee (π-to-T) equivalent 

 circuits, 103–106, 108
resistive circuits, 86, 88–92, 103–106, 

107–108
series-connected resistors, 86, 88, 107
series–parallel simplification, 90–91

tee (T), 104
testing ideal sources, 58–59
wye (Y), 104

International System of Units (SI), 
37–39

Internet of Things (IoT), 207
Inverse Fourier transform, 691
Inverse Laplace transforms, 488–498, 

504
distinct complex roots of D(s), 

491–493
distinct roots of D(s), 489–490
improper rational functions, 488, 

497–498
partial fraction expansion,  

489–498
proper rational functions, 489–497
rational functions (F(s)) and, 

488–498
repeated complex roots of D(s), 

496–496
repeated real roots of D(s),  

494–495
s-domain and, 488–498, 504
transform pairs for, 497

Inverse phasor transform, 354
Inverting-amplifier circuit, 184–186, 

196, 200–201
ideal op-amp model for, 184–186, 

200
negative feedback in, 185
realistic op-amp model for,  

196, 201

K
Kirchhoff’s laws, 67–72, 73–75, 78, 

88–89, 122–123, 360–361, 515
amplifier circuit analysis using, 75
circuit analysis using, 68–75, 78
current law (KCL), 67–68, 69, 78, 

88–89, 360–361
dependent sources and, 73–75
frequency domain and, 360–361
loop (closed path) for, 68
nodes for, 67
Ohm’s law and, 70–71
parallel-connected circuits and, 89
s domain use of, 515
series-connected (in-series) circuits 

and, 88
simultaneous equations from,  

122–123
steady-state analysis using,  

360–361
unknown voltage found from, 74
voltage law (KVL), 68, 70, 78, 88, 

360–361
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L
Lagging/leading power factors, 407, 429
Laplace transform method, 510–563

circuit analysis in s domain, 514–516
circuit analysis using, 510–563
circuit elements in s domain, 

512–514
convolution integral and,  

533–539, 549
equivalent circuits for time and 

frequency domains, 513–514
impulse function and, 542–548, 549
impulsive sources and, 545–548
Kirchhoff’s laws in s domain, 515
multiple mesh circuit analysis, 

521–522
mutual inductance circuit analysis, 

525–526
natural response using, 517
Ohm’s law in s domain, 512, 514
partial fraction expansions for, 

530–533
procedure for, 515–516, 549
RC circuit analysis, 517
RLC circuit analysis, 517–518
s-domain applications, 523–524, 

527–528
s-domain equivalent circuits, 513–514
sinusoidal source circuit analysis, 

519–520
sinusoidal steady-state response 

and, 539–541, 549
step response using, 517–518
superposition applications, 527–528
surge suppressor analysis, 511, 548
Thévenin equivalent circuit from, 

523–524
time-invariant circuits, 532–533, 549
transfer function (H(s)) and, 

528–541, 549
voltage to current (v-i) equations 

for, 512–513, 549
Laplace transform, 472–509, 694–696

applications of, 486–488
continuous and discontinuous 

 functions, 474–475
defined, 474
final-value theorem for, 500–502, 505
Fourier transforms from, 694–696
frequency domain (F(s)), 474, 

480–486, 488–502, 504–505
functional transforms, 475,  

480–481, 504
impulse function (Kd(t)),  

477–479, 504
initial-value theorem for,  

500–502, 505

integral of, 474, 483–484
inverse transforms, 488–498, 504
lumped-parameter circuits and, 

486–488, 504
operational transforms, 475,  

481–486, 504
partial fraction expansion for, 

488–498
poles of F(s), 498–500, 504
problem-solving uses, 472
s-domain, 474, 480–486, 488–502, 

504–505
step function (Ku(t)), 475–476, 504
time domain (f(t)), 474–486,  

500–502, 504–505
transform pairs, 480–481, 497
transient effects on circuits, 473, 

502–504
unilateral (one-sided) behavior of, 

474–475
unit impulse function (d(t)),  

477, 504
unit step function (u(t)), 475, 504
zeros of F(s), 498–500, 504

Level shifting, 227–228
Limiting values, 690–691, 693–698

cosine functions, 697–698
elementary functions, 698
Fourier transforms derived using, 

690–691
Fourier transforms of, 693–698
signum functions, 697
unit step function, 697

Line current, 445, 446–447, 450–451, 463
Line spectra, 673
Line voltage, 445, 446–447, 463
Linear simultaneous equations, 

746–754. See also  Simultaneous 
equations

Linear transformer circuits,  
375–379, 389

frequency domain analysis of, 
375–379

reflected impedance (Zr),  
376–377, 389

self-impedance, 376
steady-state analysis, 375–379, 389
winding (primary and secondary), 375

Loads, 155–156, 418–419, 421–425, 
453–458

balanced three-phase circuits, 
453–458

delta (Δ), 454–455
impedance (Z) conditions and 

restrictions, 421–425
maximum power transfer, 155–156, 

421–425
parallel, 418–419

power calculations for, 418–419, 
421–425, 453–458

resistive, 155–156
unspecified, 457–458
wye (Y), 453–454

Loop (closed path), 68, 78, 122
Low-pass filters, 566, 567–573, 592, 

602–603, 615–619, 621–623, 636, 
711–712

active, 602–603, 615–619, 621–623, 636
Bode plots for, 602–604, 616
Butterworth, 621–623, 636
cascading connections, 615–619, 

621–623, 636
cutoff frequency (vc) for, 568–570, 

572
design of, 571, 572, 603
first-order active, 602–603, 636
fourth-order active, 617–618, 

622–623
frequency and time domain 

 relationships, 573
frequency of, 566
frequency response plots for, 566, 

602–604
frequency-selective circuit analysis, 

567–573, 592
half-power frequency, 569
infinite frequency, 572
op amp filter design, 603
Parseval’s theorem for, 711–712
prototype, 603, 636
qualitative analysis, 567–569, 572
quantitative analysis, 570–571
series RC circuits, 571–572
series RL circuits, 567–568, 570–571
transfer function (H(s)) for,  

573, 592
zero frequency, 572

Lumped-parameter circuits, 35–36, 
486–488, 504

frequency (f) of, 35
Laplace transform for, 486–488, 504
systems of, 35–36

M
Magnetic coupling, 35
Magnetic fields, inductors and, 212
Magnetically coupled coils, 235–237, 

239, 273–274, 761–765
energy storage in, 235–237, 239
equivalent circuits for, 761–765
mutual inductance and, 235–237, 239
π-equivalent circuit, 762–763
step response of circuit with, 

273–274
T-equivalent circuit, 761



 Index 807

Magnitude plot, 566
Magnitude scaling, 605–606, 636
Maximum power transfer
Maximum power transfer (Pmax), 120, 

154–156, 163, 421–427, 429
average power absorbed, 422
circuit analysis for, 120, 154–156,  

163
ideal transformer analysis, 425–426
impedance (Z) conditions and 

restrictions, 421–425
power calculations for, 421–427, 

429
resistive loads, 155–156
sinusoidal steady-state analysis of, 

421–427, 429
system optimization and, 154
with load restrictions, 424
without load restrictions, 423

Measurement, 37–39, 86, 98–101, 108, 
458–461, 463, 725, 728, 769–770

ammeter for, 98, 99–100, 108
analog meters for, 99–100, 108
current, 86, 98–101, 108
d’Arsonval meter movement, 99
decibels (dB), 769–770
digital meters for, 101, 108
electrodynamic wattmeter for, 

458–461, 463
International System of Units (SI), 

37–39
power, 458–461, 769–770
resistance, 101–103, 108
three-phase circuits, 458–461,
two-port circuit parameters from, 

725, 728
unit prefixes, 38–39
voltage, 86, 98–101, 108
voltmeter for, 98, 100, 108
Wheatstone bridge, 101–103, 108

Memory, concept of using convolution 
integral, 538–539

Mesh, 122
Mesh circuit analysis, Laplace 

 transform method for, 521–522
Mesh current, 132–133
Mesh-current method, 120, 132–143, 

162–163, 227–230, 373–375
amplifier circuit analysis, 139
circuit analysis process, 120,  

132–143, 162–163
dependent sources and, 135–136
duality of, 132
frequency-domain circuit analysis, 

373–375
mutual inductance and, 227–230
node-voltage method compared to, 

140–143

special cases for, 136–140
steady-state circuit analysis,  

373–375
supermesh and, 137–138

Modulation, 702
Motor, 56
Multiplication operations, 481, 701, 

758
Mutual inductance, 210, 227–237, 239, 

525–526
coefficient of coupling for, 235–236, 

239
concept of, 232–234
dot convention, 227–229, 239
energy storage in magnetically 

 coupled coils, 235–237, 239
Laplace transform method for, 

525–526
mesh-current method for, 227–230
polarity of induced voltages, 

227–229, 232, 239
procedure for determining dot 

markings, 228–229
s domain circuit, 525–526
self-inductance and, 227–228, 

231–232, 234–235, 239

N
Narrowband (high-Q) filters, 628–633, 

637
bandpass, 628–630, 636
bandreject, 630–633, 637
Bode plots for, 630, 633

Natural response, 248, 250–260, 
269–274, 284, 302–317, 324–331, 
336–338, 517

characteristic equation for, 303–304, 
325, 327, 337

circuit phase analysis using, 248
clock analysis for computer timing, 

301, 336–337
critically damped response, 314–317, 

325–328, 337
current (i) expression for, 250–252, 

258
damped radian frequency (vd), 310, 

321, 327–328
energy (w) expression for, 254, 258
general solution for, 269–274, 284
initial inductor current (I0), 251
Laplace transform method for, 517
method for, 252, 258, 269–270, 284, 

308, 311, 326–327
Neper frequency (a), 304, 325,  

327, 337
overdamped response, 307–310, 

325–328, 337

parallel RLC circuits, 300,  
302–324, 337

power (p) expression for, 254, 258
resistor-capacitor (RC) circuits, 248, 

256–260, 269–274, 284, 517
resistor-inductor (RL) circuits, 248, 

250–256, 269–274, 284
resistor-inductor-capacitor (RLC) 

circuits, 302–317, 324–328, 330, 
336–338

resonant radian frequency (v0), 304, 
321, 325, 327

series RLC circuits, 300, 324–328, 
330, 338

steady-state response for, 255
symbols for, 302
time constant (t), 251–252, 254–255, 

257, 284
transient response of, 255
underdamped response, 310–314, 

325–328, 337
voltage (v) expressions for, 254,  

257, 302
Negative feedback, 181–183, 185, 186, 

188, 190, 200
difference-amplifier circuit, 190
input voltage constraints and, 

181–182
inverting-amplifier circuit, 185
op-amp circuit analysis and,  

181–183
summing-amplifier circuit, 186
voltage constraint and, 181–182, 

200
Neper frequency (a), 304, 321, 325, 

327, 329, 337
parallel RLC circuits, 304, 321,  

337
series RLC circuits, 325, 327, 329

Net charge, 35
Neutral terminal, 443
Node voltage, 125
Node-voltage method, 120, 124–132, 

140–143, 162–163, 372–373
amplifier circuit analysis, 130–131
circuit analysis process, 124–126, 

129–130, 162–163
dependent sources and, 126–128
duality of, 132
frequency-domain circuit analysis, 

372–373
mesh-current method compared to, 

140–143
special cases for, 128–132
steady-state circuit analysis,  

372–373
supernodes and, 129–130

Nodes, 67, 78, 122–124
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Noninverting-amplifier circuit, 
187–190, 196–198, 200–201

ideal op-amp model for, 187–190, 
200

negative feedback in, 188
realistic op-amp model for,  

196–198, 201
Nonplanar circuits, 122
Norton equivalent circuits, 120,  

148–151, 163, 368–369
frequency domain simplification, 

368–369
impedance (Z) in, 368–369
source transformation, 120, 148–151, 

163, 368–369
terminal circuit simplification using, 

120, 148–151, 163

O
Odd periodic function, 654–655
Ohm’s law, 60–61, 70–71, 73–75, 78, 89, 

512, 514
amplifier circuit analysis using, 75
circuit analysis using, 70–71, 73–75, 78
dependent sources and, 73–75
electrical resistance and, 60–61, 78
Kirchhoff’s law and, 70–71
parallel-connected circuits and, 89
s domain use of, 512, 514

Op amp filters, 603–605, 607, 608–628, 
636

bandpass, 608–611, 626–627, 636
bandreject, 611–615, 636
Butterworth, 619–628
cascading, 615–619
design of, 603, 604–605
first-order active, 603, 604–605, 

615–619
higher-order active, 615–628
high-pass, 604–605
low-pass, 603, 607
scaling, 607

Open circuit, 65
Open-loop operation, 185
Operational amplifiers (op amps), 

178–209. See also Op amp filters
common mode rejection ratio 

(CMRR) for, 193–195, 201
current (i), 180–184, 200
difference-amplifier circuit,  

190–195, 201
gain, 181
ideal model, analysis of, 182–183, 

200–201
input constraints, 181–182, 200
inverting-amplifier circuit, 184–186, 

196, 200

negative feedback in, 181–182, 185, 
186, 188, 190, 200

noninverting-amplifier circuit, 
187–190, 196–198, 200

open-loop operation, 185
realistic models, analysis of,  

195–198, 201
sensors, 207, 227–228
summing-amplifier circuit, 186–187, 

200
symbols for, 180
terminals, 180–184, 200
voltage (v), 180–184, 200

Operational transforms, 475, 481–486, 
504, 700–704

addition and subtraction, 482, 701
convolution in frequency domain, 

703
convolution in time domain, 702
defined, 475, 504
differentiation, 482–483, 701
Fourier, 700–704
integration, 483–484, 701
Laplace, 475, 481–486, 504
modulation, 702
multiplication by a constant,  

481, 701
scale changing, 485, 702
translation in frequency domain, 

485, 702
translation in time domain, 

484–485, 702
Overdamped response, 307–310, 

319–321, 325–327, 328–329, 337
natural response, 307–310, 325–328, 

337
parallel RLC circuits, 307–310, 

319–321, 337
series RLC circuits, 325–327, 329
step response, 319–321, 328–329

P
Parallel-connected circuits, 86, 89–92, 

107, 222–224, 363, 365, 418–419, 
736–737. See also Parallel RLC 
circuits 

capacitors, 223–224
circuit elements, 89
combining, 89–90
frequency domain, 363, 365
impedance (Z) combined in, 363, 

365
inductors, 222–223
Kirchhoff’s current law for, 89
Ohm’s law for, 89
power calculations for, 418–419
resistors, 86, 89–92, 107

series–parallel simplification, 90–91
two-port, 736–737

Parallel RLC circuits, 300, 302–324, 
337, 583–585, 591

bandpass filters, 583–585
bandreject filters, 591
bandwidth (b), 584
characteristic equation for, 303–304, 

321, 337
critically damped voltage response, 

314–317, 319–321, 337
cutoff frequency (vc), 584
damped radian frequency (vd),  

310, 321
frequency-selective circuits,  

583–585, 591
natural response of, 302–317, 337
Neper frequency (a), 304, 321, 337
overdamped response, 307–310, 

319–321, 337
parameters of, 304–305
quality factor (Q), 584
resonant radian frequency (v0),  

304, 321
second-order differential equations 

for, 302–305
step response of, 317–324, 337
symbols for, 302
underdamped response, 310–314, 

319–321, 337
Parasitic resistance, 65
Parseval’s theorem, 707–713, 714

bandpass filter application,  
690–691

energy calculations using, 707–713, 
714

Fourier transform time-domain 
functions, 707–713, 714

graphic interpretation of, 709
low-pass filter application, 711–712
rectangular voltage pulse applica-

tion, 712–713
Partial fraction expansion, 489–498, 

530–533
distinct complex roots of D(s), 

491–493
distinct roots of D(s), 489–490
improper rational functions, 488, 

497–498
inverse Laplace transforms and, 

489–498
proper rational functions, 489–497
repeated complex roots of D(s), 

496–496
repeated real roots of D(s), 494–495
s domain use of, 489–498, 530–533
transfer function (H(s)) in, 530–533
transform pairs for, 497
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Passband frequency, 566, 592
Passive circuit elements, 58, 210, 239, 

355–359, 389
capacitors, 210, 239, 357–358, 389
defined, 58
frequency domain, 355–359
impedance (Z) and, 358–359
inductors, 210, 239
phasor transforms and, 353, 355–359
reactance and, 359
resistors, 355–356, 389
voltage to current (v–i) relation-

ships in, 358–359
Passive filters, 567, 577, 587, 593
Passive sign convention, 42–45
Period of time (T), 348
Periodic current, average-power 

 calculations and, 667–669
Periodic functions (f(t)), 646, 648–658, 

667–670, 677–678
average power calculations with, 

667–669, 678
defined, 646, 677
Dirichlet’s conditions, 649
even, 653–654
Fourier coefficients and, 649–651, 677
Fourier series of found with 

 symmetry, 658
Fourier series representation, 

649–650, 667–669
fundamental frequency (v0), 649, 677
half, 655–656
harmonic frequency, 649, 677
odd, 654–655
periodic voltage and, 667–669
quarter, 656–657
root-mean-square (rms) value of, 

669–670, 678
steady-state response from, 649–650
symmetry effects, 653–658, 677
waveforms, 646, 648–657

Periodic response, 646, 648
Periodic to aperiodic transition, 688, 

691, 714
Periodic voltage, 659–665, 667–669, 

673–675, 691
amplitude spectra for, 673–675
average-power calculations 

 expressed from, 667–669
Fourier series applications, 659–665, 

667–669, 673–675
inverse Fourier transform and, 691
phase spectra for, 673–675
phasor domain circuit transforma-

tion and, 659–660
sine and cosine terms for, 659–660
steady-state response and, 661–665
waveforms, 661, 663–664

Periodic waveforms, 646, 648
Phase angle (f) of, 348
Phase angle plots, 566, 776–778, 

782–784
complex poles, 782–784
frequency response and, 566
straight-line, 776–778, 782–784

Phase current, 446–447, 450–451, 463
Phase sequences for three-phase  

circuits, 442, 463
Phase spectrum, 673–675, 678
Phase voltage, 446–447, 463
Phase windings, 443
Phasor diagrams, 385–387, 442, 447
Phasor transform, 353–361

frequency domain and, 353,  
355–359

inverse, 354
phasor representation as, 353
voltage to current (v–i) relation-

ships, 355–359, 389
Phasors, 352–359, 415–416, 659–660, 

678. See also Phasor transforms
capacitor voltage to current (v–i) 

relationships, 357–358, 389
complex power calculations using, 

415–416
concept of, 352–353
Fourier series transformation to 

phasor domain, 659–660, 678
impedance (Z) and, 358–359
inductor voltage to current (v–i) 

relationships, 356–357, 389
reactance and, 359
representation, 353
resistor voltage to current (v–i) 

 relationships, 355–356, 389
sinusoidal functions and, 352–355
steady-state analysis using,  

352–358
Pi (π-equivalent circuit, 762–763
Pi (π) interconnection, 104
Pi-to-tee (π-to-T) equivalent circuits, 

103–106, 108
Planar circuits, 122
Polar form of complex numbers, 

755–756
Polarity, 42, 44–45, 227–229, 232, 239, 

382–383
arrows for reference of, 42, 44
coil current and voltage, 382–383
dot convention for, 227–229, 239, 

382–383
ideal transformers, 382–383
induced voltages, 227–229,  

232, 239
mutual inductance, 227–229, 239
power reference, 44–45

self-inductance, 232
voltage and current references, 42

Poles, 498–500, 504, 530, 771–772, 
778–784

amplitude plots, 778–781
complex, 778–784
frequency domain (F(s)), 498–500, 

504
phase angle plots, 782–784
real, first-order, 771–772
transfer functions (H(s)), 530

Ports, 720
Potential coil, 458, 463
Power, 31, 43–48, 61–62, 154–156, 163, 

210, 214–215, 218–219, 239, 254, 
258, 406–407, 412–413, 419–420, 
429, 441, 455–456, 461–463

ac circuits, 419–420
algebraic sign of, 44–45
balance of in circuits, 31, 47–48
balanced three-phase circuits, 441, 

461–463
capacitive circuits, 407
capacitors and, 210, 218–219, 239
current and voltage relationship to, 

43–45
defined, 44
electric transmission and distribu-

tion, 441, 461–463
energy and, 43–45
inductive circuits, 406–407
inductors and, 210, 214–215, 239
maximum power transfer,  

154–156, 163
natural response and, 254, 258
passive sign convention for, 44–45
polarity reference, 44–45
resistive circuits, 406
resistive load transfer, 155–156
resistor-capacitor (RC) circuit 

 expression, 258
resistor-inductor (RL) circuit 

 expression, 254
resistors, 61–62
time-invariant, 455–456
units for, 407, 412–413, 429

Power calculations, 402–439,  
453–458, 463

apparent power, 413, 429
appliance ratings for, 409–410
average power (P), 405–412, 417, 

422, 429, 453–454
balanced three-phase circuits, 

453–458, 463
balancing power in ac circuits, 419–420
complex power, 412–421, 429, 

454–455
delta (Δ) loads, 454–455
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Power calculations (Continued)
energy delivery and, 402
instantaneous power, 404–405, 406, 

429, 455–456
lagging/leading factors for, 407, 429
maximum power transfer (Pmax), 

421–427, 429
parallel loads and, 418–419
phasors for, 415–416
power factor (pf) for, 407, 429
reactive factor (rf) for, 407, 429
reactive power (Q), 405–410, 417, 

429, 454–455
root-mean-square (rms) value for, 

410–412
sinusoidal steady-state analysis, 

402–439
standby (vampire) power, 403, 

427–428
unspecified loads, 457–458
wye (Y) loads, 453–454
wye-delta (Y-Δ) circuits, 456–457
wye-wye (Y-Y) circuits, 456

Power consumption, 427
Power equation, 44
Power factor (pf), 407, 429
Power measurement, 458–461, 463, 

769–770
balanced three-phase circuits, 

458–461, 463
bels, 769
decibels (dB), 769–770
electrodynamic wattmeter for, 

458–461, 463
current coil, 458, 463
potential coil, 458, 463
power gain, 769–770
two-wattmeter method, 459–460, 463
wattmeter reading calculations, 

460–461
Power systems, 33, 347, 387–388
Power triangle, 413
Problem-solving strategy, 36–37
Proper rational functions, 488–497. See 

also Partial  fraction expansion
Prototypes, 40, 603–605, 636
Pushbutton telephone circuits, 565, 

592

Q
Qualitative analysis, 567–569, 572, 574, 

579, 588–589
bandpass filters, 579
bandreject filters, 588–589
high-pass filters, 574
low-pass filters, 567–569, 572

Quality factor (Q), 578, 582, 590, 584, 647

Quantitative analysis, 570–571, 
574–575, 579–582, 589–590

bandpass filters, 579–582
bandreject filters, 589–590
high-pass filters, 574–575
low-pass filters, 570–571

Quarter-wave periodic function, 
656–657

R
Rational functions (F(s)), 488–498

improper, 488, 497–498
inverse Laplace transforms and, 

497–498
proper, 489–497
transform pairs for, 497

Reactance, 359
Reactive factor (rf), 407, 429
Reactive power (Q), 405–410, 417, 429, 

454–455
balanced three-phase circuits, 

454–455
calculations for, 405–410, 417, 429, 

454–455
delta (Δ) loads, 454–455
sinusoidal steady-state analysis, 

405–410, 417
wye (Y) loads, 454

Reciprocal two-port circuits, 729–730, 
740

Rectangular form of complex 
 numbers, 755–756

Rectangular waveforms, 648
Reflected impedance (Zr), 376–377, 

389
Resistance (R), 60–63, 65, 78, 89–90, 

101–103, 108
conductance (G) and, 61
equivalent (Req), 89–90
measurement of, 101–103, 108
Ohm’s law and, 60–61, 78
parasitic, 65
resistors as models of, 60–63
Wheatstone bridge circuit for, 

101–103, 108
Resistive circuits, 86–119, 143–146, 

149, 162, 406
analysis of, 96–98, 107–108, 143–146, 

149, 162
current-divider circuit, 95, 107
current division, 97–98, 107–108
delta-to-wye (Δ-to-Y) equivalent 

circuits, 103–106, 108
interconnections, 86, 88–92, 103–106
measurement of voltage and 

 current, 86, 98–101, 108
parallel connections, 86, 89–92, 107

pi-to-tee (π-to-T) equivalent 
 circuits, 103–106, 108

power for, 406
resistor value measurements,  

101–103, 108
series connections, 86, 88, 107
series–parallel simplification, 90–91
source transformation, 143–146,  

149, 162
touch screens, 87, 106–108
voltage-divider circuit, 92–94, 107
voltage division, 96–98, 107
Wheatstone bridge, 101–103, 108

Resistive loads, 155–156
Resistor-capacitor (RC) circuits,  

248–250, 256–260, 266–274, 
277–283, 517, 571–572, 574–575, 
661–665

analysis phases for, 248
artificial pacemaker design,  

249, 283
current (i) expression, 258
cutoff frequency (vc), 572
energy (w) expression, 258
first-order circuits as, 248, 250, 284
Fourier series application, 661–665
frequency-selective analysis of, 

571–572, 574–575
general solution for, 269–274, 284
high-pass filters, 574–575
integrating-amplifier circuit 

 analysis, 280–282, 284
Laplace transform method for, 517
low-pass filters, 571–572
natural response of, 248, 256–260, 

269–274, 284, 517
periodic voltage in, 661–665
power (p) expression, 258
sequential switching, 274, 277–278, 

284
steady state response, 661–665
step response of, 248, 266–274, 284
time constant (t), 257, 284
unbounded response, 278–279, 284
voltage (v) expression, 257

Resistor-inductor (RL) circuits, 
248–256, 261–265, 269–279, 284, 
567–568, 570–571, 575–576

analysis phases for, 248
current (i) expression, 250–252
cutoff frequency (vc), 570
energy (w) expression, 254
first-order circuits as, 248, 250, 284
frequency-selective analysis of, 

567–568, 570–571, 575–576
general solution for, 269–274, 284
high-pass filters, 575–576
low-pass filters, 567–568, 570–571
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natural response of, 248, 250–256, 
269–274, 284

power (p) expression, 254
qualitative analysis, 574
quantitative analysis, 574–575
sequential switching, 274–277, 284
step response of, 248, 261–265, 

269–274, 284
time constant (t), 251–252,  

254–255, 284
unbounded response, 278–279, 284
voltage (v) expression, 254

Resistor-inductor-capacitor (RLC) 
circuits, 300–345, 517–518,  
579–587, 588–591, 665–666

bandwidth (b), 581–582, 584
center frequency (vo), 580–582
characteristic equations for,  

303–304, 321, 325, 327, 329, 337
clock for computer timing, 301, 

336–337
critically damped voltage response, 

314–317, 319–321, 326–327, 
328–329, 337

cutoff frequency (vc), 581, 584
damped radian frequency (vd), 310, 

321, 329
direct approach for, 319–320, 

665–666
Fourier series approach for, 665–666
frequency-selective circuit analysis, 

579–587, 588–591
indirect approach for, 318–319
inductor current for, 317–318
integrating amplifiers in cascade, 

331–336, 338
Laplace transform method for, 

517–518
natural response of, 302–317, 

324–328, 330, 336–338
Neper frequency (a), 304, 321, 325, 

329, 337
overdamped response, 307–310, 

319–321, 326, 328–329, 337
parallel, 300, 302–324, 337, 583–585, 

591
quality factor (Q) for, 582, 584
resonant radian frequency (v0), 304, 

321, 325, 329
second-order differential equations 

for, 302–305
series-connected, 300, 302, 324–331, 

338, 579–583, 585–587, 588–591
square-wave voltage and,  

665–666
steady-state response of, 665–666
step response of, 317–324, 328–331, 

333, 337–338, 517–518

symbols for, 302, 317
timing signals, 301
underdamped voltage response, 

310–314, 319–321, 326–327, 
328–329, 337

voltage expressions for, 302
Resistors, 60–63, 78, 89–92, 121,  

159–162, 355–356, 389, 512, 549, 788
circuit component values, 788
conductance (G) and, 61
equivalent circuits for, 89–90, 512, 549
multiple, 89–90
Ohm’s law for, 60–61, 78
phasor relationships, 355–356, 389
power in terms of current, 61
power in terms of voltage, 62
resistance (R) models, 60–63
s domain representation, 512, 549
sensitivity analysis of, 121,  

159–162
series–parallel simplification,  

90–91
signals in phase, 356
voltage to current (v–i) relation-

ships, 355–356, 389
Resonant frequency (vo), 578
Resonant radian frequency (v0), 304, 

321, 325, 327, 329
parallel RLC circuits, 304, 321
series RLC circuits, 325, 327, 329

Response, 248, 250–274, 269–274, 
278–279, 284, 300–345, 351–352, 
389, 532–541, 549, 705–706

critically damped, 314–317, 319–321, 
325–327, 328–329, 337

damped radian frequency (vd), 310, 
321, 327, 329

Fourier transforms for, 705–706
general solution for, 269–274, 284
memory, concept of, 538–539
natural, 248, 250–260, 269–274, 284, 

302–317, 324–328, 330, 336–338
overdamped, 307–310, 319–321, 

325–327, 328–329, 337
resistor-capacitor (RC) circuits, 

248, 256–260, 266–274,  
278–279, 284

resistor-inductor (RL) circuits, 248, 
250–256, 261–265, 269–279, 284

resistor-inductor-capacitor (RLC) 
circuits, 300–345

sinusoidal, 351–352, 389, 532–541, 549
steady-state analysis of, 346,  

351–352, 389
steady-state, 255, 346, 351–352, 389, 

532–541, 549, 706
step, 248, 261–274, 284, 317–324, 

328–331, 337–338

transfer function (H(s)) and, 
532–541, 549

transient, 255, 705–706
unbounded, 278–279, 284
underdamped, 310–314, 319–321, 

325–327, 328–329, 337
unit impulse (h(t)), 532–539
weighting function for, 538

Root-mean-square (rms) value, 349, 
410–412, 669–670, 678

effective value as, 411
periodic functions (f(t)), 669–670, 

678
power calculations using, 410–412
sinusoidal sources and, 349

Roots of complex numbers, 759–760

S
s domain, 474, 480–486, 488–502,  

504–505, 510–563. See also 
 Frequency domain

circuit analysis in, 514–516
circuit elements in, 512–514
final-value theorem for, 500–502, 505
initial-value theorem for, 500–502, 

505
inverse Laplace transforms for, 

488–498, 504
Kirchhoff’s laws in, 515
Laplace transform method 

 applications, 510–563
Laplace transform (F(s)) of, 

488–502, 504–505
mutual inductance circuit in, 

525–526
Ohm’s law in, 512, 514
operational transforms for, 475, 

481–486, 504
partial fraction expansion, 489–498, 

530–533
poles of F(s), 498–500, 504, 530
rational functions (F(s)) and, 

488–498
superposition applications in, 

527–528
Thévenin equivalent circuit in, 

523–524
time domain (t) relationships, 474, 

481–486, 500–502, 505
transfer function (H(s)), 528–541, 

549
transform pairs, 480–481, 497
zeros of F(s), 498–500, 504, 530

Scale change, 485, 702
Scaling, 605–608, 636

circuit component scale factors, 606
filter design using, 606
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Scaling (Continued)
frequency, 606, 636
low-pass op-amp filter, 607
magnitude, 605–606, 636
series RLC filter, 606–607

Second-order circuits, 302. See also 
Resistor-inductor- capacitor 
(RLC) circuits

Second-order filters, 626
Seebeck effect, 227
Self-impedance, 376
Self-inductance, 227–228, 231–232, 

234–235, 239, 375–376, 379–380
Faraday’s law for, 231–232
mutual inductance and, 227–228, 

234–235, 239
polarity of induced voltages, 

227–229, 232, 239
steady-state transformer analysis 

and, 375–376, 379–380
voltage drop, 227

Sensors, op-amp circuit analysis for, 
207, 227–228

Sensitivity analysis of resistors, 121, 
159–162

Sequential switching, 274–278, 284
circuit analysis and, 274–278, 284
defined, 274
resistor-capacitor (RC) circuits with, 

274, 277–278, 284
resistor-inductor (RL) circuits with, 

274–277, 284
Series-connected (in-series) circuits, 69, 

78, 86, 88, 107, 222–223, 362–363, 365, 
567–568, 570–572, 574–576, 736–737. 
See also Series RLC circuits

black box concept, 88
capacitors, 223
circuit elements, 69, 78
combining, 88
frequency domain, 362–363, 365
frequency-selective circuits,  

567–568, 570–572, 574–576
high-pass filters, 574–576
impedances (Z) combined in, 

362–363, 365
inductors, 222
Kirchhoff’s laws for, 88
low-pass filters, 567–568, 570–572
resistors, 86, 88, 107
two-port circuits, 736–737

Series–parallel connections, 90–91, 
736–737

simplification of, 90–91
two-port circuits, 736–737

Series RLC circuits, 300, 302, 324–331, 
338, 579–583, 585–591, 606–607

bandpass filters, 579–583, 585–587
bandreject filter, 588–591

bandwidth (b), 581, 590
center frequency (vo), 580, 590
characteristic equation for, 325, 

327–329
critically damped response, 325, 

325–327, 329
cutoff frequency (vc), 580–581, 590
frequency-selective circuits,  

579–583, 585–591
natural response of, 300, 302, 

324–331, 338
Neper frequency (a), 325, 327, 329
overdamped response, 325–327, 329
quality factor (Q), 582, 590
resonant radian frequency (v0), 325, 

327, 329
scaling, 606–607
step response of, 328–331, 338
symbols for, 302
underdamped response, 325–327, 

329
Short circuit, 65
Sifting property, 478–479
Signal-processing systems, 33
Signals in phase, 356
Signum functions, 697
Simplification techniques, 90–91, 

103–106, 143–146, 149
delta-to-wye (Δ-to-Y)  

transformation, 103–106
series–parallel simplification, 

90–91
source transformation, 143–146, 

149
Simultaneous equations, 122–124, 

746–754
applications of, 751–754
back-substitution method for, 

749–750, 754
calculator and computer methods 

for, 747–749, 752–754
characteristic determinant of, 

750–751
circuit analysis using, 122–124
Cramer’s method for, 750–752
essential nodes and branches for, 

123–124
Kirchhoff’s laws for, 122–123
linear, 746–754
number of, 122–124
solution of, 746–754

Sine functions, 659–660, 678
Single-phase equivalent circuits, 

446–449, 463
Sinusoidal circuits, 346–401, 402–439

power calculations, 402–439
steady-state analysis, 346–401

Sinusoidal function, 480
Sinusoidal rectifiers, 646, 648

Sinusoidal response, 351–352, 389, 
539–541, 549

frequency (v) of, 352, 389
steady-state analysis of, 351–352, 389
steady-state current component, 

352
steady-state solution characteristics, 

352
transient current component, 352
transfer function (H(s)) and, 

539–541, 549
Sinusoidal sources, 346–351, 389, 

519–520
amplitude of, 348
angular frequency (v), 348
current behavior and, 346
current (i), 348–349
Laplace transform method for, 

519–520
period of time (T), 348
phase angle (f) of, 348
root-mean-square (rms) value, 

349–351
steady-state analysis and, 346–351, 

389
steady-state response from, 347, 

351–352
voltage (v), 348–350

Smartphones, 207
Source transformation, 120, 143–146, 

149, 162, 368–371
bilateral configurations, 143–144
condition of equivalence for, 144
defined, 143
frequency-domain circuit simplifica-

tion, 368–371
impedance (Z) for, 368–371
Norton equivalent circuits from, 

149, 368–369
resistive circuit simplification, 120, 

143–146, 149, 162
steady-state circuit analysis,  

368–371
Thévenin equivalent circuits from, 

149, 368–369, 371
Sources, 56–59, 73–76, 346–351, 389, 

519–520, 545–548
active circuit elements, 58
current, 56–59, 78
dependent, 56, 59, 73–76, 78
direct current (dc), 58
electrical, 56
impulsive, 545–548
ideal, 56–59, 78
independent, 56, 59, 78
interconnections of, 58–59
Laplace transform method for, 

545–548
passive circuit elements, 58
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sinusoidal, 346–351, 389, 519–520
symbols for, 56–57
voltage, 56–59, 78

Square-wave voltage, 661, 665–666
Square waveforms, 648, 661
Standby (vampire) power analysis, 

403, 427–428
Steady-state analysis, 346–401

admittance (Y), 364, 389
challenges of, 346
delta-to-wye (Δ-to-Y)  

transformations, 366–368
frequency domain of, 355–385
household distribution circuit, 347, 

387–388
impedance (Z) for, 358–359, 

361–366, 368–371, 389
Kirchhoff’s laws for, 360–361
mesh-current method, 373–375
node-voltage method for, 372–373
Norton equivalent circuit for, 368–370
parallel impedances, 363–366
passive circuit elements, 355–359
phasor diagrams for, 385–387
phasor transforms for, 353–361
phasors, 352–359
responses, 255, 351–352
series impedances, 362–363
sinusoidal sources for, 346–351, 389
source transformations for, 368–371
Thévenin equivalent circuit for, 

368–371
transformers, 375–384, 389
voltage to current (v–i)  

relationships, 355–359, 389
Steady-state current component, 352
Steady-state response, 255, 346,  

351–352, 389, 539–541, 549, 
649–650, 661–666, 678, 706

direct approach to, 663–666, 678
Fourier series approach for,  

649–650, 661–666, 678
Fourier transforms for, 706
periodic functions used for,  

649–650
periodic voltage and, 661–665
RC circuit periodic voltage 

 response, 661–665
RLC circuit square-wave voltage 

response, 665–666
sinusoidal analysis conditions, 346
sinusoidal sources of, 346, 351–352
square-wave voltage and,  

665–666
time constant (t) and, 255
transfer function (H(s)) and, 

539–541, 549
waveforms of, 663–664

Step function (Ku(t)), 475–476, 504
discontinuities of circuits and, 

475–476, 504
finite duration representation, 476
unit step function (u(t)), 475, 504

Step response, 248, 261–274, 284, 
317–324, 328–331, 333, 337–338, 
517–518

characteristic equation for, 321, 329
circuit analysis using, 248
comparison of RC and RL  

circuits, 269
critically damped response,  

319–321, 328–329
damped radian frequency (vd),  

321, 329
direct approach for, 319–320
general solution for, 269–274, 284
indirect approach for, 318–319
inductor current for, 317–318
inductor voltage versus time, 264–265
integrating-amplifier analysis of, 333
magnetically coupled coils and, 

273–274
Laplace transform method for, 

517–518
method for, 262, 266, 269–270, 284
Neper frequency (a), 321, 329
overdamped response, 319–321, 

328–329
parallel, 300, 317–324
resistor-capacitor (RC) circuits, 248, 

266–274, 284
resistor-inductor (RL) circuits, 248, 

261–265, 269–274, 284
resistor-inductor-capacitor (RLC) 

circuits, 317–324, 328–331, 
337–338, 517–518

resonant radian frequency (v0), 321, 
329

series-connected, 300, 328–331
symbols for, 302, 317
underdamped response, 319–321, 

328–329
Stopband frequency, 566, 592
Straight-line plots, 772–784. See also 

Amplitude plots; Phase angle 
plots

Strength (K) of impulse function, 477, 
504

Summing-amplifier circuit, 186–187, 
200

Supermesh, 137–138
Supernodes, 129–130
Superposition, 120, 157–159, 163, 

527–528
circuit analysis using, 120, 157–159, 

163

dependent sources and, 158–159
Laplace transform method using, 

527–528
s domain applications, 527–528

Surge suppressor analysis, 511, 548
Susceptance (B), 364
Switching operations, impulse function 

(Kd(t)) for, 542–545
Symmetric two-port circuits, 729–730, 

740–741
Symmetry, 132, 226–227, 239, 653–658, 

677
capacitors, 226–227, 239
duality as, 132, 226
even-function, 653–654
Fourier coefficient, effects on, 

653–658, 677
Fourier series of periodic function 

found with, 658
half-wave, 655–656
inductors, 226–227, 239
odd-function, 654–655
quarter-wave, 656–657

T
T-equivalent circuit, 761
Tee (T) interconnection, 104
Terminals, 66, 71–72, 146–154, 180–184, 

200, 720–745
circuit behavior and, 146–154, 

180–184
current of, 180–184, 200
measurements for circuit  

construction, 66, 71–72
negative feedback and, 181–182, 

200
Norton equivalent circuits and, 

148–151
operational amplifier (op amp), 

180–184, 200
ports, 720
symbols for, 180
Thévenin equivalent circuits and, 

146–154
two-port circuits, 720–745

Terminals, 66, 71–72, 146–154, 180–184, 
200, 720–745

Terminated two-port circuits,  
731–736

Thévenin equivalent circuits, 120,  
146–154, 163, 368–369, 371, 523–524

amplifier circuit analysis using, 
153–154

dependent sources and, 150
impedance (Z) in, 368–369
frequency-domain circuit simplifica-

tion, 368–369,371
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Thévenin equivalent circuits  
(Continued)

Laplace transform method for, 
523–524

resistance directly from circuit, 
151–154

s domain, 523–524
source transformation for, 149, 

368–369, 371
terminal circuit simplification using, 

120, 146–151, 163
voltage of, 180–184, 200

Three-phase circuits, 440–471
a-, b-, and c-phase voltage 

 references, 442
average power measurement in, 

458–461, 463
balanced conditions, 440, 444–445, 

463
basic circuit use and characteristics, 

440, 442
delta (Δ) loads, 454–455
electric power transmission and 

distribution, 441, 461–463
impedance relationships, 450
instantaneous power in, 455–456
line current, 445, 446–447, 450–451, 463
line voltage, 445, 446–447, 463
neutral terminal for, 443
phase current, 446–447, 450–451, 463
phase sequences, 442, 463
phase voltage, 446–447, 463
phase windings, 443
phasor diagrams for, 442, 447
power calculations in, 453–458, 463
single-phase equivalent circuit for, 

446–449, 463
unspecified loads, 457–458
voltage sources, 443
wye (Y) loads, 453–454
wye-delta (Y-Δ) circuit analysis, 

450–453, 456–457
wye-wye (Y-Y) circuit analysis, 

444–449, 456
Time constant (t), 251–252, 254–255, 

257, 284
resistor-capacitor (RC) circuits, 257, 

284
resistor-inductor (RL) circuits, 

251–252, 254–255, 284
significance of, 254–255
steady-state response and, 255
transient response and, 255

Time domain (t), 474–486, 500–502, 
504–505, 573, 587–588, 690–691, 
699–700, 702, 707–713, 714

bandpass filters, 587–588
convolution in, 702

final-value theorem for, 500–502, 
505

Fourier transform (f(t)), 690–691, 
699–700, 702, 707–713, 714

frequency domain (s) relationships, 
474, 500–502, 505, 573, 587–588

functional transforms, 475,  
480–481, 504

impulse function (Kd(t)),  
477–479, 504

initial-value theorem for, 500–502, 
505

Laplace transform (f(t)), 474–475, 
481–486, 500–502, 504–505

low-pass filters, 573
operational transforms for, 475, 

481–486, 504, 702
Parseval’s theorem, 707–713, 714
sifting property and, 478–479
step function (Ku(t)), 475–476, 504
transform pairs, 480–481, 497
translation in, 702
unit impulse function (d(t)),  

477, 504
unit step function (u(t)), 475, 504

Time-invariant circuits, 532–533, 549
Time-invariant instantaneous power, 

455–456
Timing signals, 301
Touch screens, 87, 106–108, 211, 

237–238
capacitance of, 211, 237–238
resistive circuits of, 87, 106–108

Transfer function (H(s)), 528–541, 549, 
573, 577, 587, 589, 591, 592–593, 
620–621

bandpass filters, 587, 593
bandreject filters, 589, 591, 593
Butterworth filters, 620–621
circuit analysis and, 529–530, 

532–533
convolution integral and, 533–539, 

549
defined, 528–529
frequency-selective circuit analysis 

using, 573, 577, 587, 592–593
high-pass filters, 577, 593
Laplace transform method for, 

528–541, 549
low-pass filters, 573, 592
partial fraction expansion and, 

489–498, 530–533
poles of, 530
sinusoidal steady-state response 

and, 539–541, 549
time-invariant circuits, 532–533, 549
unit impulse response (h(t)) and, 

532–539

weighting function, 538
zeros of, 530

Transform pairs, 480–481, 497
Transformers, 375–384, 389, 765–768

current (i) ratios, 381–383
dot convention for, 382–383
equivalent circuits with, 765–768
frequency domain analysis of, 

375–384
ideal, 379–384, 389, 765–768
impedance matching, 384
limiting values of, 379–381
linear circuits, 375–379, 389
polarity of voltage and current, 

382–383
reflected impedance (Zr), 376–377, 

389
self-impedance of, 376
self-inductance of, 375–376,  

379–380
steady-state analysis of, 375–384, 

389
steady-state analysis, 375–384, 389
voltage (v) ratios, 381–383
winding (primary and secondary), 

375
Transient current component, 352
Transient response, 255, 705–706
Transition region, 624–625
Transmission parameters, 724, 728
Triangular waveforms, 646, 648, 

651–652
Trigonometric identities, 785
Twin-T notch filter, 630
Two-port circuits, 720–745

cascaded, 736–739
conversion table for parameters, 

727
hybrid parameters, 724, 725
immitance, 724
interconnected, 736–739, 741
measurements for parameters of, 

725, 728
model assumptions, 720, 740
parallel, 736–737
parameters for, 723–731, 740
reciprocal, 729–730, 740
relationships among, 726–727, 729
series-connected, 736–737
series-parallel, 736–737
symmetric, 729–730, 740–741
terminal equations for, 722, 740
terminated, 731–736
transmission parameters, 724, 728
unknown circuit characterization, 

721, 739–740
z parameters, 724–725, 731–734

Two-wattmeter method, 459–460, 463
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U
Unbounded response, 278–279, 284
Underdamped response, 310–314, 

319–321, 325–327, 328–329, 337
natural response, 310–314, 325–328, 

337
parallel RLC circuits, 310–314, 

319–321, 337
series RLC circuits, 325–327, 329
step response, 319–321, 328–329

Unilateral (one-sided) Laplace 
 transform, 474–475

Unit impulse function (d(t)), 477, 504
Unit impulse response (h(t)), 532–539
Unit prefixes, 38–39
Unit step function (u(t)), 475, 480, 504, 

697
Unknown circuit characterization, 

721, 739–740

V
Vampire (standby) power analysis, 

403, 427–428
Volt-amp reactive (VAR), unit of, 407, 

413, 429
Volt-amps (VA), unit of, 412–413, 

429
Voltage (v), 40–45, 62, 68, 70, 74, 78, 

86, 98–101, 108, 180–184, 200, 
212–214, 227–229, 231–232, 239, 
254, 257, 302, 348–350, 360–361, 
382–383, 442, 445–447, 463, 
659–669, 673–675, 712–713

a-, b-, and c-phase references, 442
balanced three-phase circuits, 442, 

445–447, 463
defined, 41
dot convention for, 382–383
electric charge and, 40–42
Fourier series applications, 659–669, 

673–675
frequency domain, 360–361, 382–383
ideal transformer ratios, 381–383
induced, 231–232
inductor relationships, 212–214
input constraint, 181–182

Kirchhoff’s voltage law (KVL), 68, 
70, 78, 360–361

line, 445, 446–447, 463
measurement of, 86, 98–101, 108
mutual inductance and, 227–229, 

232, 239
natural response expressions for, 

254, 257, 302
negative feedback and, 181–182, 200
Ohm’s law for, 61, 78
op-amp terminals, 180–184, 200
Parseval’s theorem for, 712–713
phase, 446–447, 463
phasor notation for, 442
periodic, 659–665, 667–669, 673–675
polarity of, 227–229, 232, 239, 382–383
polarity reference, 42
power and energy relationship to, 

43–45
resistor power in terms of, 62
resistor-capacitor (RC) circuits, 

257
resistor-inductor (RL) circuits, 254
resistor-inductor-capacitor (RLC) 

circuits, 302, 665–666
sinusoidal source, 348–350
square-wave, 661, 665–666
steady-state analysis and, 348–350, 

360–361, 382–383
unknown found using Kirchhoff’s 

laws, 74
Voltage-divider circuit, 92–94, 107
Voltage division, 96–98, 107, 362
Voltage drop, 227, 544–545
Voltage sources, 56–59, 78, 443
Voltage to current (v–i) relation-

ships, 212–213, 218, 355–358, 389, 
512–513, 549

capacitors, 218, 357–358, 389
circuit analysis and, 212–213, 218
inductors, 212–213, 356–357, 389
Laplace transform method using, 

512–513, 549
phasor domain of, 355–358, 389
resistors, 355–356, 389
steady-state analysis and, 355–358, 

389
Voltmeter, 98, 100, 108

W
Watt (W), unit of, 412–413, 429
Waveforms, 646, 648, 651–657, 661, 

663–664, 678
even periodic function, 653–654
half-wave periodic function, 655–656
odd periodic function, 654–655
periodic functions for, 646, 648
periodic voltage, 661, 663–664
periodic, 646, 648
quarter-wave periodic function, 

656–657
rectangular, 648
sinusoidal rectifiers, 646, 648
square, 648, 661
square-wave voltage, 661
steady-state response, 663–664
symmetry of periodic functions 

represented as, 653–657
triangular, 646, 648, 651–652

Wavelength (l), 35
Weighting function, 538
Wheatstone bridge, 101–103, 108
Winding (primary and secondary),  

375, 443
Wye (Y) interconnection, 104
Wye (Y) loads, 453–454
Wye-delta (Y-Δ) circuits, 450–453, 

456–457
analysis of balanced, 450–453
power calculations for, 456–457

Wye-wye (Y-Y) circuits, 444–449, 456
analysis of balanced, 444–449
power calculations for, 456

Z
z parameters, two-port circuits, 

724–725, 731–734
Zero frequency, 572
Zeros, 498–500, 504, 530, 771–772, 

778–779
Bode plots and, 771–772, 778–779
complex, 778–779
frequency domain (F(s)), 498–500, 504
real, first-order, 771–772
transfer functions (H(s)), 530



TABLE 8.4
  Equations for analyzing the natural response of  

series RLC circuits

Characteristic equation s2 +
R
L

 s +
1

LC
= 0

Neper, resonant, and  
damped frequencies a =

R
2L

  v0 = A
1

LC
  vd = 2v0

2 - a 2

Roots of the characteristic  
equation

s1 = -a + 2a  

2 - v0
2, s2 = -a - 2a  

2 - v0
2

a  

2 7 v0
2 : overdamped  i(t) = A1e  

s1t + A2e  

s2t, t Ú 0

 i(0+) = A1 + A2 = I0

 
di(0+)

dt
= s1A1 + s2A2 =

1
L

 1 -RI0 - V02

a  

2 6 v0
2 : underdamped  i(t) = B1e

-at cos vdt + B2e
-at sin vdt, t Ú 0

 i(0+) = B1 = I0

 
di(0+)

dt
= -aB1 + vdB2 =

1
L

 1 -RI0 - V02

a  

2 = v0
2 : critically damped  i(t) = D1te

-at + D2e
-at, t Ú 0

 i(0+) = D2 = I0

 
di(0+)

dt
= D1 - aD2 =

1
L

 1 -RI0 - V02

(Note that the equations in the last three rows assume that the reference direction for the current 
in every component is in the direction of the reference voltage drop across that component.)

NATURAL RESPONSE OF A 
SERIES RLC CIRCUITS

1. Determine the initial capacitor voltage (V0) 
and inductor current (I0) from the circuit.
2. Determine the values of A and V0 using  
the equations in Table 8.4.
3. If A2 7 V0

2, the response is overdamped 
and i(t) = A1e

s1t + A2e
s2t, t Ú 0;

If A2 6 V0
2 the response is underdamped and 

i(t) = B1e
-at cos vdt + B2e

-at sin vdt, t Ú 0;
If A2 = V0

2, the response is critically damped  
and i(t) = D1te

-at + D2e
-at, t Ú 0.

4. If the response is overdamped, calculate  
s1 and s2 using the equations in Table 8.4;
If the response is underdamped, calculate 
Vd using the equation in Table 8.4.
5. If the response is overdamped, calculate  
A1 and A2 by simultaneously solving the 
 equations in Table 8.4;
If the response is underdamped, calculate B1 
and B2 by simultaneously solving the equations 
in Table 8.4;
If the response is critically damped,  calculate 
D1 and D2 by simultaneously  solving the equa-
tions in Table 8.4.
6. Write the equation for i(t) from Step 3 using 
the results from Steps 4 and 5; find any desired 
component voltages.

TABLE 8.5 
 Equations for analyzing the step response of series RLC 
circuits

Characteristic equation s2 +
R
L

 s +
1

LC
=

V
LC

 

Neper, resonant, and  
damped frequencies a =

R
2L

   v0 = A
1

LC
   vd = 2v0

2 - a 2

Roots of the characteristic  
equation s1 = -a + 2a  

2 - v0
2,  s2 = -a - 2a 2 - v0

2

a  

2 7 v0
2 : overdamped  vC(t) = Vf + A′1es1t + A′2es2t, t Ú 0

 vC(0+) = Vf + A′1 + A′2 = V0

 
dvC(0+)

dt
= s1A′1 + s2A′2 =

I0

C
 

a  

2 6 v0
2 : underdamped  vC(t) = Vf + B′1e-at cos vdt + B′2e-at sin vdt, t Ú 0

 vC(0+) = Vf + B′1 = V0

 
dvC(0+)

dt
= -aB′1 + vdB′2 =

I0

C
 

a2 = v0
2 : critically 

damped
 vC(t) = Vf + D′1te-at + D′2e-at, t Ú 0

 vC(0+) = Vf + D′2 = V0

 
dvC(0+)

dt
= D′1 - aD′2 =

I0

C
 

(Note that the equations in the last three rows assume that the reference direction for the current 
in every component is in the direction of the reference voltage drop across that component.)

STEP RESPONSE OF A  
SERIES RLC CIRCUITS

1. Determine the initial capacitor volt-
age (V0), the initial inductor current (I0), 
and the final capacitor voltage (Vf) from 
the circuit.
2. Determine the values of A and V0 
using the equations in Table 8.5.
3. If A2 7 V0

2, the response is  
overdamped and vC(t) = Vf + A′1es1t 
+  A′2es2t, t Ú 0+;
If A2 6 V0

2, the response is under-
damped and vC(t) = Vf + B′1e-at cos vdt
+  B′2e-at sin vdt, t Ú 0+;
If A2 = V0

2, the response is critically 
damped and vC(t) = Vf + D′1te-at 
+  D′2e-at, t Ú 0+.
4. If the response is overdamped, 
 calculate s1 and s2 using the equations  
in Table 8.5;
If the response is underdamped, calcu-
late Vd using the equation in Table 8.5.
5. If the response is overdamped, 
 calculate A1′ and A2′ by simultaneously 
solving the equations in Table 8.5;
If the response is underdamped, calcu-
late B1′ and B2′ by simultaneously solving 
the equations in Table 8.5;
If the response is critically damped, 
 calculate D1′ and D2′ by simultaneously 
solving the equations in Table 8.5.
6. Write the equation for vC(t) from Step 3  
using the results from Steps 4 and 5; 
find the inductor voltage and any desired 
branch currents.
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